1
|
Shayan E, Maheri F, Aflaki F, Mousavi SE, Zarrindast MR, Fakhraei N, Rezayat Sorkhabadi SM, Shushtarian SMM. Synergistic effects of citicoline and silymarin nanomicelles in restraint stress-exposed mice. Behav Brain Res 2024; 464:114929. [PMID: 38428646 DOI: 10.1016/j.bbr.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This study evaluated the effects of citicoline and silymarin nanomicelles (SMnm) in repeated restraint stress (RRS). METHOD Mice were exposed to RRS for four consecutive days, 2 hrs. daily. On day 5 of the study, SMnm (25 and 50 mg/kg, i.p.) and citicoline (25 and 75 mg/kg), and a combination of them (25 mg/kg, i.p.) were initiated. On day 18, anxiety-like behavior, behavioral despair, and exploratory behavior were evaluated. The prefrontal cortex (PFC) and the hippocampus were dissected measuring brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and tumor necrosis factor-alpha (TNF-α) through Western Blot and ELISA, respectively. RESULTS In RR-exposed mice, anxiety-like behavior in the elevated plus maze (EPM) was enhanced by reductions in open arm time (OAT%) P < 0.001, and open arm entry (OAE%) P < 0.001. In the forced swimming test (FST), the immobility increased P < 0.001 while the swimming and climbing reduced P < 0.001. In the open field test (OFT), general motor activity was raised P < 0.05. Further, body weights reduced P < 0.001, and tissue BDNF and pCREB expressions decreased P < 0.001 while TNF-α increased P < 0.001. Conversely, SMnm, citicoline and their combination could reduce anxiety-like behavior P < 0.001. The combination group reduced the depressive-like behaviors P < 0.001. Moreover, body weights were restored P < 0.001. Besides, BDNF and pCREB expressions increased while TNF-α reduced, P < 0.001. CONCLUSION The combination synergistically improved emotion-like behaviors, alleviating the inflammation and upregulating the hippocampal BDNF-mediated CREB signaling pathway.
Collapse
Affiliation(s)
- Elham Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Maheri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Aflaki
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyedeh-Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nahid Fakhraei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed-Mohammad-Masoud Shushtarian
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang Q, Liu Y, Zhang J, Wang W. Corticotropin-Releasing Factor Receptors in the Locus Coeruleus Modulate the Enhancement of Active Coping Behaviors Induced by Chronic Predator Odor Inoculation in Mice. Front Psychol 2020; 10:3028. [PMID: 31998206 PMCID: PMC6965494 DOI: 10.3389/fpsyg.2019.03028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Stress inoculation has been proved to induce active coping behaviors to subsequent stress. However, the specific neural mechanisms underlying this effect remain unclear. In this study, a chronic and mild predator odor exposure model was established to investigate the effect of predator odor stress inoculation on behaviors in novel predator odor exposure, open field test and forced swimming test (FST), and on the expression of CRF receptors in locus coeruleus (LC) and dorsal raphe nuclei (DRN). The results showed that predator odor stress inoculation increased the active coping of mice under the severe stress environment without changing the stress response to a new predator odor. Meanwhile, in LC, the CRFR1 expression was increased by predator odor stress inoculation. These results suggested that predator odor stress inoculation can be used as an effective training method to improve active response to later severe stress and the function of CRFR1 in LC might be a potential underlying biological mechanism.
Collapse
Affiliation(s)
- Qiong Wang
- School of Education, Zhengzhou University, Zhengzhou, China
| | - Yingjuan Liu
- School of Life Sciences and Technology, Nanyang Normal University, Nanyang, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Lalonde R, Strazielle C. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity. Rev Neurosci 2018; 28:617-648. [PMID: 28609296 DOI: 10.1515/revneuro-2016-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
Collapse
Affiliation(s)
| | - Catherine Strazielle
- , Laboratoire 'Stress, Immunité, Pathogènes' EA 7300 and Service de Microscopie Electronique, Faculté de Médecine
| |
Collapse
|
4
|
Huang J, Tufan T, Deng M, Wright G, Zhu MY. Corticotropin releasing factor up-regulates the expression and function of norepinephrine transporter in SK-N-BE (2) M17 cells. J Neurochem 2015. [PMID: 26212818 DOI: 10.1111/jnc.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Corticotropin releasing factor (CRF) has been implicated to act as a neurotransmitter or modulator in central nervous activation during stress. In this study, we examined the regulatory effect of CRF on the expression and function of the norepinephrine transporter (NET) in vitro. SK-N-BE (2) M17 cells were exposed to different concentrations of CRF for different periods. Results showed that exposure of cells to CRF significantly increased mRNA and protein levels of NET in a concentration- and time-dependent manner. The CRF-induced increase in NET expression was mimicked by agonists of either CRF receptor 1 or 2. Furthermore, similar CRF treatments induced a parallel increase in the uptake of [(3) H] norepinephrine. Both increased expression and function of NET caused by CRF were abolished by simultaneous administration of CRF receptor antagonists, indicating a mediation by CRF receptors. However, there was no additive effect for the combination of both receptor antagonists. Chromatin immunoprecipitation assays confirm an increased acetylation of histone H3 on the NET promoter following treatment with CRF. Taken together, this study demonstrates that CRF up-regulates the expression and function of NET in vitro. This regulation is mediated through CRF receptors and an epigenetic mechanism related to histone acetylation may be involved. This CRF-induced regulation on NET expression and function may play a role in development of stress-related depression and anxiety. This study demonstrated that corticotropin release factor (CRF) up-regulated the expression and function of norepinephrine transporter (NET) in a concentration- and time-dependent manner, through activation of CRF receptors and possible histone acetylation in NET promoter. The results indicate that their interaction may play an important role in stress-related physiological and pathological status.
Collapse
Affiliation(s)
- Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Turan Tufan
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Maoxian Deng
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Jiangsu Polytechnic College of A&F, Jurong, Jiangsu, China
| | - Gary Wright
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
5
|
Valentino RJ, Van Bockstaele E. Endogenous opioids: opposing stress with a cost. F1000PRIME REPORTS 2015; 7:58. [PMID: 26097731 PMCID: PMC4447041 DOI: 10.12703/p7-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stress response is characterized by the coordinated engagement of central and peripheral neural systems in response to life-threatening challenges. It has been conserved through evolution and is essential for survival. However, the frequent or continual elicitation of the stress response by repeated or chronic stress, respectively, results in the dysfunction of stress response circuits, ultimately leading to stress-related pathology. In an effort to best respond to stressors, yet at the same time maintain homeostasis and avoid dysfunction, stress response systems are finely balanced and co-regulated by neuromodulators that exert opposing effects. These opposing systems serve to restrain certain stress response systems and promote recovery. However, the engagement of opposing systems comes with the cost of alternate dysfunctions. This review describes, as an example of this dynamic, how endogenous opioids function to oppose the effects of the major stress neuromediator, corticotropin-releasing hormone, and promote recovery from a stress response and how these actions can both protect and be hazardous to health.
