1
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Sadeghi M, Radahmadi M, Reisi P. Effects of repeated treatment with cholecystokinin sulfated octapeptide on passive avoidance memory under chronic restraint stress in male rats. Adv Biomed Res 2015; 4:150. [PMID: 26380235 PMCID: PMC4550951 DOI: 10.4103/2277-9175.161577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/26/2015] [Indexed: 11/15/2022] Open
Abstract
Background: Cholecystokinin (CCK), a peptide hormone found in the gut is the most abundant peptide neurotransmitter in the brain as well, and its effects on learning, memory, and anxiety have been shown. However, it is not clear whether this substance acts as a mediator for anxiety and stress induction or inhibits them. Hence, the purpose of this study was to evaluate the effects of CCK on memory function under stress conditions. Materials and Methods: Male Wistar rats were divided into four groups: The control, the control-CCK, the stress, and stress-CCK. To induce stress, the rats were placed within adjustable restraint chambers for 6 h daily, for 24 days. CCK-8S (cholecystokinin sulfated octapeptide was injected before induction of stress (1.6 μg/kg, intraperitoneal) for 24 days. Passive avoidance learning test was used for evaluation of learning and memory. Rats received foot electrical shock before stress induction and CCK injection and step through latencies were evaluated 1-day after the last session of stress and treatments. Results: Stress impaired memory significantly (P < 0.05). Although CCK per se decreased memory (P < 0.05), it prevented the memory impairments in the stress group as there was no significant difference between the control and stress-CCK groups. Conclusion: Stress has a profound effect on cognition and CCK probably acts as a mediator for its action. Our results showed that a high concentration of CCK during stress may be helpful in alleviating the effects of stress on the brain.
Collapse
Affiliation(s)
- Malihe Sadeghi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Holm L, Liang W, Thorsell A, Hilke S. Acute effects on brain cholecystokinin-like concentration and anxiety-like behaviour in the female rat upon a single injection of 17β-estradiol. Pharmacol Biochem Behav 2014; 122:222-7. [PMID: 24732637 DOI: 10.1016/j.pbb.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/30/2014] [Accepted: 04/05/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The neuropeptide cholecystokinin (CCK) has been implicated in the neurobiology of anxiety and panic disorders, as well as in dopamine-related behaviours. Anxiety and panic-disorders are twice as common in females compared to males, but studies of females are rare, although increasing in number. Limited studies have found that CCK fluctuates in limbic regions during the estrous cycle, and that CCK and its receptors are sensitive to estrogen. AIM/PURPOSE The aim of the present work was to study the acute effects of 17β-estradiol on anxiety-like behaviour and on CCK-like immunoreactivity (LI) in the female rat brain (amygdala, hippocampus, nucleus accumbens, and cingulate cortex). METHODS Four groups of female Sprague-Dawley rats were used: ovariectomized, ovariectomized+17β-estradiol-replacement, sham, and sham+17β-estradiol-replacement. The effect of 17β-estradiol-replacement on anxiety-related behaviour was measured in all animals on the elevated plus maze 2-24 h after injection. CCK-LI concentration was measured in punch biopsies by means of radioimmunoassay. RESULTS 17β-estradiol decreased anxiety-like behaviour 2 h after administration in ovariectomized and sham-operated animals, as demonstrated by increased exploration of the open arms compared to respective sesame oil-treated controls. This effect was not present when testing occurred 24 h post-treatment. The rapid behavioural effect of 17β-estradiol was accompanied by changes in CCK-LI concentrations in regions of the limbic system including cingulate cortex, hippocampus, amygdala and nucleus accumbens. CONCLUSION Although the interpretation of these data requires caution since the data were collected from two different experiments, our results suggest that estrogen-induced anxiolytic effects may be associated with changes of the CCK-system in brain regions controlling anxiety-like behaviour.
Collapse
Affiliation(s)
- Lovisa Holm
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Wen Liang
- TNO Metabolic Health Research, Leiden, Netherlands
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Susanne Hilke
- Department of Clinical Chemistry, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
4
|
Central genomic regulation of the expression of oestrous behaviour in dairy cows: a review. Animal 2014; 8:754-64. [PMID: 24598582 DOI: 10.1017/s1751731114000342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.
