1
|
Zhong B, Ma S, Wang DH. Protective Effects of TRPV1 Activation Against Cardiac Ischemia/ Reperfusion Injury is Blunted by Diet-Induced Obesity. Cardiovasc Hematol Disord Drug Targets 2019; 20:122-130. [PMID: 31513001 PMCID: PMC7360920 DOI: 10.2174/1871529x19666190912152041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/12/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Activation of Transient Receptor Potential Vanilloid Subtype 1 (TRPV1) channels protects the heart from Ischemia/Reperfusion (I/R) injury through releasing Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP). The current study aimed to study the cardioprotective effects of TRPV1 in obesity. METHODS TRPV1 gene knockout (TRPV1-/-) and Wild-Type (WT) mice were Fed a High-Fat Diet (HFD) or a control diet or for 20 weeks, and then the hearts were collected for I/R injury ex vivo. The hearts were mounted on a Langendorff apparatus and subjected to ischemia (30 min) and reperfusion (40 min) after incubated with capsaicin (10 nmol/L), CGRP (0.1 μmol/L) and SP (0.1 μmol/L). Then, Coronary Flow (CF), left ventricular peak positive dP/dt (+dP/dt), Left Ventricular Developed Pressure (LVDP) and Left Ventricular End-Diastolic Pressure (LVEDP) were measured. RESULTS HFD intake remarkably reduced CF, +dP/dt and LVDP and elevated LVEDP in both strains (P<0.05). Treatment with capsaicin decreased infarct size, increased CF, +dP/dt and LVDP, and decreased LVEDP in WT mice on control diet (P<0.05), but did not do so in other three groups. Treatment with CGRP and SP decreased infarct size in both strains fed with control diet (P<0.05). In contrast, not all the parameters of cardiac postischemic recovery in HFD-fed WT and TRPV1-/- mice were improved by CGRP and SP. CONCLUSION These results suggest that HFD intake impairs cardiac postischemic recovery. HFDinduced impairment of recovery is alleviated by CGRP in both strains and by SP only in TRPV1-/- mice, indicating that the effects of CGRP and SP are differentially regulated during HFD intake.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, 788 Service Rd, East Lansing, MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, 788 Service Rd, East Lansing, MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, 788 Service Rd, East Lansing, MI 48824, United States.,Neuroscience Program, Michigan State University, 788 Service Rd, East Lansing, MI 48824, United States.,Cell & Molecular Biology Program, Michigan State University, 788 Service Rd, East Lansing, MI 48824, United States
| |
Collapse
|
2
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
3
|
Prete M, Fatone MC, Favoino E, Perosa F. Raynaud's phenomenon: from molecular pathogenesis to therapy. Autoimmun Rev 2014; 13:655-67. [PMID: 24418302 DOI: 10.1016/j.autrev.2013.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/24/2013] [Indexed: 01/01/2023]
Abstract
Raynaud's phenomenon (RP) is a well defined clinical syndrome characterized by recurrent episodes of digital vasospasm triggered by exposure to physical/chemical or emotional stress. RP has been classified as primary or secondary, depending on whether it occurs as an isolated condition (pRP) or is associated to an underlying disease, mainly a connective tissue disease (CTD-RP). In both cases, it manifests with unique "triple" (pallor, cyanosis and erythema), or "double" color changes. pRP is usually a benign condition, while sRP can evolve and be complicated by acral digital ulcers and gangrene, which may require surgical treatment. The pathogenesis of RP has not yet been entirely clarified, nor is it known whether autoantibodies have a role in RP. Even so, recent advances in our understanding of the pathophysiology have highlighted novel potential therapeutic targets. The aim of this review is to discuss the etiology, epidemiology, risk factors, clinical manifestations, recently disclosed pathogenic mechanisms underlying RP and their correlation with the available therapeutic options, focusing primarily on pRP and CTD-RP.
