1
|
Dashevsky D, Rodriguez J. A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae). Toxins (Basel) 2021; 13:toxins13110744. [PMID: 34822528 PMCID: PMC8622703 DOI: 10.3390/toxins13110744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.
Collapse
|
2
|
Garrison CE, Guan W, Kato M, Tamsett T, Patel T, Sun Y, Pathak TP. Structure-Activity Relationship Evaluation of Wasp Toxin β-PMTX Leads to Analogs with Superior Activity for Human Neuronal Sodium Channels. ACS Med Chem Lett 2020; 11:353-357. [PMID: 32184969 DOI: 10.1021/acsmedchemlett.9b00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022] Open
Abstract
Beta-pompilidotoxin (β-PMTX) is a 13-amino acid wasp venom peptide that activates human neuronal sodium channel NaV1.1 with weak activity (40% activation at 3.3 μM of β-PMTX). Through rational design of β-PMTX analogs, we have identified peptides with significantly improved activity on human NaV1.1 (1170% activation at 3.3 μM of peptide 18). The underlying structure-activity relationship suggests importance of charge interactions (from residue Lys-3) and lipophilic interactions (from residue Phe-7 and Ser-11). Three top-ranked analogs showed parallel activity improvement for other neuronal sodium channels (human NaV1.2/1.3/1.6/1.7) but not muscular subtypes (NaV1.4/1.5). Finally, we found that analog 16 could partially rescue the pharmacological block imposed by NaV1.1/1.3 selective inhibitor ICA-121431 in cultured mouse cortical GABAergic neurons, demonstrating an activating effect of this peptide on native neuronal sodium channels and its potential utility as a neuropharmacological tool.
Collapse
|
3
|
Peptide Toxins in Solitary Wasp Venoms. Toxins (Basel) 2016; 8:114. [PMID: 27096870 PMCID: PMC4848640 DOI: 10.3390/toxins8040114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.
Collapse
|
4
|
Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel) 2015; 7:3179-209. [PMID: 26295258 PMCID: PMC4549745 DOI: 10.3390/toxins7083179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
|
5
|
Monge-Fuentes V, Gomes FMM, Campos GAA, Silva JDC, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015; 21:31. [PMID: 26257776 PMCID: PMC4529710 DOI: 10.1186/s40409-015-0031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Flávia Maria Medeiros Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Juliana de Castro Silva
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Andréia Mayer Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| |
Collapse
|
6
|
β-pompilidotoxin modulates spontaneous activity and persistent sodium currents in spinal networks. Neuroscience 2010; 172:129-38. [PMID: 20955768 DOI: 10.1016/j.neuroscience.2010.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 02/07/2023]
Abstract
The origin of rhythm generation in mammalian spinal cord networks is still poorly understood. In a previous study, we showed that spontaneous activity in spinal networks takes its origin in the properties of certain intrinsically spiking interneurons based on the persistent sodium current (INaP). We also showed that depolarization block caused by a fast inactivation of the transient sodium current (INaT) contributes to the generation of oscillatory activity in spinal cord cultures. Recently, a toxin called beta-pompilidotoxin (β-PMTX) that slows the inactivation process of tetrodotoxin (TTX)-sensitive sodium channels has been extracted from the solitary wasp venom. In the present study, we therefore investigated the effect of β-PMTX on rhythm generation and on sodium currents in spinal networks. Using intracellular recordings and multielectrode array (MEA) recordings in dissociated spinal cord cultures from embryonic (E14) rats, we found that β-PMTX reduces the number of population bursts and increases the background asynchronous activity. We then uncoupled the network by blocking all synaptic transmission (APV, CNQX, bicuculline and strychnine) and observed that β-PMTX increases both the intrinsic activity at individual channels and the number of intrinsically activated channels. At the cellular level, we found that β-PMTX has two effects: it switches 58% of the silent interneurons into spontaneously active interneurons and increases the firing rate of intrinsically spiking cells. Finally, we investigated the effect of β-PMTX on sodium currents. We found that this toxin not only affects the inactivation of INaT but also increases the peak amplitude of the persistent sodium current (INaP). Altogether, theses findings suggest that β-PMTX acting on INaP and INaT enhances intrinsic activity leading to a profound modulation of spontaneous rhythmic activity in spinal networks.