Collapse
|
5
|
Bert B, Schmidt N, Voigt J, Fink H, Rex A. Evaluation of cage leaving behaviour in rats as a free choice paradigm. J Pharmacol Toxicol Methods 2013; 68:240-249. [DOI: 10.1016/j.vascn.2013.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
6
|
Kommadath A, Woelders H, Beerda B, Mulder HA, de Wit AAC, Veerkamp RF, te Pas MFW, Smits MA. Gene expression patterns in four brain areas associate with quantitative measure of estrous behavior in dairy cows. BMC Genomics 2011; 12:200. [PMID: 21504592 PMCID: PMC3110153 DOI: 10.1186/1471-2164-12-200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The decline noticed in several fertility traits of dairy cattle over the past few decades is of major concern. Understanding of the genomic factors underlying fertility, which could have potential applications to improve fertility, is very limited. Here, we aimed to identify and study those genes that associated with a key fertility trait namely estrous behavior, among genes expressed in four bovine brain areas (hippocampus, amygdala, dorsal hypothalamus and ventral hypothalamus), either at the start of estrous cycle, or at mid cycle, or regardless of the phase of cycle. RESULTS An average heat score was calculated for each of 28 primiparous cows in which estrous behavior was recorded for at least two consecutive estrous cycles starting from 30 days post-partum. Gene expression was then measured in brain tissue samples collected from these cows, 14 of which were sacrificed at the start of estrus and 14 around mid cycle. For each brain area, gene expression was modeled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model. Genes whose expression patterns showed significant linear or quadratic relationships with heat scores were identified. These included genes expected to be related to estrous behavior as they influence states like socio-sexual behavior, anxiety, stress and feeding motivation (OXT, AVP, POMC, MCHR1), but also genes whose association with estrous behavior is novel and warrants further investigation. CONCLUSIONS Several genes were identified whose expression levels in the bovine brain associated with the level of expression of estrous behavior. The genes OXT and AVP play major roles in regulating estrous behavior in dairy cows. Genes related to neurotransmission and neuronal plasticity are also involved in estrous regulation, with several genes and processes expressed in mid-cycle probably contributing to proper expression of estrous behavior in the next estrus. Studying these genes and the processes they control improves our understanding of the genomic regulation of estrous behavior expression.
Collapse
Affiliation(s)
- Arun Kommadath
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Eser D, Leicht G, Baghai T, Pogarell O, Schüle C, Karch S, Nothdurfter C, Rupprecht R, Mulert C. Impact of loudness dependency of auditory evoked potentials on the panic response to CCK-4. J Psychiatr Res 2009; 43:393-400. [PMID: 18534623 DOI: 10.1016/j.jpsychires.2008.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Experimental panic induction with cholecystokinin-tetrapeptide (CCK-4) has been established as a model to study the pathophysiology of panic disorder. In line with the serotonin (5-HT)-hypothesis of panic disorder it has been suggested that the panicogenic effects of CCK-4 are mediated in part through the 5-HT system. The analysis of the loudness dependency of the auditory evoked potentials (LDAEP) is a valid non-invasive indicator of central serotonergic activity. METHODS We investigated the correlation between LDAEP and behavioral, cardiovascular and neuroendocrine panic responses to CCK-4in 77 healthy volunteers and explored whether differences in LDAEP paralleled subjective panic severity. Behavioral panic responses were measured with the panic symptom scale (PSS). Heart rate and ACTH/cortisol plasma concentrations were assessed concomitantly. RESULTS LDAEP did not differ between panickers and nonpanickers. Furthermore, LDAEP did not correlate with the behavioral panic response. However, a significant positive correlation between LDAEP and CCK-4 induced HPA-axis activation, which was uniform in panickers and nonpanickers, could be detected. CONCLUSIONS The psychological effects of CCK-4 rather are mediated by neurotransmitters others than the endogenous 5-HT system. However, the extent of the neuroendocrine activation related to the CCK-4 panic provocation was correlated with the LDAEP, thereby suggesting that central 5-HT mechanisms are involved in the HPA-axis activation during this challenge paradigm.