Collapse
Affiliation(s)
- Marcella Prete
- Internal Medicine, University of Bari Medical School, I-70124 Bari, Italy
| | | | - Elvira Favoino
- Rheumatological and Autoimmune Systemic Diseases Units, University of Bari Medical School, I-70124 Bari, Italy
| | - Federico Perosa
- Rheumatological and Autoimmune Systemic Diseases Units, University of Bari Medical School, I-70124 Bari, Italy.
| |
Collapse
|
4
|
Ohtori S, Inoue G, Koshi T, Ito T, Doya H, Moriya H, Takahashi K. Substance P-saporin down-regulates substance P receptor immunoreactive sensory dorsal root ganglion neurons innervating the lumbar intervertebral discs in rats. Spine (Phila Pa 1976) 2006; 31:2987-91. [PMID: 17172993 DOI: 10.1097/01.brs.0000250306.12996.fa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To examine changes in substance P receptors on dorsal root ganglion cells innervating the rat lumbar intervertebral discs using immunohistochemistry and a retrograde neurotracing method. OBJECTIVE We evaluated the effects of intradiscal administration of substance P-saporin, a toxin selective for cells expressing substance P receptors. SUMMARY OF BACKGROUND DATA The rat L5/6 intervertebral disc is multi-segmentally innervated from the L1-L6 dorsal root ganglions. Substance P and the neurokinin-1 receptor contribute to inflammatory pain transmission. Substance P immunoreactive-sensory nerve fibers in human intervertebral discs and immunoreactive-dorsal root ganglion neurons innervating rat intervertebral discs have been reported to be important in the transmission of discogenic low back pain. In the current study, we evaluated the effects of intradiscal administration of substance P-saporin, a toxin selective for cells expressing substance P receptor. METHODS Sixteen rats were used (control group, n = 8; substance P-saporin group, n = 8). To detect dorsal root ganglion neurons innervating the L5/6 intervertebral disc, neurotracer (fluoro-gold crystals) was placed into the intervertebral disc. Seven days after fluoro-gold application, the L5/6 intervertebral disc was exposed and injected with 175 ng of sterile substance P-saporin (substance P-saporin group, n = 8). Fourteen days after the first operation, each dorsal root ganglion was harvested, sectioned, and processed for neurokinin-1 immunohistochemistry using rabbit antibody to neurokinin-1. The numbers of fluoro-gold labeled neurons, and fluoro-gold labeled and neurokinin-1 immunoreactive neurons were counted in both groups. RESULTS Neurons innervating the L5/6 intervertebral discs, retrogradely labeled with fluoro-gold, were distributed throughout dorsal root ganglions from L1 to L6 in both groups. Of fluoro-gold labeled neurons, the proportion of neurokinin-1 immunoreactive neurons was 35% in the control group. However, the proportion of neurokinin-1 immunoreactive neurons was 8% after administration of substance P-saporin into the intervertebral discs (substance P-saporin group). Substance P-saporin significantly decreased the ratio of neurokinin-1 immunoreactive neurons. CONCLUSION Substance P-saporin decreased the ratio of neurokinin-1 immunoreactive neurons innervating the disc related to discogenic low back pain. Substance P-saporin may be a useful tool to investigate the mechanism of discogenic low back pain.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Allen JW, Mantyh PW, Horais K, Tozier N, Rogers SD, Ghilardi JR, Cizkova D, Grafe MR, Richter P, Lappi DA, Yaksh TL. Safety Evaluation of Intrathecal Substance P-Saporin, a Targeted Neurotoxin, in Dogs. Toxicol Sci 2006; 91:286-98. [PMID: 16500924 DOI: 10.1093/toxsci/kfj143] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrathecal (IT) substance P-Saporin (SP-SAP), a 33-kDa-targeted neurotoxin, produces selective destruction of superficial neurokinin 1 receptor (NK1r)-bearing cells in the spinal dorsal horn. In rats, SP-SAP prevents the formation of hyperalgesia and can reverse established neuropathic pain behavior in rodents. To determine the safety of this therapeutic modality in a large animal model, beagles received bolus IT lumbar injections of vehicle, SP-SAP (1.5, 15, 45, or 150 microg), or a nontargeted preparation of saporin (SAP, 150 microg) for immunohistological analysis of spinal cords. Doses of 15 microg SP-SAP and above produced a significant and equivalent loss of NK1r-bearing cells and dendrites in lumbar laminae II and I compared to vehicle- or SAP-treated animals. Cervical regions in all animals displayed no loss of NK1r immunoreactivity as compared to controls. Total numbers of neurons in the lumbar dorsal horn or alpha-motor neurons in the ventral horn demonstrated no significant changes. No increases in the astrocytic marker glial fibrillary acidic protein were noted following treatment with SP-SAP, suggesting a lack of generalized neurotoxicity. Additional dogs received doses of 1.5-150 microg SP-SAP or SAP and were sacrificed after 28 or 90 days to assess behavioral and physiological parameters. Although some acute motor signs were observed with both SP-SAP and SAP, no long-lasting significant events were noted in any of these animals. These data indicate no adverse toxicity at doses up to 10 times those necessary for producing loss of superficial NK1r-bearing neurons in a large animal model.