Collapse
|
7
|
Esposti F, Signorini MG, Potter SM, Cerutti S. Statistical long-term correlations in dissociated cortical neuron recordings. IEEE Trans Neural Syst Rehabil Eng 2009; 17:364-9. [PMID: 19482584 DOI: 10.1109/tnsre.2009.2022832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of nonlinear long-term correlations in neuronal signals is a central topic for advanced neural signal processing. In particular, the existence of long-term correlations in neural signals recorded via multielectrode array (MEA) could provide interesting information about changes in interneuron communications. In this study we propose a new method for long-term correlation analysis of neuronal burst activity based on the periodogram alpha slope estimation of the MEA signal. We applied our method to recordings taken from cultured networks of dissociated rat cortical neurons. We show the effectiveness of the method in analyzing the activity changes as well as the temporal dynamics that take place during the development of such cultures. Results demonstrate that the alpha parameter is able to divide the network development in three well-defined stages, showing pronounced variations in the long-term correlation among bursts.
Collapse
Affiliation(s)
- Federico Esposti
- Dipartimento di Bioingegneria, Politecnico di Milano, Milan, Italy.
| | | | | | | |
Collapse
|
8
|
Nakayama H, Yokote S, Setoguchi R, Shimizu E, Kawahara K, Kuniyasu A, Shirasaki T, Takahama K, Kawai N, Yamaoka K, Kinoshita E. A Synthetic Approach to Develop Peptide Inhibitors Selective for Brain-Type Sodium Channels on the Basis of Pompilidotoxin Structure. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Esposti F, Signorini MG, Lamanna J, Gullo F, Wanke E. How do TTX and AP5 affect the post-recovery neuronal network activity synchronization? ACTA ACUST UNITED AC 2007; 2007:3012-5. [PMID: 18002629 DOI: 10.1109/iembs.2007.4352963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A lot of methods were created in last decade for the spatio-temporal analysis of multi-electrode array (MEA) neuronal data sets. The greater part of these methods does not consider the network as a whole but performs an analysis channel by channel. In this paper we illustrate how a very simple approach that considers the total network activity, is able to show interesting neuronal network features. In particular we perform two different analyses: a connectivity examination studying networks at different days in vitro and an analysis of the long period effects of the administration of two common neuro-active drugs, i.e. TTX and AP5. Our analysis is performed considering burst topology, i.e. cataloguing network bursts as Global (if they involve more than the 25% of the MEA channels) or Local (if less that 25%). This division allows, in the first analysis, to understand the network connectivity (increasing from div 1 to 6) and decreasing till reaching a plateau (from div 6 to 10). The second analysis highlights a substantial difference between the long period effects of TTX and AP5. While TTX induces a massive Global activity explosion, sign of a prolonged inhibitory synapse depression, AP5 shows only a modest Local activity increase, mark of the low effect of NMDA receptors on a mature neuronal network without inputs.
Collapse
|
10
|
Wagenaar DA, Madhavan R, Pine J, Potter SM. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 2005; 25:680-8. [PMID: 15659605 PMCID: PMC2663856 DOI: 10.1523/jneurosci.4209-04.2005] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the major modes of activity of high-density cultures of dissociated neurons is globally synchronized bursting. Unlike in vivo, neuronal ensembles in culture maintain activity patterns dominated by global bursts for the lifetime of the culture (up to 2 years). We hypothesize that persistence of bursting is caused by a lack of input from other brain areas. To study this hypothesis, we grew small but dense monolayer cultures of cortical neurons and glia from rat embryos on multi-electrode arrays and used electrical stimulation to substitute for afferents. We quantified the burstiness of the firing of the cultures in spontaneous activity and during several stimulation protocols. Although slow stimulation through individual electrodes increased burstiness as a result of burst entrainment, rapid stimulation reduced burstiness. Distributing stimuli across several electrodes, as well as continuously fine-tuning stimulus strength with closed-loop feedback, greatly enhanced burst control. We conclude that externally applied electrical stimulation can substitute for natural inputs to cortical neuronal ensembles in transforming burst-dominated activity to dispersed spiking, more reminiscent of the awake cortex in vivo. This nonpharmacological method of controlling bursts will be a critical tool for exploring the information processing capacities of neuronal ensembles in vitro and has potential applications for the treatment of epilepsy.
