1
|
Langiu M, Dehghani F, Hohmann U, Bechstein P, Rawashdeh O, Rami A, Maronde E. Adrenergic Agonists Activate Transcriptional Activity in Immortalized Neuronal Cells From the Mouse Suprachiasmatic Nucleus. J Pineal Res 2024; 76:e12999. [PMID: 39092782 DOI: 10.1111/jpi.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) houses the central circadian oscillator of mammals. The main neurotransmitters produced in the SCN are γ-amino-butyric acid, arginine-vasopressin (AVP), vasoactive intestinal peptide (VIP), pituitary-derived adenylate cyclase-activating peptide (PACAP), prokineticin 2, neuromedin S, and gastrin-releasing peptide (GRP). Apart from these, catecholamines and their receptors were detected in the SCN as well. In this study, we confirmed the presence of β-adrenergic receptors in SCN and a mouse SCN-derived immortalized cell line by immunohistochemical, immuno-cytochemical, and pharmacological techniques. We then characterized the effects of β-adrenergic agonists and antagonists on cAMP-regulated element (CRE) signaling. Moreover, we investigated the interaction of β-adrenergic signaling with substances influencing parallel signaling pathways. Our findings have potential implications on the role of stress (elevated adrenaline) on the biological clock and may explain some of the side effects of β-blockers applied as anti-hypertensive drugs.
Collapse
Affiliation(s)
- Monica Langiu
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Philipp Bechstein
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver Rawashdeh
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelhaq Rami
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Erik Maronde
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
3
|
The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 2011; 221:466-80. [DOI: 10.1016/j.bbr.2010.11.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
|
4
|
Antle MC, Smith VM, Sterniczuk R, Yamakawa GR, Rakai BD. Physiological responses of the circadian clock to acute light exposure at night. Rev Endocr Metab Disord 2009; 10:279-91. [PMID: 19768549 DOI: 10.1007/s11154-009-9116-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circadian rhythms in physiological, endocrine and metabolic functioning are controlled by a neural clock located in the suprachiasmatic nucleus (SCN). This structure is endogenously rhythmic and the phase of this rhythm can be reset by light information from the eye. A key feature of the SCN is that while it is a small structure containing on the order of about 20,000 cells, it is amazingly heterogeneous. It is likely that anatomical heterogeneity reflects an underlying functional heterogeneity. In this review, we examine the physiological responses of cells in the SCN to light stimuli that reset the phase of the circadian clock, highlighting where possible the spatial pattern of such responses. Increases in intracellular calcium are an important signal in response to light, and this increase triggers many biochemical cascades that mediate responses to light. Furthermore, only some cells in the SCN are actually endogenously rhythmic, and these cells likely do not receive strong direct input from the retina. Therefore, this review also considers how light information is conveyed from the retinorecipient cells to the endogenously rhythmic cells that track circadian phase. A number of neuropeptides, including vasoactive intestinal polypeptide, gastrin-releasing peptide and substance P, may be particularly important in relaying such signals, but other neurochemicals such as GABA and nitric oxide may participate as well. A thorough understanding of the intracellular and intercellular responses to light, as well as the spatial arrangements of such responses may help identify important pharmacological targets for therapeutic interventions to treat sleep and circadian disorders.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
5
|
Langmesser S, Franken P, Feil S, Emmenegger Y, Albrecht U, Feil R. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. PLoS One 2009; 4:e4238. [PMID: 19156199 PMCID: PMC2617781 DOI: 10.1371/journal.pone.0004238] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022] Open
Abstract
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1–4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.