Collapse
Affiliation(s)
- Jeffrey W Allen
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0818, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vera-Portocarrero LP, Westlund KN. Attenuation of nociception in a model of acute pancreatitis by an NK-1 antagonist. Pharmacol Biochem Behav 2004; 77:631-40. [PMID: 15006476 DOI: 10.1016/j.pbb.2004.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 01/06/2004] [Accepted: 01/06/2004] [Indexed: 11/20/2022]
Abstract
Substance P (SP) acting at the NK-1 neurokinin receptor has a well-documented role in the transmission and maintenance of nociceptive information. SP is found in the majority of fibers innervating the pancreas, and it is up-regulated after pancreatic inflammation. The aim of this study was to investigate the role of the NK-1 receptors in the maintenance of pancreatic nociception. Using a newly developed rat model of acute pancreatic nociception that persists for 1 week, the NK-1 receptor expression in the spinal cord and pancreas was examined using immunohistochemistry and Western blotting procedures. The effects of a specific NK-1 antagonist, CP99,994, on the behavioral manifestations of pancreatic nociception were determined. The antagonist was administered intraperitoneally and intrathecally to differentiate peripheral and central effects. Injection of CP-100,263, the inactive enantiomer of CP-99,994 was used as a control for nonspecific effects of the antagonist. Immunohistochemistry and Western blotting analysis revealed an up-regulation of the NK-1 receptor occurs in the pancreas but not at the spinal cord level. The NK-1 antagonist was able to attenuate the nociceptive behaviors in rats with pancreatitis when applied intraperitoneally with a short duration of effectiveness. Intrathecal application of the antagonist was ineffective. These results suggest the involvement of pancreatic NK-1 receptors in the maintenance of nociception during pancreatic inflammation.
Collapse
Affiliation(s)
- Louis P Vera-Portocarrero
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Medical Research Building, Room 10.138D, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | |
Collapse
|
7
|
Scotland RS, Chauhan S, Davis C, De Felipe C, Hunt S, Kabir J, Kotsonis P, Oh U, Ahluwalia A. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ Res 2004; 95:1027-34. [PMID: 15499026 DOI: 10.1161/01.res.0000148633.93110.24] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myogenic constriction describes the innate ability of resistance arteries to constrict in response to elevations in intraluminal pressure and is a fundamental determinant of peripheral resistance and, hence, organ perfusion and systemic blood pressure. However, the receptor/cell-type that senses changes in pressure on the blood vessel wall and the pathway that couples this to constriction of vascular smooth muscle remain unclear. In this study, we show that elevation of intraluminal transmural pressure of mesenteric small arteries in vitro results in a myogenic response that is profoundly suppressed following ablation of sensory C-fiber activity (using in vitro capsaicin desensitization resulted in 72.8+/-10.3% inhibition, n=8; P<0.05). Activation of C-fiber nerve endings by pressure was attributable to stimulation of neuronal vanilloid receptor, TRPV1, because blockers of this channel, capsazepine (71.9+/-11.1% inhibition, n=9; P<0.001) and ruthenium red (46.1+/-11.7% inhibition, n=4; P<0.05), suppressed the myogenic constriction. In addition, this C-fiber dependency is likely related to neuropeptide substance P release and activity because blockade of tachykinin NK1 receptors (66.3+/-13.7% inhibition, n=6; P<0.001), and not NK2 receptors (n=4, NS), almost abolished the myogenic response. Previous studies support a role for 20-hydroxyeicosatetraenoic acid (20-HETE) in myogenic constriction responses; herein, we show that 20-HETE-induced constriction of mesenteric resistance arteries is blocked by capsazepine. Together, these results suggest that elevation of intraluminal pressure is associated with generation of 20-HETE that, in turn, activates TRPV1 on C-fiber nerve endings resulting in depolarization of nerves and consequent vasoactive neuropeptide release. These findings identify a novel mechanism contributing to Bayliss' myogenic constriction and highlights an alternative pathway that may be targeted in the therapeutics of vascular disease, such as hypertension, where enhanced myogenic constriction plays a role in the pathogenesis.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- CHO Cells
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Capsaicin/toxicity
- Cation Transport Proteins/antagonists & inhibitors
- Cricetinae
- Endothelium, Vascular/physiology
- Gadolinium/pharmacology
- Ganglia, Sympathetic/drug effects
- Guanethidine/pharmacology
- Hydroxyeicosatetraenoic Acids/pharmacology
- Ion Channels/drug effects
- Ion Channels/physiology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Mice
- Mice, Knockout
