1
|
Mai L, Jia S, Liu Q, Chu Y, Liu J, Yang S, Huang F, Fan W. Sympathectomy Ameliorates CFA-Induced Mechanical Allodynia via Modulating Phenotype of Macrophages in Sensory Ganglion in Mice. J Inflamm Res 2022; 15:6263-6274. [DOI: 10.2147/jir.s388322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
|
2
|
Korczeniewska OA, Katzmann Rider G, Gajra S, Narra V, Ramavajla V, Chang YJ, Tao Y, Soteropoulos P, Husain S, Khan J, Eliav E, Benoliel R. Differential gene expression changes in the dorsal root versus trigeminal ganglia following peripheral nerve injury in rats. Eur J Pain 2020; 24:967-982. [PMID: 32100907 DOI: 10.1002/ejp.1546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dorsal root (DRG) and trigeminal (TG) ganglia contain cell bodies of sensory neurons of spinal and trigeminal systems, respectively. They are homologs of each other; however, differences in how the two systems respond to injury exist. Trigeminal nerve injuries rarely result in chronic neuropathic pain (NP). To date, no genes involved in the differential response to nerve injury between the two systems have been identified. We examined transcriptional changes involved in the development of trigeminal and spinal NP. METHODS Trigeminal and spinal mononueropathies were induced by chronic constriction injury to the infraorbital or sciatic nerve. Expression levels of 84 genes in the TG and DRG at 4, 8 and 21 days post-injury were measured using real-time PCR. RESULTS We found time-dependent and ganglion-specific transcriptional regulation that may contribute to the development of corresponding neuropathies. Among genes significantly regulated in both ganglia Cnr2, Grm5, Htr1a, Il10, Oprd1, Pdyn, Prok2 and Tacr1 were up-regulated in the TG but down-regulated in the DRG at 4 days post-injury; at 21 days post-injury, Adora1, Cd200, Comt, Maob, Mapk3, P2rx4, Ptger1, Tnf and Slc6a2 were significantly up-regulated in the TG but down-regulated in the DRG. CONCLUSIONS Our findings suggest that spinal and trigeminal neuropathies due to trauma are differentially regulated. Subtle but important differences between the two ganglia may affect NP development. SIGNIFICANCE We present distinct transcriptional alterations in the TG and DRG that may contribute to differences observed in the corresponding mononeuropathies. Since the trigeminal system seems more resistant to developing NP following trauma our findings lay ground for future research to detect genes and pathways that may act in a protective or facilitatory manner. These may be novel and important therapeutic targets.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Giannina Katzmann Rider
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sheetal Gajra
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vivek Narra
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vaishnavi Ramavajla
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuanxiang Tao
- Center for Pain Medicine Research, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Patricia Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Seema Husain
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Junad Khan
- Eastman Institute of Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Eli Eliav
- Eastman Institute of Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Rafael Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
3
|
Fan W, Zhu X, He Y, Li H, Gu W, Huang F, He H. Peripheral sympathetic mechanisms in orofacial pain. J Pain Res 2018; 11:2425-2431. [PMID: 30425556 PMCID: PMC6200434 DOI: 10.2147/jpr.s179327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sympathetic nervous system (SNS) is a part of the autonomic nervous system which involuntarily regulates internal body functions. It appears to modulate the processing of nociceptive information. Many orofacial pain conditions involve inflammation of orofacial tissues and/or injury of nerve, some of which might be attributed to SNS. Thus, the aim of this review was to bring together the data available regarding the peripheral sympathetic mechanisms involved in orofacial pain. A clearer understanding of SNS–sensory interactions in orofacial pain may provide a basis for novel therapeutic strategies for conditions that respond poorly to conventional treatments.