Collapse
Affiliation(s)
- Daniel A Wagenaar
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
11
|
Pizzo AB, Beleboni RO, Fontana ACK, Ribeiro AM, Miranda A, Coutinho-Netto J, dos Santos WF. Characterization of the actions of AvTx 7 isolated fromAgelaia vicina (Hymenoptera: Vespidae) wasp venom on synaptosomal glutamate uptake and release. J Biochem Mol Toxicol 2004; 18:61-8. [PMID: 15122647 DOI: 10.1002/jbt.20014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has previously been shown that the denatured crude extract of Agelaia vicina wasp venom inhibits glutamate and GABA uptake in rat cerebral cortex synaptosomes. To identify the components responsible for these effects, the neurotoxin AvTx 7 (molecular weight of 1210 Da) was isolated from A. vicina venom and its effects on glutamate neurotransmission investigated. AvTx 7 inhibits glutamate uptake in a dose-dependent and uncompetitive manner. AvTx 7 was found to stimulate the glutamate release in the presence of calcium and sodium channel blockers, suggesting that its action is not mediated through these channels. AvTx 7 potentiates glutamate release in the presence of K(+) channel blockers tetraethylammonium and 4-aminopyridine, indicating that the toxin may act through these drugs-sensible K(+) channels. We suggest that AvTx 7 can be a valuable tool to enhance our understanding of K(+) channels' involvement in the release of glutamate.
Collapse
Affiliation(s)
- Andrea B Pizzo
- Laboratory of Neurobiology and Venoms, Faculty of Philosophy, Sciences and Literature, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Miyawaki T, Tsubokawa H, Yokota H, Oguro K, Konno K, Masuzawa T, Kawai N. Differential effects of novel wasp toxin on rat hippocampal interneurons. Neurosci Lett 2002; 328:25-8. [PMID: 12123851 DOI: 10.1016/s0304-3940(02)00432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na(+) channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX II, revealed that ATX II altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na(+) currents in CA1 interneurons differently in various CA1 neurons and the toxin is useful to classify Na(+) channel subtypes.
Collapse
Affiliation(s)
- Takahiro Miyawaki
- Department of Surgical Neurology, Jichi Medical School, Minamikawachi-machi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Our studies on creation of functional organic compounds and their applications, have focused on three areas, namely, (A) organic chemical studies on VD (vitamin D) analogues, (B) studies on solitary wasp venoms, and (C) studies on functional building blocks for organic synthesis. In the first area, several novel and important vitamin D analogues were synthesized and biologically evaluated, and their high VDR (vitamin D receptor) binding affinities were discussed on the basis of conformational analysis and docking study by Molecular Mechanics Calculation to the LBD (ligand binding domain) of VDR: These compounds include 24,24-difluoro-1 alpha,25-dihydroxy-VD3 (2) (an antimetabolism agent, the first VD analogue having higher potency than the natural hormone (1)), 2 alpha-methyl-1 alpha,25-dihydroxy-VD3 (42b) (the first A-ring-modified VD analogue exhibiting stronger VDR affinity than 1) and its 20-epimer (43b) (a VD analogue having a highest HL-60 cell differentiation inducing activity with a relatively low calcemic effect), and 2 alpha-(omega-hydroxypropyl)-1 alpha,25-dihydroxy-VD3 (exceptionally high calcemic effect). In the second area, we isolated and determined the structure of pompilidotoxins (76, 77), novel peptide neurotoxins in solitary wasp venoms. In the third area, we created furan-fused 3-sulfolene, 4H, 6H-thieno [3,4-c]-furan 5,5-dioxide and pyrrole-fused 3-sulfolene (96), 3,5-dihydro-1H-thieno[3,4-c] pyrrole 2,2-dioxide (125), and studied their inter- and intramolecular Diels-Alder reactions.