Collapse
Affiliation(s)
- Rita J. Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children‘s Hospital of PhiladelphiaCivic Ctr. Blvd., Philadelphia, PA 19104USA
- University of PennsylvaniaCivic Ctr. Blvd. Philadelphia, PA 19104USA
| | - Elisabeth Van Bockstaele
- Department of Pharmacology, Drexel University College of MedicineN. 15th St., Philadelphia, PA 19102USA
| |
Collapse
|
6
|
Abstract
Our dynamic environment regularly exposes us to potentially life-threatening challenges or stressors. To answer these challenges and maintain homeostasis, the stress response, an innate coordinated engagement of central and peripheral neural systems is initiated. Although essential for survival, the inappropriate initiation of the stress response or its continuation after the stressor is terminated has pathological consequences that have been linked to diverse neuropsychiatric and medical diseases. Substantial individual variability exists in the pathological consequences of stressors. A theme of this Special Issue is that elucidating the basis of individual differences in resilience or its flipside, vulnerability, will greatly advance our ability to prevent and treat stress-related diseases. This can be approached by studying individual differences in "pro-stress" mediators such as corticosteroids or the hypothalamic orchestrator of the stress response, corticotropin-releasing factor. More recently, the recognition of endogenous neuromodulators with "anti-stress" activity that have opposing actions or that restrain stress-response systems suggests additional bases for individual differences in stress pathology. These "anti-stress" neuromodulators offer alternative strategies for manipulating the stress response and its pathological consequences. This review uses the major brain norepinephrine system as a model stress-response system to demonstrate how co-regulation by opposing pro-stress (corticotropin-releasing factor) and anti-stress (enkephalin) neuromodulators must be fine-tuned to produce an adaptive response to stress. The clinical consequences of tipping this fine-tuned balance in the direction of either the pro- or anti-stress systems are emphasized. Finally, that each system provides multiple points at which individual differences could confer stress vulnerability or resilience is discussed.
Collapse
Affiliation(s)
- Rita J. Valentino
- Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author. Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
7
|
Smith JP, Achua JK, Summers TR, Ronan PJ, Summers CH. Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress. Front Behav Neurosci 2014; 8:121. [PMID: 24782729 PMCID: PMC3986560 DOI: 10.3389/fnbeh.2014.00121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/22/2014] [Indexed: 12/17/2022] Open
Abstract
In a newly developed conceptual model of stressful social decision-making, the Stress-Alternatives Model (SAM; used for the 1st time in mice) elicits two types of response: escape or remain submissively. Daily (4d) aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS). Although escape holes (only large enough for smaller test animals) are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala (BLA), gene expression of brain-derived neurotrophic factor (BDNF) was diminished, at the same time neuropeptide S (NPS) expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala (CeA), which coincided with decreased BDNF expression. Reduced expression of BDNF was only found in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship, linked by social context, between amygdalar BDNF, NPS and plasma corticosterone.
Collapse
Affiliation(s)
- Justin P Smith
- Department of Biology, University of South Dakota Vermillion, SD, USA ; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA ; Research Service, Sioux Falls VA Healthcare System Sioux Falls, SD, USA
| | - Justin K Achua
- Department of Biology, University of South Dakota Vermillion, SD, USA ; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA ; Research Service, Sioux Falls VA Healthcare System Sioux Falls, SD, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota Vermillion, SD, USA ; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA ; Research Service, Sioux Falls VA Healthcare System Sioux Falls, SD, USA ; Avera Research Institiute, Avera McKennan Hospital and University Health Center Sioux Falls, SD, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota Vermillion, SD, USA ; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
8
|
Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice. Pharmacol Rep 2014; 66:15-21. [DOI: 10.1016/j.pharep.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 08/10/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
|
9
|
de Andrade JS, Céspedes IC, Abrão RO, Dos Santos TB, Diniz L, Britto LRG, Spadari-Bratfisch RC, Ortolani D, Melo-Thomas L, da Silva RCB, Viana MB. Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behav Brain Res 2013; 250:81-90. [PMID: 23644183 DOI: 10.1016/j.bbr.2013.04.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 12/29/2022]
Abstract
Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- J S de Andrade
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36:1965-84. [PMID: 22771334 PMCID: PMC4815919 DOI: 10.1016/j.neubiorev.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
11
|
Charney DS. The psychobiology of resilience and vulnerability to anxiety disorders: implications for prevention and treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034473 PMCID: PMC3181630 DOI: 10.31887/dcns.2003.5.3/dcharney] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the research on the neurobiology of human anxiety disorders has focused on psychopaihological abnormalities in patients with anxiety disorders. While this line of research is obviously important, more investigation is needed to elucidate the psychobiology of resilience to extreme stress. Study of the psychobiology of resilience has the potential to identify neurochemical, neuropeptide, and hormonal mediators of vulnerability and resilience to severe stress. In addition, the relevance of neural mechanisms of reward and motivation, fear responsiveness, and social behavior to character traits associated with risk and resistance to anxiety disorders may be clarified. These areas of investigation should lead to improved methods of diagnosis, novel approaches to prevention, and new targets for antianxiety drug discovery.
Collapse
Affiliation(s)
- Dennis S Charney
- Chief, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Md, USA
| |
Collapse
|
12
|
de Andrade JS, Abrão RO, Céspedes IC, Garcia MC, Nascimento JOG, Spadari-Bratfisch RC, Melo LL, da Silva RCB, Viana MB. Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behav Brain Res 2012; 232:20-9. [PMID: 22487246 DOI: 10.1016/j.bbr.2012.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/30/2022]
Abstract
Results from a previous study show that rats exposed to acute restraint display anxiogenic-like behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. In contrast, escape responses were unaltered by stress exposure. Since ETM avoidance and escape tasks seem to activate distinct sets of brain structures, it is possible that the differences observed with acute restraint are due to particularities in the neurobiological mechanisms which modulate these responses. In the present study, analysis of fos protein immunoreactivity (fos-ir) was used to map areas activated by exposure of male Wistar rats to restraint stress (30 min) previously (30 min) to the ETM. Corticosterone levels were also measured in stressed and non-stressed animals. Confirming previous observations restraint facilitated avoidance performance, an anxiogenic result, while leaving escape unaltered. Performance of the avoidance task increased fos-ir in the frontal cortex, intermediate lateral septum, basolateral amygdala, basomedial amygdala, lateral amygdala, anterior hypothalamus and dorsal raphe nucleus. In contrast, performance of escape increased fos-ir in the ventromedial hypothalamus, dorsolateral periaqueductal gray and locus ceruleus. Both behavioral tasks also increased fos-ir in the dorsomedial hypothalamus. Restraint significantly raised corticosterone levels. Additionally after restraint, fos-ir was predominantly seen in the basolateral amygdala and dorsal raphe of animals submitted to the avoidance task. This data confirms that different sets of brain structures are activated by ETM avoidance and escape tasks and suggests that acute restraint differently alters ETM behavior and the pattern of fos activation in the brain.