Collapse
Affiliation(s)
- Daniela Eser
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abreu-Villaça Y, Nunes F, do E Queiroz-Gomes F, Manhães AC, Filgueiras CC. Combined exposure to nicotine and ethanol in adolescent mice differentially affects anxiety levels during exposure, short-term, and long-term withdrawal. Neuropsychopharmacology 2008; 33:599-610. [PMID: 17460612 DOI: 10.1038/sj.npp.1301429] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Smoking and consumption of alcoholic beverages are frequently associated during adolescence. This association could be explained by the cumulative behavioral effects of nicotine and ethanol, particularly those related to anxiety levels. However, despite epidemiological findings, there have been few animal studies of the basic neurobiology of the combined exposure in the adolescent brain. In the present work we assessed, through the use of the elevated plus maze, the short- and long-term anxiety effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (from the 30th to the 45th postnatal day) in four groups of male and female C57BL/6 mice: (1) Concomitant NIC (nicotine free-base solution (50 microg/ml) in 2% saccharin to drink) and ETOH (ethanol solution (25%, 2 g/kg) i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) Vehicle. C57BL/6 mice were selected, in spite of the fact that they present slower ethanol metabolism, because they readily consume nicotine in the concentration used in the present study. During exposure (45th postnatal day: PN45), our results indicated that ethanol was anxiolytic in adolescent mice and that nicotine reverted this effect. Short-term drug withdrawal (PN50) elicited sex-dependent effects: exposure to nicotine and/or ethanol was anxiogenic only for females. Although neither nicotine nor ethanol effects persisted up to 1 month postexposure (PN75), the coadministration elicited an anxiogenic response. In spite of the fact that generalizations based on the results from a single strain of mice are prone to shortcomings, our results suggest that the deficient response to the anxiolytic effects of ethanol in adolescents co-exposed to nicotine may drive higher ethanol consumption. Additionally, increased anxiety during long-term smoking and drinking withdrawal may facilitate relapse to drug use.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Koroleva SV, Nikolaeva AA, Ashmarin IP. Interactions between dopamine, serotonin, and other reward factor. BIOL BULL+ 2006. [DOI: 10.1134/s106235900604008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abstract
AbstractMany studies have investigated different mechanisms of attack and defense in different species of higher brain animals including cats, rats, rodents, mice, and even in some bird species. However, detailed comparative analysis has not been carried out to understand the major similarities in the mechanisms of attack and defense across the different species of vertebrates. Although there are differences, there are also significant similarities as well, which warrant comparative assessment. By considering ethological ideas associated with the motivational defense system, we investigated the motor patterns of attack and defense in cats and rats, using the “resident-intruder” experimental paradigm. Our results reveal specific similarities and differences in the motor patterns of attack and defense in rats and cats. We discuss comparatively the mechanisms of attack and defense across different species of vertebrates, focusing on motor patterns, neuromodulating factors, brains neural substrates, and circuitry.
Collapse
|
11
|
Wang H, Wong PTH, Spiess J, Zhu YZ. Cholecystokinin-2 (CCK2) receptor-mediated anxiety-like behaviors in rats. Neurosci Biobehav Rev 2005; 29:1361-73. [PMID: 16120463 DOI: 10.1016/j.neubiorev.2005.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 05/01/2005] [Accepted: 05/01/2005] [Indexed: 11/27/2022]
Abstract
Cholecystokinin (CCK) is a neurotransmitter in the brain closely related to anxiety. Of the two CCK receptor subtypes, CCK(2) receptors are most implicated in the control of anxiety-related behavior. CCK(2) receptor activation causes anxiogenic effects while the blockade of this receptor has anxiolytic effects. This review focuses on the molecular mechanisms of CCK(2) receptors underlying anxiety-related behaviors of PVG hooded and Spraque-Dawley (SD) rats in two anxiety models (elevated plus-maze [EPM] and cat exposure test). PVG hooded rats showed prolonged freezing behavior in the cat exposure test while SD rats showed very low levels of freezing. A CCK(2) receptor antagonist (LY225910) attenuated freezing behavior in PVG hooded rats while a CCK(2) receptor agonist (CCK-4) increased freezing behavior in SD rats. In contrast, the two strains behaved similarly on the EPM. CCK-4 caused a pronounced anxiogenic effect in PVG hooded rats but only a slight effect in SD rats. CCK(2) antagonists also showed more pronounced anxiolytic effects in PVG hooded rats than in SD rats. CCK(2) receptor expression was greater in PVG hooded than in SD rats in the cortex and hippocampus. Genetic studies also demonstrated four differences in the DNA sequence of the CCK(2) receptor gene between the two rat strains.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore
| | | | | | | |
Collapse
|
12
|
Rezayat M, Roohbakhsh A, Zarrindast MR, Massoudi R, Djahanguiri B. Cholecystokinin and GABA interaction in the dorsal hippocampus of rats in the elevated plus-maze test of anxiety. Physiol Behav 2005; 84:775-82. [PMID: 15885255 DOI: 10.1016/j.physbeh.2005.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Revised: 02/27/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
In the present study, we have investigated the effects and interaction of CCK and GABAergic systems in the dorsal hippocampus of rats using the elevated plus-maze test of anxiety. Bilateral injection of different doses of CCK(8s) (0.01, 0.05 and 0.1 microg/rat) into the dorsal hippocampus (intra-CA1) decreased percentage of open arm time (%OAT) and open arm entries (%OAE) that are representative of anxiogenic-like behavior. The bilateral injection of three doses of LY225910, a selective CCK2 receptor antagonist (0.01, 0.1 and 0.5 microg/rat) produced significant anxiolytic behavior. Although muscimol (GABA(A+)) (0.1, 0.5 and 1 microg/rat, intra-CA1) produced dose dependent increase in %OAT and a slight increase in %OAE, bicuculline (GABA(A-)), (1, 2 and 4 microg/rat, intra-CA1) failed to change the anxiety profile. Both muscimol (0.1 microg/rat) and bicuculline (1 microg/rat), when co-administered with LY225910, reversed the effect of latter drug on anxiety but when co-administered with CCK8s (0.05 microg/rat) showed no effect on anxiety profile. In conclusion, it seems that both CCK and GABAergic systems not only play a part in the modulation of anxiety in the dorsal hippocampus of rats but also have demonstrated a complex interaction as well.
Collapse
Affiliation(s)
- Mehdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | | | |
Collapse
|
13
|
Slawecki CJ. Altered EEG Responses to Ethanol in Adult Rats Exposed to Ethanol During Adolescence. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02531.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Siniscalchi A, Rodi D, Cavallini S, Marino S, Beani L, Bianchi C. Effects of cholecystokinin tetrapeptide (CCK(4)) and anxiolytic drugs on the electrically evoked [(3)H]5-hydroxytryptamine outflow from rat cortical slices. Brain Res 2001; 922:104-11. [PMID: 11730707 DOI: 10.1016/s0006-8993(01)03158-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The outflow of [(3)H]5-hydroxytryptamine ([(3)H]5-HT) from electrically stimulated rat cortical slices was measured to ascertain the modulatory role of endogenous cholecystokinin (CCK) on the amine outflow and to test the hypothesis that different anxiolytic compounds inhibit 5-HT secretion. The [(3)H]5-HT outflow evoked at 10 Hz was increased up to +30% by CCK(4) 300-1000 nM, the effect being prevented by the CCK(B) receptor antagonist GV 150013, 3 nM. The limited sensitivity to CCK(4) seemed to depend on 5-HT auto-receptor feedback because pre-treatment with 100 nM methiothepin enhanced the [(3)H]5-HT outflow and lowered the CCK(4) threshold concentration from 300 to 30 nM. In addition, pre-treatment with 1 microM bacitracin to inhibit CCK metabolism increased [(3)H]5-HT efflux. This effect was concentration-dependently counteracted by GV150013 suggesting the presence of an endogenous CCK positive modulation. GV150013 30 nM, the 5-HT(1A) partial agonist buspirone 300 nM and the GABA(A) receptor modulator diazepam 10 nM, known to have anxiolytic properties, all significantly reduced the [(3)H] amine outflow from cortical slices by about 20%. This inhibition depended on their interaction with their respective receptors, which seemed to restrain the activity of functionally interconnected glutamatergic interneurones. In fact, APV (50 microM) and NBQX (10 microM) prevented the effect of the anxiolytic compounds. Thus, anxiolytic drugs with different receptor targets can reduce 5-HT outflow by dampening the glutamatergic signal, and in turn, the secretory process of the serotonergic nerve ending.