- Models, Cardiovascular
- Models, Neurological
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Nociceptors/drug effects
- Nociceptors/physiology
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- Pressure
- Quinuclidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/genetics
- Ruthenium Red/pharmacology
- Sodium Channel Blockers/pharmacology
- Splanchnic Circulation/drug effects
- Splanchnic Circulation/physiology
- Stress, Mechanical
- Sympathectomy, Chemical
- TRPV Cation Channels
- Tetrodotoxin/pharmacology
- Vascular Resistance/drug effects
- Vascular Resistance/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Ramona S Scotland
- Wolfson Institute for Biomedical Research, College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ljung BO, Alfredson H, Forsgren S. Neurokinin 1-receptors and sensory neuropeptides in tendon insertions at the medial and lateral epicondyles of the humerus. Studies on tennis elbow and medial epicondylalgia. J Orthop Res 2004; 22:321-7. [PMID: 15013091 DOI: 10.1016/s0736-0266(03)00183-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 07/14/2003] [Indexed: 02/04/2023]
Abstract
There is no information on the sensory innervation at the flexor muscle origin at the medial epicondyle of the humerus and it is not known if substance P receptors (Neurokinin 1-receptors, NK1-R) are present in tendon insertions in general. In the present investigation, we have studied the muscle origin in patients suffering from medial epicondylalgia and tennis elbow. Immunohistochemistry and antibodies to substance P (SP) and CGRP as well as the general nerve marker PGP 9.5 were used. Specific immunoreactions were observed in nerve bundles and as free nerve fibers. The immunoreactive structures were partly seen in association with some of the blood vessels. The observations constitute a morphological correlate for the occurrence of nerve mediated effects in this region. By using immunohistochemistry and antibodies to NK1-R, the distribution of this receptor was studied at the insertion of the proximal tendon of the extensor carpi radialis brevis muscle at the lateral epicondyle. Specific immunoreactions were seen as varicose fibers occurring as single fibers or grouped into bundles, indicating that SP has effects in the nerves in this region. The results give further evidence for a possible neurogenic involvement in the pathophysiology of tennis elbow and in medial epicondylalgia.
Collapse
Affiliation(s)
- Björn-Ove Ljung
- Department of Hand Surgery, Karolinska Institutet, Stockholm Söder Hospital, 118 83 Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
Ruocco I, Cuello AC, Shigemoto R, Ribeiro-da-Silva A. Light and electron microscopic study of the distribution of substance P-immunoreactive fibers and neurokinin-1 receptors in the skin of the rat lower lip. J Comp Neurol 2001; 432:466-80. [PMID: 11268009 DOI: 10.1002/cne.1114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cutaneous antidromic vasodilatation and plasma extravasation, two phenomena that occur in neurogenic inflammation, are partially blocked by substance P (SP) receptor antagonists and are known to be mediated in part by mast cell-released substances, such as histamine, serotonin, and nitric oxide. In an attempt to provide a morphological substrate for the above phenomena, we applied light and electron microscopic immunocytochemistry to investigate the pattern of SP innervation of blood vessels and its relationship to mast cells in the skin of the rat lower lip. Furthermore, we examined the distribution of SP (neurokinin-1) receptors and their relationship to SP-immunoreactive (IR) fibers. Our results confirmed that SP-IR fibers are found in cutaneous nerves and that terminal branches are observed around blood vessels and penetrating the epidermis. SP-IR fibers also innervated hair follicles and sebaceous glands. At the ultrastructural level, SP-IR varicosities were observed adjacent to arterioles, capillaries, venules, and mast cells. The varicosities possessed both dense core vesicles and agranular synaptic vesicles. We quantified the distance between SP-IR varicosities and blood vessel endothelial cells. SP-IR terminals were located within 0.23-5.99 microm from the endothelial cell layer in 82.7% of arterioles, in 90.2% of capillaries, and in 86.9% of venules. Although there was a trend for SP-IR fibers to be located closer to the endothelium of venules, this difference was not significant. Neurokinin-1 receptor (NK-1r) immunoreactivity was most abundant in the upper dermis and was associated with the wall of blood vessels. NK-1r were located in equal amounts on the walls of arterioles, capillaries, and venules that were innervated by SP-IR fibers. The present results favor the concept of a participation of SP in cutaneous neurogenic vasodilatation and plasma extravasation both by an action on blood vessels after binding to the NK-1r and by causing the release of substances from mast cells after diffusion through the connective tissue.