Collapse
Affiliation(s)
- J S de Andrade
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Valentino RJ, Reyes B, Van Bockstaele E, Bangasser D. Molecular and cellular sex differences at the intersection of stress and arousal. Neuropharmacology 2011; 62:13-20. [PMID: 21712048 DOI: 10.1016/j.neuropharm.2011.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 01/02/2023]
Abstract
Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)-norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss the evidence for sex differences in LC dendritic structure that allow for an increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
14
|
Esmaeili-Mahani S, Fathi Y, Motamedi F, Hosseinpanah F, Ahmadiani A. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone. Horm Behav 2008; 53:351-7. [PMID: 18177874 DOI: 10.1016/j.yhbeh.2007.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 12/26/2022]
Abstract
Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.
Collapse
Affiliation(s)
- Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran.
| | | | | | | | | |
Collapse
|
15
|
Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583:194-203. [PMID: 18255055 DOI: 10.1016/j.ejphar.2007.11.062] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/01/2007] [Accepted: 11/14/2007] [Indexed: 11/26/2022]
Abstract
Although hypothalamic-pituitary-adrenal axis activation is generally considered to be the hallmark of the stress response, many of the same stimuli that initiate this response also activate the locus coeruleus-norepinephrine system. Given its functional attributes, the parallel engagement of the locus coeruleus-norepinephrine system with the hypothalamic-pituitary-adrenal axis serves to coordinate endocrine and cognitive limbs of the stress response. The elucidation of stress-related afferents to the locus coeruleus and the electrophysiological characterization of these inputs are revealing how the activity of this system is fine-tuned by stressors to facilitate adaptive cognitive responses. Emerging from these studies, is a picture of complex interactions between the stress-related neuropeptide, corticotropin-releasing factor (CRF), endogenous opioids and the excitatory amino acid neurotransmitter, glutamate. The net effect of these interactions is to adjust the activity and reactivity of the locus coeruleus-norepinephrine system such that state of arousal and processing of sensory stimuli are modified to facilitate adaptive behavioral responses to stressors. This review begins with an introduction to the basic anatomical and physiological characteristics of locus coeruleus neurons. The concept that locus coeruleus neurons operate through two activity modes, i.e., tonic vs. phasic, that determine distinct behavioral strategies is emphasized in light of its relevance to stress. Anatomical and physiological evidence are then presented suggesting that interactions between stress-related neurotransmitters that converge on locus coeruleus neurons regulate shifts between these modes of discharge in response to the challenge of a stressor. This review focuses specifically on the locus coeruleus because it is the major source of norepinephrine to the forebrain and has been implicated in behavioral and cognitive aspects of stress responses.
Collapse
Affiliation(s)
- Rita J Valentino
- The Children's Hospital of Philadelphia, 402C Abramson Building, Osler Cr., Philadelphia, PA 19104, United States.
| | | |
Collapse
|
16
|
Jaferi A, Bhatnagar S. Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res 2007; 1186:212-23. [PMID: 18001698 DOI: 10.1016/j.brainres.2007.07.100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 07/09/2007] [Accepted: 07/14/2007] [Indexed: 11/24/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis habituates, or gradually decreases its activity, with repeated exposure to the same stressor. During habituation, the HPA axis likely requires input from cortical and limbic regions involved in the processing of cognitive information that is important in coping to stress. Brain regions such as the medial prefrontal cortex (mPFC) are recognized as important in mediating these processes. The mPFC modulates stress-related behavior and some evidence suggests that the mPFC regulates acute and repeated stress-induced HPA responses. Interestingly, corticotropin-releasing hormone (CRH)-1 receptors, which integrate neuroendocrine, behavioral and autonomic responses to stress, are localized in the mPFC but have not been specifically examined with respect to HPA regulation. We hypothesized that CRH receptor activity in the mPFC contributes to stress-induced regulation of HPA activity and anxiety-related behavior and that CRH release in the mPFC may differentially regulate HPA responses in acutely compared to repeatedly stressed animals. In the present experiments, we found that blockade of CRH receptors in the mPFC with the non-selective receptor antagonist d-Phe-CRH (50 ng or 100 ng) significantly inhibited HPA responses compared to vehicle regardless of whether animals were exposed to a single, acute 30 min restraint or to the eighth 30 min restraint. We also found that intra-mPFC injections of CRH (20 ng) significantly increased anxiety-related behavior in the elevated plus maze in both acutely and repeatedly restrained groups compared to vehicle. Together, these results suggest an excitatory influence of CRH in the mPFC on stress-induced HPA activity and anxiety-related behavior regardless of prior stress experience.
Collapse
Affiliation(s)
- Azra Jaferi
- Department of Psychology, University of Michigan, MI, USA
| | | |
Collapse
|
17
|
Vining C, Iyer V, Bhatnagar S. Intracerebroventricular administration of corticotrophin-releasing hormone receptor antagonists produces different effects on hypothalamic pituitary adrenal responses to novel restraint depending on the stress history of the animal. J Neuroendocrinol 2007; 19:198-207. [PMID: 17280593 DOI: 10.1111/j.1365-2826.2006.01522.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corticotrophin-releasing hormone (CRH) regulates acute stress-induced changes in neuroendocrine function and behaviour. However, little is known about CRH functions in animals that have prior experience with repeated stress. Repeatedly-stressed rats exhibit a habituated hypothalamic-pituitary-adrenal (HPA) response to a familiar, homotypic stressor but exhibit maintained or enhanced HPA responses to a novel, heterotypic stressor. We examined the effects of intracerebroventricular (i.c.v.) administration of two different nonselective CRH receptor antagonists, alpha-helical CRH(9-41) (ahCRH) or D-Phe CRH(12-41) (D-PheCRH), on HPA responses to acute restraint in rats previously exposed to repeated cold stress (i.e. facilitated responses). Antagonists were administered as single i.c.v. injections prior to restraint to provide a general index of CRH function in control versus repeatedly-stressed rats. CRH receptor blockade with either ahCRH or D-PheCRH produced different effects on HPA responses to novel restraint depending on whether the animal had been previously cold stressed or not. Interestingly, some agonist-type effects were observed but only in repeatedly-stressed rats. In summary, these results indicate that manipulations of the CRH receptor have different effects on HPA activity depending on the stress history of the animal.