Collapse
Affiliation(s)
- Wenguo Fan
- Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China, .,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yifan He
- Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,
| | - Hongmei Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wenzhen Gu
- Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,
| | - Fang Huang
- Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,
| | - Hongwen He
- Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,
| |
Collapse
|
4
|
Abstract
Definition and taxonomy This review deals with neuropathic pain of traumatic origin affecting the trigeminal nerve, i.e. painful post-traumatic trigeminal neuropathy (PTTN). Symptomatology The clinical characteristics of PTTN vary considerably, partly due to the type and extent of injury. Symptoms involve combinations of spontaneous and evoked pain and of positive and negative somatosensory signs. These patients are at risk of going through unnecessary dental/surgical procedures in the attempt to eradicate the cause of the pain, due to the fact that most dentists only rarely encounter PTTN. Epidemiology Overall, approximately 3% of patients with trigeminal nerve injuries develop PTTN. Patients are most often female above the age of 45 years, and both physical and psychological comorbidities are common. Pathophysiology PTTN shares many pathophysiological mechanisms with other peripheral neuropathic pain conditions. Diagnostic considerations PTTN may be confused with one of the regional neuralgias or other orofacial pain conditions. For intraoral PTTN, early stages are often misdiagnosed as odontogenic pain. Pain management Management of PTTN generally follows recommendations for peripheral neuropathic pain. Expert opinion International consensus on classification and taxonomy is urgently needed in order to advance the field related to this condition.
Collapse
Affiliation(s)
- Lene Baad-Hansen
- 1 Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,2 Scandinavian Center for Orofacial Neurosciences (SCON), Denmark/Sweden
| | - Rafael Benoliel
- 3 Rutgers School of Dental Medicine, Rutgers State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
5
|
Benoliel R, Epstein J, Eliav E, Jurevic R, Elad S. Orofacial Pain in Cancer: Part I—Mechanisms. J Dent Res 2016; 86:491-505. [PMID: 17525348 DOI: 10.1177/154405910708600604] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanisms involved, and possible treatment targets, in orofacial pain due to cancer are poorly understood. The aim of the first of this two-part series is to review the involved pathophysiological mechanisms and explore their possible roles in the orofacial region. However, there is a lack of relevant research in the trigeminal region, and we have therefore applied data accumulated from experiments on cancer pain mechanisms in rodent spinal models. In the second part, we review the clinical presentation of cancer-associated orofacial pain at various stages: initial diagnosis, during therapy (chemo-, radiotherapy, surgery), and in the post-therapy period. In the present article, we provide a brief outline of trigeminal functional neuro-anatomy and pain-modulatory pathways. Tissue destruction by invasive tumors (or metastases) induces inflammation and nerve damage, with attendant acute pain. In some cases, chronic pain, involving inflammatory and neuropathic mechanisms, may ensue. Distant, painful effects of tumors include paraneoplastic neuropathic syndromes and effects secondary to the release of factors by the tumor (growth factors, cytokines, and enzymes). Additionally, pain is frequent in cancer management protocols (surgery, chemotherapy, and radiotherapy). Understanding the mechanisms involved in cancer-related orofacial pain will enhance patient management.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Medicine, The Hebrew University, Hadassah Faculty of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
6
|
Takeda M, Ikeda M, Tanimoto T, Lipski J, Matsumoto S. Changes of the excitability of rat trigeminal root ganglion neurons evoked by alpha(2)-adrenoreceptors. Neuroscience 2003; 115:731-41. [PMID: 12435412 DOI: 10.1016/s0306-4522(02)00481-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the study was to examine the effects of alpha(2)-adrenoreceptor agonists on the excitability of trigeminal root ganglion (TRG) neurons using the perforated patch-clamp technique, and to determine whether these neurons express mRNA for alpha(2)-adrenoreceptors. In current-clamp mode, the resting membrane potential was -57.4+/-1.2 mV (n=26). Most neurons (71%) were hyperpolarized by clonidine (5-50 microM) in a concentration-dependent manner. The response was associated with an increase of cell input resistance. In addition, clonidine reduced the repetitive firing evoked by depolarizing current pulses. An alpha(2)-adrenergic agonist, UK14,304, (10-20 microM) also hyperpolarized TRG neurons. The clonidine- and UK14,304-induced hyperpolarization was blocked by idazoxan (alpha(2)-adrenoreceptor antagonist). In voltage-clamp, clonidine (1-50 microM) reversibly reduced the hyperpolarization- and time-dependent cationic current. The effect was mimicked by UK14,304 (10-20 microM), and antagonized by idazoxan. Hyperpolarization-activated cationic current was blocked by extracellular Cs(+) (2 mM) or a specific blocker, ZD7288 (20 microM). Analysis of tail currents revealed that a reversal potential of the clonidine-sensitive component of hyperpolarization-activated cationic current was -46 mV. Single-cell reverse transcription-polymerase chain reaction analysis demonstrated the expression of mRNA for alpha(2A)- and alpha(2C)-adrenoreceptors. These results demonstrate that activation of alpha(2)-adrenoreceptors can hyperpolarize TRG neurons, and that the inhibitory effect is associated with inhibition of hyperpolarization-activated cationic current. Our results suggest that activation of alpha(2)-adrenoreceptors in the absence of nerve injury may have an inhibitory effect on nociceptive transmission in the trigeminal system at the level of both TRG neuronal cell bodies and primary afferent terminals.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Animals, Newborn
- Brimonidine Tartrate
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Clonidine/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Ion Channels/drug effects
- Ion Channels/metabolism
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Quinoxalines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/metabolism
- Trigeminal Neuralgia/metabolism
- Trigeminal Neuralgia/physiopathology
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | |
Collapse
|
7
|
PRICE TJ, HELESIC G, PARGHI D, HARGREAVES KM, FLORES CM. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 2003; 120:155-62. [PMID: 12849749 PMCID: PMC1899155 DOI: 10.1016/s0306-4522(03)00333-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.