Collapse
Affiliation(s)
- A Siniscalchi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Parsons LH, Kerr TM, Tecott LH. 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 2001; 77:607-17. [PMID: 11299323 DOI: 10.1046/j.1471-4159.2001.00254.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Animals
- Anxiety/genetics
- Exploratory Behavior/physiology
- Fluoxetine/pharmacology
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Neurologic Mutants
- Microdialysis
- Organ Specificity
- Phenotype
- Piperazines/pharmacology
- Receptors, Serotonin/deficiency
- Receptors, Serotonin/genetics
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT1
- Serotonin/physiology
- Serotonin Antagonists/pharmacology
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Signal Transduction/drug effects
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- L H Parsons
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, USA Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
16
|
Varnavas A, Lassiani L, Luxich E, Valenta V. C-terminal anthranoyl-anthranilic acid derivatives and their evaluation on CCK receptors. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2000; 55:293-302. [PMID: 10966161 DOI: 10.1016/s0014-827x(00)00043-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A series of C-terminal anthranoyl-anthranilic acid derivatives arising from a strict bond disconnection approach of asperlicin were synthesized and examined for their CCK receptor affinities. These compounds represent the second step of our investigation directed toward the search for alternative substructures of asperlicin as a starting point for the development of a new class of CCK ligands. The obtained micromolar affinities for CCK-A rather than CCK-B receptor confirm that the anthranilic acid dimer represents a useful template for the development of selective CCK-A receptor ligands.
Collapse
Affiliation(s)
- A Varnavas
- Department of Pharmaceutical Sciences, University of Trieste, Italy.
| | | | | | | |
Collapse
|
17
|
Abstract
This review provides an overview of preclinical and clinical evidence of a role for the neuroactive peptides cholecystokinin (CCK), corticotropin-releasing factor (CRF), neuropeptide Y (NPY), tachykinins (i.e., substance P, neurokinin [NK] A and B), and natriuretic peptides in anxiety and/or stress-related disorders. Results obtained with CCK receptor antagonists in animal studies have been highly variable, and clinical trials with several of these compounds in anxiety disorders have been unsuccessful so far. However, future investigations using CCK receptor antagonists with better pharmacokinetic characteristics and animal models other than those validated with the classical anxiolytics benzodiazepines may permit a more precise evaluation of the potential of these compounds as anti-anxiety agents. Results obtained with peptide CRF receptor antagonists in animal models of anxiety convincingly demonstrated that the blockade of central CRF receptors may yield anxiolytic-like activity. However, the discovery of nonpeptide and more lipophilic CRF receptor antagonists is essential for the development of these agents as anxiolytics. Similarly, there is clear preclinical evidence that the central infusion of NPY and NPY fragments selective for the Y1 receptor display anxiolytic-like effects in a variety of tests. However, synthetic nonpeptide NPY receptor agonists are still lacking, thereby hampering the development of NPY anxiolytics. Unlike selective NK1 receptor antagonists, which have variable effects in anxiety models, peripheral administration of selective NK2 receptor antagonists and central infusion of natriuretic peptides produce clear anxiolytic-like activity. Taken as a whole, these findings suggest that compounds targeting specific neuropeptide receptors may become an alternative to benzodiazepines for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- G Griebel
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| |
Collapse
|
18
|
Abstract
Levels of the enzyme N-acetyl-beta-glucosaminidase (NAG) and a mutation of cholecystokinin (CCK) gene appear to be independently associated with panic disorder. We explored whether there was an association of NAG levels and a CCK mutation identified in a group of panic disorder patients. NAG was measured in 12 panic disorder patients who had a mutation of the CCK gene and 17 who did not. Urine for NAG was collected at baseline and after 3 and 6 weeks of treatment. NAG levels were lower at all three times in the patients that did not have the CCK mutation. The difference between the two groups was significant at week 6 (P < 0.02), and showed a trend toward a difference at baseline (P < 0.15).
Collapse
Affiliation(s)
- M J Garvey
- Department of Psychiatry, VA Medical Center, University of Iowa College of Medicine, Iowa City 52246, USA
| | | | | |
Collapse
|