Collapse
Affiliation(s)
- Hiroaki Takayama
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko-machi, Thukui-gun, Kanagawa 199-0195, Japan.
| |
Collapse
|
14
|
Yokota H, Tsubokawa H, Miyawaki T, Konno K, Nakayama H, Masuzawa T, Kawai N. Modulation of synaptic transmission in hippocampal CA1 neurons by a novel neurotoxin (beta-pompilidotoxin) derived from wasp venom. Neurosci Res 2001; 41:365-71. [PMID: 11755223 DOI: 10.1016/s0168-0102(01)00294-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom, on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 microM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 microM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the presynaptic axons, causing summation of EPSPs. In the presence of 10 microM CNQX and 50 microM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors.
Collapse
Affiliation(s)
- H Yokota
- Department of Surgical Neurology, Jichi Medical School, Minamikawachi-machi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Konno K, Hisada M, Fontana R, Lorenzi CC, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Ruggiero Neto J, de Azevedo WF, Palma MS, Nakajima T. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1550:70-80. [PMID: 11738089 DOI: 10.1016/s0167-4838(01)00271-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel antimicrobial peptide, anoplin, was purified from the venom of the solitary wasp Anoplius samariensis. The sequence was mostly analyzed by mass spectrometry, which was corroborated by solid-phase synthesis. Anoplin, composed of 10 amino acid residues, Gly-Leu-Leu-Lys-Arg-Ile-Lys-Thr-Leu-Leu-NH2, has a high homology to crabrolin and mastoparan-X, the mast cell degranulating peptides from social wasp venoms, and, therefore, can be predicted to adopt an amphipathic alpha-helix secondary structure. In fact, the circular dichroism (CD) spectra of anoplin in the presence of trifluoroethanol or sodium dodecyl sulfate showed a high content, up to 55%, of the alpha-helical conformation. A modeling study of anoplin based on its homology to mastoparan-X supported the CD results. Biological evaluation using the synthetic peptide revealed that this peptide exhibited potent activity in stimulating degranulation from rat peritoneal mast cells and broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. Therefore, this is the first antimicrobial component to be found in the solitary wasp venom and it may play a key role in preventing potential infection by microorganisms during prey consumption by their larvae. Moreover, this peptide is the smallest among the linear alpha-helical antimicrobial peptides hitherto found in nature, which is advantageous for chemical manipulation and medical application.
Collapse
Affiliation(s)
- K Konno
- Center of Study of Social Insects, Department of Biology, Intitute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferber M, Hörner M, Cepok S, Gnatzy W. Digger wasp versus cricket: mechanisms underlying the total paralysis caused by the predator's venom. JOURNAL OF NEUROBIOLOGY 2001; 47:207-22. [PMID: 11333402 DOI: 10.1002/neu.1028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The data presented here describe neurophysiological experiments addressing the question of cellular mechanisms underlying the total paralysis of locomotor behavior in crickets occurring after being stung by females of the digger wasp species Liris niger. The Liris venom effects have been studied by both in vivo recordings from identified neurons of the well-described giant fiber pathway and in vitro recordings from cultured neurons isolated from the terminal ganglion of crickets. The total paralysis of the prey is characterized by a general block of action potential generation as well as by a block of synaptic transmission. Intracellular recordings from neurons in intact ganglia under single electrode voltage-clamp conditions, as well as whole-cell patch-clamp recordings from cultured cricket neurons consistently show that the block of action potential generation by the Liris venom is due to a block of voltage-gated sodium inward currents in neurons of the stung ganglia. Furthermore, our data provide evidence that the Liris venom also blocks calcium currents in identified neurosecretory neurons. On the other hand, outward currents are not affected by the Liris venom. The in vitro recordings suggest that the Liris venom contains active venom components, which, at least for the observed block of inward currents, do not require a metabolic modification. Because venom application does not affect the ACh-induced EPSPs in giant interneurons, the Liris venom does not seem to influence the postsynaptic ACh receptors. The possible pre- and postsynaptic sites of venom action and the functional consequences on synaptic transmission within the giant fiber system are discussed.