Collapse
Affiliation(s)
- C Vining
- Department of Anesthesiology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Chotiwat C, Harris RBS. Increased anxiety-like behavior during the post-stress period in mice exposed to repeated restraint stress. Horm Behav 2006; 50:489-95. [PMID: 16870191 DOI: 10.1016/j.yhbeh.2006.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Mice exposed to repeated restraint (RR: 2 h of restraint on each of 3 consecutive days) lose weight and do not return to the weight of non-stressed controls after restraint ends. These mice also exhibit an exaggerated endocrine response to mild stressors in the post-stress period. To determine if other aspects of the stress response are altered, NIH Swiss mice were repeatedly restrained then evaluated for anxiety-like behavior in various behavioral tests. Twelve days after the end of RR half of the control and RR mice were subjected to the mild stress of an intraperitoneal injection of saline before placement in an elevated plus maze. RR mice not subjected to mild stress showed the same level of anxiety as the control and RR mice exposed to mild stress. Placement in a light-dark box 20 days after restraint also indicated an increase in anxiety-like behavior in RR mice that had not been exposed to mild stress. In contrast, RR mice displayed no increase in anxiety-like behavior in the defensive withdrawal apparatus and the marble burying test 6 and 17 days, respectively, after restraint. RR mice released more corticosterone than non-restrained controls exposed to defensive withdrawal or EPM apparatus although baseline corticosterone remained at control levels. These results suggest that RR induces an exaggeration of both endocrine and behavioral responses to subsequent mild stressors. This post-stress hypersensitivity to mild stress may contribute to the sustained reduction in the body weight of RR animals.
Collapse
Affiliation(s)
- Christina Chotiwat
- Department of Foods and Nutrition, Dawson Hall, The University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
19
|
Carlin KM, Vale WW, Bale TL. Vital functions of corticotropin-releasing factor (CRF) pathways in maintenance and regulation of energy homeostasis. Proc Natl Acad Sci U S A 2006; 103:3462-7. [PMID: 16492754 PMCID: PMC1413935 DOI: 10.1073/pnas.0511320103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of energy homeostasis is a vital function of the CNS requiring adaptive responses to maintain and support life after stress perturbations. The mechanisms whereby these processes occur are, however, only partially understood. A major determinate of these responses is corticotropin-releasing factor (CRF). Receptors for CRF, CRFR1 and CRFR2, have been hypothesized to play distinct roles in the alterations necessary for homeostatic maintenance. The function of CRFR2, in particular, has remained elusive despite its presence in both the CNS and periphery. In this work, we have used complimentary gene deletion and pharmacological approaches to elucidate the crucial role CRFR2 plays in the regulation of regional tissue thermogenesis and adaptive physiology. Analyses of interscapular brown adipose tissue (IBAT) thermogenesis by thermal signature analysis and the concordant biochemical changes in key sympathetic components in mice deficient for CRFR2 revealed significantly elevated basal IBAT thermogenesis and prolonged adrenergic responsivity of IBAT in older mice. Measurement of metabolic rates by indirect calorimetry after chronic high-fat diet challenge and treatment with the CRFR1 antagonist NBI-27914 revealed a decreased respiratory exchange ratio of these mice that was normalized with NBI-27914. Further, as a definitive measure for physiological pathology, mice examined in a behavioral model of differential temperature selection showed a predilection for warmer external temperatures, supporting a loss of body heat in these mice. These studies provide physiological, biochemical, and behavioral evidence for the critical participation of CRF pathways in the maintenance and adaptive responses necessary for regulation of energy homeostasis.
Collapse
Affiliation(s)
- Kendall M. Carlin
- *Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Wylie W. Vale
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037
- To whom correspondence may be addressed. E-mail:
| | - Tracy L. Bale
- *Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104; and
- To whom correspondence may be addressed at:
201E Vet, 6046, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046. E-mail:
| |
Collapse
|
20
|
Kosoyan HP, Grigoriadis DE, Taché Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res 2005; 1056:85-96. [PMID: 16095571 DOI: 10.1016/j.brainres.2005.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/08/2005] [Accepted: 07/13/2005] [Indexed: 12/30/2022]
Abstract
Corticotropin-releasing factor (CRF) receptors have been reported to play a role in tonic colorectal distension (CRD)-induced activation of locus coeruleus (LC) neurons. We examined the influence of repeated phasic CRDs and intracisternal (ic) CRF on the spontaneous discharge rate of LC neurons in chloral hydrate-anesthetized rats and the role of CRF receptors using the nonselective CRF(1)/CRF(2) antagonist, astressin, and the water-soluble CRF(1) receptor antagonist, NBI-35965. Two consecutive phasic CRDs (43.7 +/- 1.1 mm Hg, 30 s each) at a 10-min interval increased LC activity to 184.9 +/- 15% and 171.9 +/- 12.2%, respectively. There was no difference in magnitude, onset (within 1 s), and duration (5-7 min) of the LC responses between the 1st and 2nd CRDs. CRF (300 ng/rat, ic) injected 10 min after the 2nd CRD increased LC activity to 191.1 +/- 11.2%. Astressin (3 mug, ic) completely blocked the 2nd CRD- and ic CRF-induced LC activation. Neither ic vehicle nor astressin influenced basal LC neuronal activity. NBI-35965 (10 mg/kg, iv) prevented the 2nd CRD- and ic CRF-induced LC neuronal activation, while at 5 mg significantly reduced the LC response to the 2nd CRD by 80%, but did not block that of ic CRF injected 30 min later. These findings indicate a primary role of brain CRF interacting with CRF(1) receptors in mediating the activation of LC neurons in response to a phasic CRD within the nociceptive range (>40 mm Hg). This activation may have relevance to irritable bowel syndrome characterized by lower pain threshold to CRD and hypervigilance to colonic input.
Collapse
Affiliation(s)
- Hovsep P Kosoyan
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences and Women's Health, Veterans Affairs Medical Center, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
21
|
Forray MI, Gysling K. Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2005; 47:145-60. [PMID: 15572169 DOI: 10.1016/j.brainresrev.2004.07.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays an important role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during stress and it is a major extrahypothalamic relay to the paraventricular nucleus of the hypothalamus (PVN) from the amygdala and the hippocampus. In this review, we discuss the anatomical, neurochemical and behavioral evidence that substantiate a role for noradrenergic terminals of the anterior BNST in the regulation of the HPA axis. We propose the hypothesis that BNST noradrenaline (NA) participates in the regulation of the hippocampal inhibitory influence on the HPA axis activation. The observation that NA exerts a tonic inhibitory effect upon glutamatergic transmission in the anterior BNST supports this hypothesis. We also discuss the known mechanisms involved in the regulation of BNST NA extracellular levels and the possible interactions between NA and corticotropin-releasing hormone (CRH), and of CRH with glutamate (GLU) in the regulation of the HPA axis activity exerted by the BNST. The evidence discussed in the present review situates the BNST as a key extrahypothalamic center that relays and integrates limbic and autonomic information related to stress responses suggesting that dysregulation in the functioning of the BNST may underlie the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- María Inés Forray
- Department of Pharmacy, Faculty of Chemistry, Catholic University of Chile, Santiago, Chile.