Collapse
Affiliation(s)
- T. J. PRICE
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - G. HELESIC
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - D. PARGHI
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - K. M. HARGREAVES
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - C. M. FLORES
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- *Correspondence to: C. M. Flores, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, Spring House, PA 19477-0776, USA. Tel: +1-215-628-5457; fax: +1-215-628-3297. E-mail address: (C. M. Flores)
| |
Collapse
|
8
|
Fried K, Bongenhielm U, Boissonade FM, Robinson PP. Nerve injury-induced pain in the trigeminal system. Neuroscientist 2001; 7:155-65. [PMID: 11496926 DOI: 10.1177/107385840100700210] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reviews some recent findings on peripheral mechanisms related to the development of oro-facial pain after trigeminal nerve injury. Chronic injury-induced oro-facial pain is not in itself a life-threatening condition, but patients suffering from this disorder undoubtedly have a reduced quality of life. The vast majority of the work on pain mechanisms has been carried out in spinal nerve systems. Those studies have provided great insight into mechanisms of neuropathic spinal pain, and much of the data from them is obviously relevant to studies of trigeminal pain. However, it is now clear that the pathophysiology of the trigeminal nerve (a cranial nerve) is in many ways different to that found in spinal nerves. Whereas some of the changes seen in animal models of trigeminal nerve injury mimic those occurring after spinal nerve injury (e.g., the development of spontaneous activity from the damaged axons), others are different, such as the time-course of the spontaneous activity, some of the neuropeptide changes in the trigeminal ganglion, and the lack of sprouting of sympathetic terminals in the ganglion. Recent findings provide new insights that help our understanding of the etiology of chronic injury-induced oro-facial pain. Future investigations will hopefully explain how data gained from these studies relate to clinical pain experience in man and should enable the rapid development of new therapeutic regimes.
Collapse
Affiliation(s)
- K Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
9
|
Benoliel R, Eliav E, Tal M. No sympathetic nerve sprouting in rat trigeminal ganglion following painful and non-painful infraorbital nerve neuropathy. Neurosci Lett 2001; 297:151-4. [PMID: 11137750 DOI: 10.1016/s0304-3940(00)01681-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Following sciatic nerve injury sympathetic invasion and basket formation is seen in dorsal root ganglia. We examined whether this phenomenon occurs in trigeminal ganglion (TG) following axotomy (IOAx) or chronic constriction injury to the infraorbital nerve (IOCCI). The IOCCI rats developed hyperresponsiveness to pinprick stimulation consistent with this model and the IOAx rats remained hyporesponsive for most of the study period. Immunocytochemistry employing antibodies to tyrosine hydroxylase showed no sympathetic invasion or basket formation 2 and 7 weeks post surgery. This study confirms previous work that found no sympathetic invasion of TG following injury, and shows that this finding is unaffected by the presence or absence of nerve injury induced hyperresponsiveness.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Diagnosis, Oral Medicine and Oral Radiology, The Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.