Collapse
Affiliation(s)
- M Ferber
- Zoologisches Institut der J.-W. Goethe Universität Frankfurt, Siesmayerstr. 70, D-60323 Frankfurt, Germany.
| | | | | | | |
Collapse
|
17
|
Kinoshita E, Maejima H, Yamaoka K, Konno K, Kawai N, Shimizu E, Yokote S, Nakayama H, Seyama I. Novel Wasp Toxin Discriminates between Neuronal and Cardiac Sodium Channels. Mol Pharmacol 2001. [DOI: 10.1124/mol.59.6.1457] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Konno K, Hisada M, Naoki H, Itagaki Y, Kawai N, Miwa A, Yasuhara T, Morimoto Y, Nakata Y. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 2000; 38:1505-15. [PMID: 10775751 DOI: 10.1016/s0041-0101(00)00083-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF), was isolated from the venom of the solitary wasp Anterhynchium flavomarginatum micado, the most common eumenine wasp found in Japan. The structure was analyzed by FAB-MS/MS together with Edman degradation, which was corroborated by solid-phase synthesis. The sequence of EMP-AF, Ile-Asn-Leu-Leu-Lys-Ile-Ala-Lys-Gly-Ile-Ile-Lys-Ser-Leu-NH(2), was similar to that of mastoparan, a mast cell degranulating peptide from a hornet venom; tetradecapeptide with C-terminus amidated and rich in hydrophobic and basic amino acids. In fact, EMP-AF exhibited similar activity to mastoparan in stimulating degranulation from rat peritoneal mast cells and RBL-2H3 cells. It also showed significant hemolytic activity in human erythrocytes. Therefore, this is the first example that a mast cell degranulating peptide is found in the solitary wasp venom. Besides the degranulation and hemolytic activity, EMP-AF also affects on neuromuscular transmission in the lobster walking leg preparation. Three analogs EMP-AF-1 approximately 3 were snythesized and biologically tested together with EMP-AF, resulting in the importance of the C-terminal amide structure for biological activities.
Collapse
Affiliation(s)
- K Konno
- Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pizzo AB, Fontana AC, Coutinho-Netto J, dos Santos WF. Effects of the crude venom of the social wasp Agelaia vicina on gamma-aminobutyric acid and glutamate uptake in synaptosomes from rat cerebral cortex. J Biochem Mol Toxicol 2000; 14:88-94. [PMID: 10630422 DOI: 10.1002/(sici)1099-0461(2000)14:2<88::aid-jbt4>3.0.co;2-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate (L-glu) is the most important excitatory neurotransmitter in the mammalian central nervous system. Its action is terminated by transporters located in the plasma membrane of neurons and glial cells, which have a critical role in preventing glutamate excitotoxicity under normal conditions. The neurotransmitter gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system. Venoms of solitary wasps and orb-spiders are composed of large proteins, medium-size peptides, polyamine amides (PAs), and other neuroactive components that are highly selective to nervous tissues. The abnormal operation of uptake systems is involved in several failures. Several studies indicate alterations in extracellular GABA and glutamate concentrations in epilepsy conditions that may relate to transporter functions. The effects of the crude and boiled venom of the social wasp Agelaia vicina, "cassununga," on GABA and L-glu uptake in rat cerebral cortex synaptosomes are related. The venom uncompetitively inhibited high- and low-affinity GABA uptake by 91.2% and by 76%, respectively. This kind of inhibition was also found to affect high- (99.6%) and low-affinity (90%) uptake of L-glu. These results suggest that the effects observed in these experiments indicate the venom of A. vicina to be a useful tool to further characterize GABA- and L-glu-uptake systems.
Collapse
Affiliation(s)
- A B Pizzo
- Department of Biology, Faculty of Philosophy, Sciences, and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
20
|
Sahara Y, Gotoh M, Konno K, Miwa A, Tsubokawa H, Robinson HP, Kawai N. A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur J Neurosci 2000; 12:1961-70. [PMID: 10886337 DOI: 10.1046/j.1460-9568.2000.00084.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action of alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX slowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.
Collapse
Affiliation(s)
- Y Sahara
- Department of Physiology, Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Konno K, Hisada M, Naoki H, Itagaki Y, Yasuhara T, Nakata Y, Miwa A, Kawai N. Molecular determinants of binding of a wasp toxin (PMTXs) and its analogs in the Na+ channels proteins. Neurosci Lett 2000; 285:29-32. [PMID: 10788700 DOI: 10.1016/s0304-3940(00)01017-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation.
Collapse
Affiliation(s)
- K Konno
- Institute of Biosciences at Rio Claro, São Paulo State University, Brazil
| | | | | | | | | | | | | | | |
Collapse
|