| | | |
Collapse
|
22
|
Wiedenmayer CP, Magariños AM, McEwen BS, Barr GA. Age-specific threats induce CRF expression in the paraventricular nucleus of the hypothalamus and hippocampus of young rats. Horm Behav 2005; 47:139-50. [PMID: 15664017 DOI: 10.1016/j.yhbeh.2004.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/20/2004] [Accepted: 09/13/2004] [Indexed: 11/26/2022]
Abstract
Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats. Preweaning 14-day-old and postweaning 26-day-old rats were exposed to two age-specific threats, cat odor and an adult male rat. The acute behavioral response was determined during exposure. After exposure, the time courses of the corticosterone response and of CRF expression in the paraventricular nucleus of the hypothalamus (PVN) and in extrahypothalamic areas were assessed. Preweaning rats became immobile when exposed to cat odor or the male rat, whereas postweaning rats became immobile to cat odor only. Male exposure increased serum corticosterone levels in 14-day-old rats, but cat odor failed to increase levels at either age. Exposure induced elevation of CRF mRNA levels in the PVN that paralleled changes in corticosterone levels. CRF may thus play a role in endocrine regulation and its developmental changes during early life. Neither cat odor nor the adult male altered CRF mRNA levels in the bed nucleus of the stria terminalis (BNST) or the amygdala, but both stimuli increased levels in the hippocampus. Hippocampal CRF mRNA expression levels did not parallel cat odor or male-induced immobility, indicating that CRF is not involved in this response in young rats but may be involved in aspects of learning and memory.
Collapse
|
23
|
Mitchell JC, Li XF, Breen L, Thalabard JC, O'Byrne KT. The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat. Endocrinology 2005; 146:323-31. [PMID: 15486230 DOI: 10.1210/en.2004-1053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite a wealth of evidence for CRH mediating stress-induced suppression of the hypothalamic GnRH pulse generator, and hence reproductive dysfunction, the site and mechanism of action remains elusive. The locus coeruleus (LC), a prominent noradrenergic brain stem nucleus, is innervated by CRH neurons, mediates several behavioral stress responses, and is implicated in the control of pulsatile LH secretion. The aim of this study was to test the hypothesis that LC CRH has a critical role in mediating stress-induced suppression of pulsatile LH secretion in the rat. Ovariectomized rats with 17beta-estradiol or oil-filled s.c. capsules were implanted with bilateral LC and i.v. cannulae. Central administration of CRH (10 ng to 1 microg) resulted in a dose-dependent suppression of LH pulses, which was reversed by a CRH receptor antagonist (alpha-helical CRF(9-41), 1 microg). The induction of c-fos expression in glutamic acid decarboxylase67 immunostained neurons in the preoptic area suggests activation of the secretion of gamma-aminobutyric acid in response to intracoerulear administration of CRH; 17beta-estradiol further increased the percentage of glutamic acid decarboxylase67-positive neurons that expressed fos and augmented suppression of LH pulses. Furthermore, intracoerulear administration of alpha-helical CRF(9-41) completely blocked restraint stress-induced suppression of LH pulses, without affecting the inhibitory response to hypoglycemia. These results suggest that CRH innervation of the LC may play a pivotal, but differential, role in the normal physiological response of stress-induced suppression of the GnRH pulse generator and hence the reproductive system.
Collapse
Affiliation(s)
- J C Mitchell
- Division of Reproductive Health, Endocrinology and Development, School of Medicine, 2.36D New Hunt's House, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Bhatnagar S, Nowak N, Babich L, Bok L. Deletion of the 5-HT3 receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests. Behav Brain Res 2004; 153:527-35. [PMID: 15265651 DOI: 10.1016/j.bbr.2004.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 01/09/2004] [Accepted: 01/09/2004] [Indexed: 01/02/2023]
Abstract
The central serotonin (5-HT) system is important in regulating behaviors associated with anxiety and depression. While a fair amount is known about the role of 5-HT1 and 5-HT2 receptor subtypes in regulating these behaviors, much less is known about the involvement of the 5-HT3 receptor, especially with regards to its role in sex differences in behavior. Our goal in the present studies was to examine whether deletion of the 5-HT3 receptor produces different effects in adult male and female mice on performance in three behavioral tests. We examined behavior of male and female mice lacking the 5-HT3 receptor (knock-out or KO) and their wild-type (WT) littermates in the Porsolt forced swim test because of its importance in reliably detecting anti-depressant efficacy. In addition, we examined behavior in the defensive withdrawal test and repeated exposure to an open field because behavior in these two tests provides measures of anxiety. In the Porsolt swim test, sex differences were eliminated by deletion of the 5-HT3 receptor while deletion had no effect in the habituation of locomotor activity to repeated exposure to an open field. In the defensive withdrawal test, deletion of the 5-HT3 receptor had more complex effects though these effects tended to be in the opposite direction in males and females. Together these results suggest that the 5-HT3 receptor regulates behavior-related to depression and anxiety differently in males and females. Whether these effects are due to the interaction of 5-HT3 receptor with gonadal hormones requires further examination.
Collapse
Affiliation(s)
- Seema Bhatnagar
- Department of Psychology, University of Michigan, 525 East University, Box 1109, Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
25
|
Harris RBS, Gu H, Mitchell TD, Endale L, Russo M, Ryan DH. Increased glucocorticoid response to a novel stress in rats that have been restrained. Physiol Behav 2004; 81:557-68. [PMID: 15178148 DOI: 10.1016/j.physbeh.2004.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 12/03/2003] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
Rats exposed to repeated restraint stress (3 h of restraint on each of 3 days) lose weight during stress and do not return to the weight of nonstressed controls once stress ends. Others have reported that chronic stress raises the daily nadir of corticosterone release and increases the adrenal response to subsequent stress; therefore, we examined glucocorticoid release in rats that had been exposed to repeated restraint. Repeated restraint had no effect on the diurnal pattern of corticosterone or insulin release, measured 12 days after restraint had ended, indicating that the reduced weight of the rats is not associated with an elevated corticosterone-insulin ratio. In contrast, rats that had been exposed to repeated restraint, 12 days previously, showed a blunted corticosterone release during a second restraint stress, a normal response to the novel physiological stress of 2-deoxy glucose (2-DG) injection, but an exaggerated corticosterone response to the novel mild stress (MS) of either placement in a unfamiliar environment or an intraperitoneal injection of saline. Mice exposed to repeated restraint showed a similar hyperresponsiveness to novel MS, suggesting that repeated restraint lowers the threshold for stress-induced activation of the adrenal gland. MS caused a small, but significant, degree of hypophagia in rats that had been exposed to repeated restraint stress. Therefore, multiple aspects of the stress response may be exaggerated in these animals and contribute to the chronic reduction in body weight.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 2003; 28:1328-35. [PMID: 12784115 DOI: 10.1038/sj.npp.1300191] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research evidence that corticotropin-releasing factor (CRF) plays a role in the pathophysiology of major depressive disorder (MDD) has accumulated over the past 20 years. The elevation of lumbar cerebrospinal fluid (CSF) concentrations of CRF decreased responsiveness of pituitary CRF receptors to challenge with synthetic CRF, and increased levels of serum cortisol in MDD subjects support the hypothesis that CRF is chronically hypersecreted in at least the endocrine circuits of the hypothalamic-pituitary-adrenal (HPA) axis and may also involve other CRF brain circuits mediating emotional responses and/or arousal. One such circuit includes the excitatory CRF input to the locus coeruleus (LC), the major source of norepinephrine in the brain. Furthermore, there are now reports of decreased levels of CRF in lumbar CSF from MDD patients after symptom relief from chronic treatment with antidepressant drugs or electroconvulsive therapy. Whether this normalization reflects therapeutic effects on both endocrine- and limbic-associated CRF circuits has not yet been effectively addressed. In this brief report, we describe increased concentrations of CRF-like immunoreactivity in micropunches of post-mortem LC from subjects with MDD symptoms as established by retrospective psychiatric diagnosis compared to nondepressed subjects matched for age and sex.