| | | | | |
Collapse
|
10
|
Bongenhielm U, Nosrat CA, Nosrat I, Eriksson J, Fjell J, Fried K. Expression of sodium channel SNS/PN3 and ankyrin(G) mRNAs in the trigeminal ganglion after inferior alveolar nerve injury in the rat. Exp Neurol 2000; 164:384-95. [PMID: 10915577 DOI: 10.1006/exnr.2000.7437] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inferior alveolar nerve is a sensory branch of the trigeminal nerve that is frequently damaged, and such nerve injuries can give rise to persistent paraesthesia and dysaesthesia. The mechanisms behind neuropathic pain following nerve injury is poorly understood. However, remodeling of voltage-gated sodium channels in the neuronal membrane has been proposed as one possible mechanism behind injury-induced ectopic hyperexcitability. The TTX-resistant sodium channel SNS/PN3 has been implicated in the development of neuropathic pain after spinal nerve injury. We here study the effect of chronic axotomy of the inferior alveolar nerve on the expression of SNS/PN3 mRNA in trigeminal sensory neurons. The organization of sodium channels in the neuronal membrane is maintained by binding to ankyrin, which help link the sodium channel to the membrane skeleton. Ankyrin(G), which colocalizes with sodium channels in the initial segments and nodes of Ranvier, and is necessary for normal neuronal sodium channel function, could be essential in the reorganization of the axonal membrane after nerve injury. For this reason, we here study the expression of ankyrin(G) in the trigeminal ganglion and the localization of ankyrin(G) protein in the inferior alveolar nerve after injury. We show that SNS/PN3 mRNA is down-regulated in small-sized trigeminal ganglion neurons following inferior alveolar nerve injury but that, in contrast to the persistent loss of SNS/PN3 mRNA seen in dorsal root ganglion neurons following sciatic nerve injury, the levels of SNS/PN3 mRNA appear to normalize within a few weeks. We further show that the expression of ankyrin(G) mRNA also is downregulated after nerve lesion and that these changes persist for at least 13 weeks. This decrease in the ankyrin(G) mRNA expression could play a role in the reorganization of sodium channels within the damaged nerve. The changes in the levels of SNS/PN3 mRNA in the trigeminal ganglion, which follow the time course for hyperexcitability of trigeminal ganglion neurons after inferior alveolar nerve injury, may contribute to the inappropriate firing associated with sensory dysfunction in the orofacial region.
Collapse
Affiliation(s)
- U Bongenhielm
- Department of Neuroscience, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Bongenhielm U, Boissonade FM, Westermark A, Robinson PP, Fried K. Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain 1999; 82:283-288. [PMID: 10488679 DOI: 10.1016/s0304-3959(99)00064-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury induces sprouting of sympathetic nerve fibers in dorsal root ganglia after spinal nerve injury. In the present study, we sought to determine the extent of intraganglionic noradrenergic sprouting in the trigeminal system. The inferior alveolar nerve, a major branch of the mandibular division, or the infraorbital nerve of the maxillary division was either ligated or chronically constricted in Sprague-Dawley rats and recovery permitted for either 2-3 or 6-9 weeks. In some animals both nerves were injured. Using immunohistochemistry with tyrosine hydroxylase antibodies, we found no signs of sympathetic nerve fiber sprouting in the trigeminal ganglion after injury. In contrast, sciatic nerve injury in rat littermates induced a widespread autonomic nerve outgrowth in affected DRGs. Thus, sensory ganglion sympathetic nerve sprouting does not seem to be a general outcome of PNS injury, but is restricted to certain specific locations. Sympathetic nerve fiber networks that surround primary sensory neurons have been suggested to form a structural basis for interactions between the sympathetic and sensory nervous systems after PNS injury. Such interactions, sometimes resulting in paraesthesia or dysaesthesia in patients, appear to be less common in territories innervated by the trigeminal nerve than in spinal nerve regions. The lack of injury-induced intraganglionic sympathetic sprouting in the trigeminal ganglion may help to explain this observation.
Collapse
Affiliation(s)
- U Bongenhielm
- Dept of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden Department of Oral and Maxillofacial Surgery, Huddinge Hospital, Karolinska Institute S-18146 Huddinge, Sweden Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK Department of Oral and Maxillofacial Surgery, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|