Collapse
Affiliation(s)
- Sonja Langmesser
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Urs Albrecht
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| | - Robert Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
7
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
8
|
Wright CL, Burgoon PW, Bishop GA, Boulant JA. Cyclic GMP alters the firing rate and thermosensitivity of hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1704-15. [PMID: 18321955 DOI: 10.1152/ajpregu.00714.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rostral hypothalamus, especially the preoptic-anterior hypothalamus (POAH), contains temperature-sensitive and -insensitive neurons that form synaptic networks to control thermoregulatory responses. Previous studies suggest that the cyclic nucleotide cGMP is an important mediator in this neuronal network, since hypothalamic microinjections of cGMP analogs produce hypothermia in several species. In the present study, immunohistochemisty showed that rostral hypothalamic neurons contain cGMP, guanylate cyclase (necessary for cGMP synthesis), and CNG A2 (an important cyclic nucleotide-gated channel). Extracellular electrophysiological activity was recorded from different types of neurons in rat hypothalamic tissue slices. Each recorded neuron was classified according to its thermosensitivity as well as its firing rate response to 2-100 microM 8-bromo-cGMP (a membrane-permeable cGMP analog). cGMP has specific effects on different neurons in the rostral hypothalamus. In the POAH, the cGMP analog decreased the spontaneous firing rate in 45% of temperature-sensitive and -insensitive neurons, an effect that is likely due to cGMP-enhanced hyperpolarizing K(+) currents. This decreased POAH activity could attenuate thermoregulatory responses and produce hypothermia during exposures to cool or neutral ambient temperatures. Although 8-bromo-cGMP did not affect the thermosensitivity of most POAH neurons, it did increase the warm sensitivity of neurons in other hypothalamic regions located dorsal, lateral, and posterior to the POAH. This increased thermosensitivity may be due to pacemaker currents that are facilitated by cyclic nucleotides. If some of these non-POAH thermosensitive neurons promote heat loss or inhibit heat production, then their increased thermosensitivity could contribute to cGMP-induced decreases in body temperature.
Collapse
Affiliation(s)
- Chadwick L Wright
- Department of Physiology & Cell Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
10
|
Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiol Rev 2006; 86:1-23. [PMID: 16371594 DOI: 10.1152/physrev.00015.2005] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few years, a wealth of biochemical and functional data have been gathered on mammalian cGMP-dependent protein kinases (cGKs). In mammals, three different kinases are encoded by two genes. Mutant and chimeric cGK proteins generated by molecular biology techniques yielded important biochemical knowledge, such as the function of the NH2-terminal domains of cGKI and cGKII, the identity of the cGMP-binding sites of cGKI, and the substrate specificity of the enzymes. Genetic approaches have proven especially useful for the analysis of the biological functions of cGKs. Recently, some of the in vivo targets and mechanisms leading to changes in neuronal adaptation, smooth muscle relaxation and growth, intestinal water secretion, bone growth, renin secretion, and other important functions have been identified. These data show that cGKs are signaling molecules involved in many biological functions.
Collapse
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxicologie, Technische Universität München, Biedersteiner Strasse 29, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|
11
|
Feil R, Hofmann F, Kleppisch T. Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 2005; 16:23-41. [PMID: 15810652 DOI: 10.1515/revneuro.2005.16.1.23] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The second messenger cyclic guanosine-3',5'-monophosphate (cGMP) mediates many effects of nitric oxide in the nervous system. cGMP may act through various intracellular receptors, among them a family of serine/threonine kinases, the cGMP-dependent protein kinases (cGKs). Hitherto, three mammalian cGKs have been identified: cGKIalpha, cGKIbeta and cGKII. Discrete functions of cGKI and cGKII are determined by their distinct expression patterns and targeting to specific substrates. This review provides an overview about the expression and functions of cGKs in the nervous system. Main emphasis is put on the discussion of phenotypes observed in cGK-deficient mouse models that lack cGKI and/or cGKII globally or selectively in brain regions of interest. Recent data demonstrate important functions of cGKI in (1) the development and sensitization of nociceptive neurons, and (2) synaptic plasticity and learning. There is also evidence suggesting that cGKII in the suprachiasmatic nucleus of the hypothalamus is involved in the regulation of circadian rhythmicity. Thus, cGKs serve key functions in the transduction of cGMP signals into cellular responses in distinct regions of the nervous system.-