Collapse
Affiliation(s)
- Garth Bissette
- Division of Neurobiology and Behavioral Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
27
|
Seymour PA, Schmidt AW, Schulz DW. The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS DRUG REVIEWS 2003; 9:57-96. [PMID: 12595912 PMCID: PMC6741649 DOI: 10.1111/j.1527-3458.2003.tb00244.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since CRH has been shown to mediate stress-induced physiological and behavioral changes, it has been hypothesized that CRH receptor antagonists may have therapeutic potential in disorders that involve excessive CRH activity. CP-154,526 and its close analog antalarmin are potent, brain-penetrable, selective nonpeptide CRH1 receptor antagonists that were discovered in an effort to develop compounds with efficacy in CNS disorders precipitated by stress. Since its discovery many investigators have used CP-154,526 as a tool to study the pharmacology of CRH and its receptors and to evaluate its therapeutic potential in a variety of CNS and peripheral disorders. Systemically-administered CP-154,526 has been demonstrated to antagonize CRH- and stress-induced neuroendocrine, neurochemical, electrophysiological, and behavioral effects. These findings support the hypothesis that CRH1 receptor antagonists may have therapeutic utility in a number of neuropsychiatric disorders. CP-154,526, as well as other CRH1 receptor antagonists that have since been discovered, have also shown activity in several preclinical models of anxiety, depression, and substance abuse, while having little effect on locomotor activity and motor function. Although these effects are on occasion inconsistent among different laboratories, clinical evaluation of CRH1 antagonists appears justified on the basis of these and clinical data implicating the involvement of CRH in several CNS disorders. The effects of CRH1 antagonists on cognition, neurodegeneration, inflammation, and the gastrointestinal system have not been as extensively characterized and additional studies will be necessary to evaluate their therapeutic potential in these areas.
Collapse
Affiliation(s)
- Patricia A Seymour
- CNS Discovery, Pfizer Global Research and Development, Groton Laboratories, Pfizer Inc., CT 06340, USA.
| | | | | |
Collapse
|
28
|
Gutman DA, Owens MJ, Skelton KH, Thrivikraman KV, Nemeroff CB. The corticotropin-releasing factor1 receptor antagonist R121919 attenuates the behavioral and endocrine responses to stress. J Pharmacol Exp Ther 2003; 304:874-80. [PMID: 12538845 DOI: 10.1124/jpet.102.042788] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the major physiological regulator of the hypothalamic-pituitary-adrenal (HPA) axis and serves to coordinate the mammalian endocrine, autonomic, and behavioral responses to stress. Considerable literature from clinical and preclinical data suggests that hypersecretion of hypothalamic and/or extrahypothalamic CRF systems is a major factor in the pathogenesis of affective and anxiety disorders. Based on this premise, a CRF(1) receptor antagonist has been hypothesized to possess anxiolytic and/or antidepressant properties. In this study, an acute dose of the lipophilic CRF(1) receptor antagonist 3-[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2,5-dimethyl-N,N-dipropyl-pyrazolo[2,3-a]pyrimidin-7-amine (R121919), administered i.v. to rats with surgically implanted jugular cannula 60 min before a 5-min restraint stress, dose dependently attenuated peak plasma adrenocorticopin hormone (ACTH) and corticosterone concentrations by 91 and 75%, respectively. In a second study, acute administration of R121919 reduced measures of anxiety in a rodent defensive withdrawal paradigm. R121919 dose dependently decreased latency to exit the tube, and total time spent in the tube 60 min after a single subcutaneous administration. In addition, the ACTH and corticosterone response to novelty was decreased by 82 and 97%, respectively, at the 10-mg/kg dose of R121919. In another study, this dose was associated with approximately an 85% occupancy of the CRF(1) receptor in the cortex measured 75-min postsubcutaneous injection. These data confirm that R121919 acts as a CRF(1) receptor antagonist in vivo, attenuates HPA axis responsivity, and possesses anxiolytic properties.
Collapse
Affiliation(s)
- David A Gutman
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University of School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
29
|
Pijlman FTA, van Ree JM. Physical but not emotional stress induces a delay in behavioural coping responses in rats. Behav Brain Res 2002; 136:365-73. [PMID: 12429398 DOI: 10.1016/s0166-4328(02)00128-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Physical stress (PS) and emotional stress (ES) have opposite long-term effects on open field behaviour. PS consisted of a repeated mild foot shock treatment, which the ES animals witnessed. PS caused a long-term decrease in locomotor activity and exploration behaviours and increased immobility. ES induced an increase in locomotor activity. These changes in open field behaviour could be the result of several factors such as increased anxiety, a shift in coping strategy or simply a change in locomotor activity. To investigate the effect of the PS and ES treatment on these separate factors, the following behavioural tests were performed: defensive withdrawal, shock prod bury, large open field and social interaction. PS animals initially showed immobility in the shock prod bury test and the large open field, while the differences measured over the entire test period were small or not present. PS did not induce differences in the defensive withdrawal and the social interaction tests. ES and control animals did not differ significantly in any of the tests. The effects of PS in the shock prod bury test in particular can be interpreted as an indication of a passive coping style. However, PS animals showed the same behaviour as controls, but started displaying the behaviour after the initial immobility response. It is concluded that neither PS nor ES affects the coping style and anxiety level of the rats. PS induces a delay in behavioural responding and ES induces locomotor activation per se. It seems that the shock prod bury test is most suitable to distinguish between exploration and coping style.
Collapse
Affiliation(s)
- Femke T A Pijlman
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Centre Utrecht, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002; 26:259-83. [PMID: 12034130 DOI: 10.1016/s0149-7634(01)00066-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review aims to give a brief overview of NPY receptor distribution and physiology in the brain and summarizes series of studies, test by test and region by region, aimed at identification receptor subtypes and neuronal circuitry mediating anxiolytic-like effects of NPY. We conclude that from four known NPY receptor subtypes in the rat (Y(1), Y(2), Y(4), Y(5)), only the NPY Y(1) receptor can be linked to anxiety-regulation with certainty in the forebrain, and that NPY Y(2) receptor may have a role in the pons. Microinjection studies with NPY and NPY receptor antagonists support the hypothesis that the amygdala, the dorsal periaqueductal gray matter, dorsocaudal lateral septum and locus coeruleus form a neuroanatomical substrate that mediates anxiolytic-like effects of NPY. The release of NPY in these areas is likely phasic, as NPY receptor antagonists are silent on their own. However, constant NPY-ergic tone seems to exist in the dorsal periaqueductal gray, the only brain region where NPY Y(1) receptor antagonists had anxiogenic-like effects. We conclude that endogenous NPY has an important role in reducing anxiety and serves as a physiological stabilizer of neural activity in circuits involved in the regulation of arousal and anxiety.