Collapse
Affiliation(s)
- I Ruocco
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Quebec, Canada
| | | | | | | |
Collapse
|
10
|
Shrikhande SV, Friess H, di Mola FF, Tempia-Caliera A, Conejo Garcia JR, Zhu Z, Zimmermann A, Büchler MW. NK-1 receptor gene expression is related to pain in chronic pancreatitis. Pain 2001; 91:209-217. [PMID: 11275376 DOI: 10.1016/s0304-3959(00)00436-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent theories of pathogenesis of pain in chronic pancreatitis (CP) are neuroimmune interactions of intrapancreatic nerves and inflammatory cells and increase in levels of pain neurotransmitters such as substance P (SP). This study analyzed the expression and localization of neurokinin 1 receptor (NK-1R), which binds SP, and its association with pain and inflammation in CP. Pancreatic tissues from 31 patients (22 males, nine females; mean age 45.9+/-9.4 years) with CP were evaluated. Nine normal pancreases (five males, four females; mean age 42.9+/-9.5 years) served as controls. Quantitative PCR was used to determine the NK-1R mRNA expression levels and in situ hybridization and immunohistochemistry were used to localize expression sites of NK-1R mRNA and protein, respectively. We also analyzed whether an association exists between NK-1R mRNA expression and pain and inflammation. In CP samples, in situ hybridization and immunohistochemistry localized NK-1R mRNA expression and protein mainly in the nerves, ganglia, blood vessels, inflammatory cells and occasionally in fibroblasts. In patients with mild to moderate and strong intensity of pain, NK-1R mRNA levels were increased 14- and 30-fold over controls, respectively. There was a significant relationship between NK-1R mRNA levels and intensity of pain (r=0.46, P=0.03), NK-1R mRNA and the frequency of pain (r=0.51, P=0.04), and NK-1 mRNA and duration of pain (r=0.46, P=0.01) in CP patients, but not with the degree of tissue inflammation. NK-1R signaling may be involved in the pain syndrome of CP. The expression of NK-1R in inflammatory cells and blood vessels also points to an interaction of immunoreactive substance P nerves, inflammatory cells and blood vessels, and further supports the existence of a neuroimmune interaction that probably influences the pain syndrome and chronic inflammatory changes so characteristic of CP.
Collapse
Affiliation(s)
- Shailesh V Shrikhande
- Department of Visceral and Transplantation Surgery, University of Bern, Inselspital, CH-3010 Bern, Switzerland Institute of Pathology, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The control and maintenance of vascular tone is due to a balance between vasoconstrictor and vasodilator pathways. Vasomotor responses to neural, metabolic and physical factors vary between vessels in different vascular beds, as well as along the same bed, particularly as vessels become smaller. These differences result from variation in the composition of neurotransmitters released by perivascular nerves, variation in the array and activation of receptor subtypes expressed in different vascular beds and variation in the signal transduction pathways activated in either the vascular smooth muscle or endothelial cells. As the study of vasomotor responses often requires pre-existing tone, some of the reported heterogeneity in the relative contributions of different vasodilator mechanisms may be compounded by different experimental conditions. Biochemical variations, such as the expression of ion channels, connexin subtypes and other important components of second messenger cascades, have been documented in the smooth muscle and endothelial cells in different parts of the body. Anatomical variations, in the presence and prevalence of gap junctions between smooth muscle cells, between endothelial cells and at myoendothelial gap junctions, between the two cell layers, have also been described. These factors will contribute further to the heterogeneity in local and conducted responses.
Collapse
Affiliation(s)
- C E Hill
- Autonomic Synapse Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200 ACT, Australia.
| | | | | |
Collapse
|