Collapse
Affiliation(s)
- Robert Feil
- Institut für Pharmakologie und Toxikologie, Technische Universität München, München, Germany
| | | | | |
Collapse
|
12
|
Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, Hofmann F, Feil R. Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 2005; 135:863-8. [PMID: 16154279 DOI: 10.1016/j.neuroscience.2005.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/19/2005] [Accepted: 06/22/2005] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) modulates a variety of processes in the mammalian brain, but the mechanisms of neuronal NO signaling are poorly understood. In the periphery, many effects of NO are mediated via the generation of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) and activation of the cGMP-dependent protein kinase type I (cGKI). However, previous studies suggested that the expression of cGKI in the nervous system is rather restricted, thus, questioning the functional significance of the cGMP/cGKI pathway as a mediator of NO signaling in the brain. Here we have performed a detailed immunohistochemical study to elucidate the distribution of cGKI in the CNS and eye of the mouse. Expression of cGKI protein was detected not only in the previously described areas (cerebellum, hippocampus, dorsomedial hypothalamus) but also in a number of additional regions, such as medulla, subcommissural organ, cerebral cortex, amygdala, habenulae, various hypothalamic regions, olfactory bulb, pituitary gland, and retina. Immunoblotting with isoform-specific antibodies indicated that the cGKIalpha isoform is prominent in the cerebellum and medulla, whereas the cGKIbeta isoform is predominant in the cortex, hippocampus, hypothalamus, and olfactory bulb. Similar levels of the isoforms were detected in the pituitary gland and eye. Thus, it appears that distinct brain regions express distinct cGKI isoforms that signal via distinct pathways. Together, these results improve our understanding of the cellular and molecular mechanisms of NO/cGMP/cGKI signaling and indicate that the distribution and functional relevance of this pathway in the mammalian brain is broader than previously thought.
Collapse
Affiliation(s)
- S Feil
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Biedersteiner Strasse 29, 80802 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Golombek DA, Agostino PV, Plano SA, Ferreyra GA. Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem Int 2004; 45:929-36. [PMID: 15312987 DOI: 10.1016/j.neuint.2004.03.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal (1876), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
14
|
Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U. cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 2003; 13:725-33. [PMID: 12725729 DOI: 10.1016/s0960-9822(03)00252-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In mammals, the master circadian clock that drives many biochemical, physiological, and behavioral rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Generation and maintenance of circadian rhythmicity rely on complex interlocked transcriptional/translational feedback loops involving a set of clock genes. Among the molecular components driving the mammalian circadian clock are the Period 1 and 2 (mPer1 and mPer2) genes. Because the periodicity of the clock is not exactly 24 hr, it has to be adjusted periodically. The major stimulus for adjustment (resetting) of the clock is nocturnal light. It evokes activation of signaling pathways in the SCN that ultimately lead to expression of mPer1 and mPer2 genes conveying adjustment of the clock. RESULTS We show that mice deficient in cGMP-dependent protein kinase II (cGKII, also known as PKGII), despite regular retinal function, are defective in resetting the circadian clock, as assessed by changes in the onset of wheel running activity after a light pulse. At the molecular level, light induction of mPer2 in the SCN is strongly reduced in the early period of the night, whereas mPer1 induction is elevated in cGKII-deficient mice. Additionally, we show that light induction of cfos and light-dependent phosphorylation of CREB at serine 133 are not affected in these animals. CONCLUSIONS cGKII plays a role in the clock-resetting mechanism. In particular, the ability to delay clock phase is affected in cGKII-deficient mice. It seems that the signaling pathway involving cGKII influences in an opposite manner the light-induced induction of mPer1 and mPer2 genes and thereby influences the direction of a phase shift of the circadian clock.
Collapse
Affiliation(s)
- Henrik Oster
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|