Collapse
Affiliation(s)
- Ants Kask
- Department of Pharmacology, University of Tartu, 50090, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
31
|
Shinba T, Shinozaki T, Mugishima G. Clonidine immediately after immobilization stress prevents long-lasting locomotion reduction in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:1629-40. [PMID: 11642659 DOI: 10.1016/s0278-5846(01)00203-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1. Stress-induced behavioral change in the rat has been utilized as an animal model of anxiety disorder. The authors examined the effect of early intervention by noradrenergic inhibition on stress-induced long-lasting locomotion reduction. 2. Clonidine, an alpha2 agonist, was administered immediately after a single session of 8 min immobilization stress in a restraining box, followed by locomotion measurement on day 1, day 7, and day 14 after the stress session. 3. In the saline-treated control group, locomotion on day 1, day 7, and day 14 after the 8 min stress session was significantly reduced to about 80% in comparison with that before the stress. This finding confirmed the previous report that a single stressful event could lead to long-lasting behavioral changes. When clonidine was administered, locomotion reduction was not observed on any post-stress day. 4. The results suggest that early intervention by noradrenergic inhibition to stressful events may have a preventive effect on subsequent behavioral change which may be considered as an animal model of post-traumatic stress disorder.
Collapse
Affiliation(s)
- T Shinba
- Department of Neurophysiology, Tokyo Institute of Psychiatry, Japan.
| | | | | |
Collapse
|
32
|
Harro J, Tõnissaar M, Eller M. The effects of CRA 1000, a non-peptide antagonist of corticotropin-releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides 2001; 35:100-9. [PMID: 11384205 DOI: 10.1054/npep.2001.0851] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracerebrally administered CRF has been demonstrated to elicit several behavioural deficits in novel and potentially stressful experimental paradigms, and to promote activity in familiar situations. This study examined the effect of CRA 1000, a novel non-peptide antagonist of CRF(1)receptors, on rat behaviour in tests of anxiolytic and antidepressant activity and novelty-oriented behaviour. CRA 1000 (1.25-10 mg/kg) had no major effect in elevated plus-maze and social interaction tests. However, CRA 1000 (5 mg/kg) significantly reduced immobility in the forced swimming test, suggesting an antidepressant-like effect. In the exploration box test, CRA 1000 (1.25 mg/kg) had an anxiolytic effect on rat exploratory behaviour both in intact rats and after lesioning of the projections of locus coeruleus by DSP-4 (50 mg/kg) treatment. A higher dose of CRA 1000 (5 mg/kg) tended to have anxiolytic-like effects in DSP-4 pretreated rats, but in intact animals this dose prevented the increase in exploration which develops with repeated exposure to initially anxiety-provoking situations. Taken together, these experiments demonstrate that CRF1 receptor blockade by CRA 1000 has antidepressant-like effects, does not have a robust anti-anxiety effect in non-stressed animals, but does have anxiolytic-like effects in more complex tasks, which can be observed also after denervation of the locus coeruleus projections. However, large doses of CRF1 receptor antagonists may reduce motivation of exploratory behaviour in familiar environments.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology, University of Tartu, Estonia.
| | | | | |
Collapse
|
33
|
Kikusui T, Takeuchi Y, Mori Y. Involvement of corticotropin-releasing factor in the retrieval process of fear-conditioned ultrasonic vocalization in rats. Physiol Behav 2000; 71:323-8. [PMID: 11150564 DOI: 10.1016/s0031-9384(00)00352-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of the corticotropin-releasing factor (CRF) system in the fear-conditioned ultrasonic vocalizations (USVs) induced by foot shocks in rats was investigated. In the acquisition phase of fear conditioning, the intracerebroventricular administration of CRF receptor antagonist alpha-hCRF attenuated USV responses related to context memory. Even after experiencing eight consecutive days of foot-shock challenges, the alpha-hCRF group emitted similar number of USVs as the control group if they were not given the drug. After the conditioning phase, the groups treated with alpha-hCRF or CRF receptor 1 (CRFR1) antagonist CP-154,526 emitted fewer conditioned USVs than the control group, although there was no difference in the USVs after the shock, which reflected physical stress. These results suggest that the central CRF systems, especially those mediated via CRFR1, are involved in the retrieval process, but not the acquisition or retention processes, of fear-related memory.
Collapse
Affiliation(s)
- T Kikusui
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan.
| | | | | |
Collapse
|
34
|
Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM. Long-term behavioral and neuroendocrine adaptations to adverse early experience. PROGRESS IN BRAIN RESEARCH 2000; 122:81-103. [PMID: 10737052 DOI: 10.1016/s0079-6123(08)62132-9] [Citation(s) in RCA: 515] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- C O Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J Neurosci 2000. [PMID: 10648728 DOI: 10.1523/jneurosci.20-03-01240.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In view of the substantial preclinical evidence that supports a seminal role of central corticotropin-releasing factor (CRF) neuronal systems in the physiology and pathophysiology of stress and anxiety, it is reasonable to suggest that the anxiolytic properties of benzodiazepines are mediated, at least in part, via regulation of CRFergic function. To begin to test this complex hypothesis, we examined the effects of acute and chronic administration of the triazolobenzodiazepine agonist alprazolam on CRF peptide concentrations, receptor-binding density, and mRNA expression in the CNS. Additionally, we measured mRNA expression for urocortin, a recently discovered neuropeptide that is generally considered to be a second endogenous ligand for CRF receptors. Both acute and chronic alprazolam administration was found to decrease CRF concentrations within the locus coeruleus. Furthermore, chronic alprazolam decreased basal activity of the hypothalamic-pituitary-adrenal axis, CRF mRNA expression in the central nucleus of the amygdala, and CRF(1) mRNA expression and receptor binding in the basolateral amygdala. In marked contrast, urocortin mRNA expression in the Edinger-Westphal nucleus and CRF(2A) receptor binding in the lateral septum and ventromedial hypothalamus were increased. Similar findings of an inverse relationship between the CRF(1) and CRF(2A) receptor systems have been reported in an anxiety model based on adverse early-life experience, suggesting the intriguing possibility that CRF neuronal systems may be comprised of two separate, but interrelated, subdivisions that can be coordinately and inversely regulated by stress, anxiety, or anxiolytic drugs.
Collapse
|
36
|
Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 1999; 46:1509-22. [PMID: 10599479 DOI: 10.1016/s0006-3223(99)00224-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The relative contribution of genetic and environmental factors to the development of the major psychiatric disorders has long been debated. Recently, considerable attention has been given to the observations that adverse experiences early in life predispose individuals to the development of affective and anxiety disorders in adulthood. Corticotropin-releasing factor (CRF) is the central coordinator of the endocrinologic, autonomic, immunologic, and behavioral stress responses. When centrally administered, CRF produces many physiologic and behavioral changes reminiscent of both acute stress and depression. Moreover, CRF has also been implicated in the pathogenesis of a variety of anxiety disorders, mainly through CRF neurocircuits connecting the amygdala and the locus ceruleus. Clinical studies have provided convincing evidence for central CRF hypersecretion in depression, and, to a lesser extent, in some anxiety disorders. Evidence mainly from preclinical studies suggests that stress early in life results in persistent central CRF hyperactivity and increased stress reactivity in adulthood. Thus, genetic disposition coupled with early stress in critical phases of development may result in a phenotype that is neurobiologically vulnerable to stress and may lower an individual's threshold for developing depression and anxiety upon further stress exposure. This pathophysiologic model may provide novel approaches to the prevention and treatment of psychopathology associated with stress early in life.
Collapse
Affiliation(s)
- C Heim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Jasnow AM, Banks MC, Owens EC, Huhman KL. Differential effects of two corticotropin-releasing factor antagonists on conditioned defeat in male Syrian hamsters (Mesocricetus auratus). Brain Res 1999; 846:122-8. [PMID: 10536219 DOI: 10.1016/s0006-8993(99)02007-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in mediating the expression of conditioned defeat in male Syrian hamsters. The present study examined the effects of two different competitive CRF receptor antagonists on the expression of conditioned defeat. Specifically, Experiment 1 examined whether peripheral administration of CP-154,526, a specific non-peptide CRF1 receptor antagonist, would reduce the expression of conditioned defeat. Experiment 2 examined whether D-Phe CRF(12-41), a nonspecific CRF1/CRF2 receptor antagonist, infused directly into the brain, would reduce the expression of conditioned defeat. The results revealed that i.p. injections of CP-154,526 did not reduce the expression of conditioned defeat, whereas i.c.v. injections of D-Phe CRF(12-41) successfully reduced the expression of conditioned defeat. The duration of submissive/defensive behaviors in hamsters that received the high dose of D-Phe CRF(12-41) was significantly less than that exhibited by animals that received a vehicle control. The present data suggest that central CRF may be involved in mediating the expression of conditioned defeat and other behavioral responses to stressful stimuli.
Collapse
Affiliation(s)
- A M Jasnow
- Laboratory of Behavioral Neuroscience, Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
38
|
Ito M, Miyata M. Corticotropin-releasing factor (CRF) and its role in the central nervous system. Results Probl Cell Differ 1999; 26:43-66. [PMID: 10453459 DOI: 10.1007/978-3-540-49421-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Ito
- Laboratory for Memory and Learning, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | |
Collapse
|
39
|
Abstract
This review provides an overview of preclinical and clinical evidence of a role for the neuroactive peptides cholecystokinin (CCK), corticotropin-releasing factor (CRF), neuropeptide Y (NPY), tachykinins (i.e., substance P, neurokinin [NK] A and B), and natriuretic peptides in anxiety and/or stress-related disorders. Results obtained with CCK receptor antagonists in animal studies have been highly variable, and clinical trials with several of these compounds in anxiety disorders have been unsuccessful so far. However, future investigations using CCK receptor antagonists with better pharmacokinetic characteristics and animal models other than those validated with the classical anxiolytics benzodiazepines may permit a more precise evaluation of the potential of these compounds as anti-anxiety agents. Results obtained with peptide CRF receptor antagonists in animal models of anxiety convincingly demonstrated that the blockade of central CRF receptors may yield anxiolytic-like activity. However, the discovery of nonpeptide and more lipophilic CRF receptor antagonists is essential for the development of these agents as anxiolytics. Similarly, there is clear preclinical evidence that the central infusion of NPY and NPY fragments selective for the Y1 receptor display anxiolytic-like effects in a variety of tests. However, synthetic nonpeptide NPY receptor agonists are still lacking, thereby hampering the development of NPY anxiolytics. Unlike selective NK1 receptor antagonists, which have variable effects in anxiety models, peripheral administration of selective NK2 receptor antagonists and central infusion of natriuretic peptides produce clear anxiolytic-like activity. Taken as a whole, these findings suggest that compounds targeting specific neuropeptide receptors may become an alternative to benzodiazepines for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- G Griebel
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| |
Collapse
|
40
|
Bundey RA, Kendall DA. Inhibition of receptor-mediated calcium responses by corticotrophin-releasing hormone in the CATH.a cell line. Neuropharmacology 1999; 38:39-47. [PMID: 10193897 DOI: 10.1016/s0028-3908(98)00173-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A region of the brain believed to be important in the CNS response to stress is the locus coeruleus, the predominant site of noradrenergic cell bodies. Corticotrophin releasing hormone (CRH) is the primary hypothalamic releasing hormone responsible for the activation of the pituitary-adrenal axis in response to stress and, in this study, we employed a locus coeruleus-like cell line, CATH.a, to investigate the modulation of receptor signalling pathways by CRH. Pituitary adenylyl cyclase-activating polypeptide (PACAP) (10 nM), vasoactive intestinal peptide (VIP) (1 microM) and carbachol (1 mM) produced transient increases in intracellular [Ca2+]. The inhibition of the carbachol (1 mM) response by CRH was concentration-dependent (EC50 = 154 +/- 1.8 nM). Calcium responses to sub-maximally effective concentrations of PACAP (5 nM), VIP (400 nM) and carbachol (1 mM) were abolished by prior exposure to CRH (1 microM). At the concentrations employed, CRH and VIP both substantially increased intracellular [3H]-cyclic AMP accumulation. The adenylyl cyclase activator forskolin (10 microM) was also effective at eliminating the agonist-induced calcium responses. Incubation with the cell permeant cyclic AMP analogue dibutyryl cyclic AMP (dbcAMP) (1 mM), an activator of protein kinase A (PKA), for 12 min prior to agonist exposure similarly abolished the intracellular calcium response to carbachol. Carbachol increased [3H]-inositol phosphate ([3H]-IP) accumulation to a maximum of 2.4 +/- 0.11-fold basal (EC50 = 6.75 +/- 0.26 microM). PACAP produced a much greater accumulation (19.9 +/- 2.1 fold basal; EC50 = 24 nM). In the presence of forskolin (10 microM), neither carbachol- nor PACAP-induced [3H]-IP accumulation was significantly different from in its absence. These results demonstrate that CRH inhibits receptor-mediated intracellular calcium responses in a locus coeruleus-like cell line possibly via activation of PKA. This modulation could be important in controlling neuronal function in vivo in stressful situations in which the levels of CRH are increased in the locus coeruleus.
Collapse
Affiliation(s)
- R A Bundey
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | | |
Collapse
|