1
|
Glick JL, McMillan PA. A multipronged, nutritional-based strategy for managing Alzheimer's disease. Med Hypotheses 2016; 91:98-102. [PMID: 27142155 DOI: 10.1016/j.mehy.2016.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
A nutritional-based strategy has been proposed in order to improve cognitive performance of Alzheimer's disease (AD) patients. The strategy requires daily dietary supplementation with magnesium (Mg), folic acid, and vitamins B6 and B12, daily consumption of silicic acid-rich mineral water in order to lower the body burden of Al, and several plasma exchange procedures in order to replace Aβ-bound albumin with fresh albumin. Evidence suggests that the deteriorating cognitive performance associated with AD may be improved by supplementation with either Mg alone or with the combination of the above three B vitamins (B vitamin combo), or by drinking silicic acid-rich mineral water, or by undergoing plasma exchange. However, for the following reasons the combination of all four therapeutic approaches may have a synergistic effect on improving cognitive performance of AD patients.
Collapse
|
2
|
Wang P, Wang Q, Yang L, Qin QL, Wu YJ. Characterization of lysophosphatidylcholine-induced changes of intracellular calcium in Drosophila S2 cells. Life Sci 2015; 131:57-62. [DOI: 10.1016/j.lfs.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
3
|
Abstract
Nutrition must affect the structure and functioning of the brain. Since the brain has very high metabolic activity, what we consume throughout the day is likely to dramatically influence both its structure and moment to moment function. It follows that nutritional approaches to all neurological disorders are being researched and entering medical practice, while nutraceutical use is a mainstay of public habits. This review discusses the biological basis for non-conventional or non-mainstream approaches to the treatment of migraine. This requires at least limited discussion of current migraine pathophysiologic theory. How nutrients and other chemicals and approaches are mechanistically involved within migraine pathways is the focus of this article. The nutraceuticals reviewed in detail are: magnesium, riboflavin, coenzyme Q10, petasites, and feverfew with additional comments on marijuana and oxygen/hyperbaric oxygen. This article reviews the science when known related to the potential genetic susceptibility and sensitivity to these treatments. As we know, the basic science in this field is very preliminary, so whether to combine approaches and presumably mechanisms or use them alone or with or without conventional therapies is far from clear. Nonetheless, as more patients and providers participate in patient-centered approaches to care, knowledge of the science underpinning nutritional, nutraceutical, and complementary approaches to treatment for migraine will certainly benefit this interaction.
Collapse
Affiliation(s)
- Frederick R Taylor
- From the Park Nicollet Headache Center, Park Nicollet Health Services, Minneapolis, MN, USA
| |
Collapse
|
4
|
Guo H, Lee JD, Uzui H, Yue H, Wang J, Toyoda K, Geshi T, Ueda T. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J 2006; 70:141-6. [PMID: 16377938 DOI: 10.1253/circj.70.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hyperhomocysteinemia is an independent risk factor of coronary artery disease, but some studies have shown that patients with hyperhomocysteinemia are not prone to atherosclerosis. The aim of this study was to test whether homocysteine increases the production of matrix metalloproteinase-2 (MMP-2) and if extracellular additional magnesium and folic acid alters MMP-2 secretion. METHODS AND RESULTS Gelatin zymography and western blotting were used to investigate the effects of different homocysteine levels (0-5,000 micromol/L) on MMP-2 production, and the effects of different folic acid concentrations (0-10 micromol/L) and magnesium concentrations (0-3.0 mmol/L) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells. Furthermore, the changes in MMP-2 were compared under various treatments for 24 h, 48 h and 72 h. Homocysteine (50-1,000 micromol/L) increased the production of MMP-2 significantly in a dose-dependent manner and at a high level (5,000 micromol/L) reduced the production of MMP-2. Increased production of MMP-2 induced by homocysteine was reduced by additional extracellular folic acid in a dose-dependent manner. Magnesium also reduced the increase of MMP-2 production induced by homocysteine. Production of MMP-2 under various treatments for 72 h increased more than during 24 or 48 h. CONCLUSIONS Homocysteine (50-1,000 micromol/L) significantly increased the production of MMP-2 in a dose-dependent manner. Added extracellular folic acid and magnesium decreased the homocysteine-induced MMP-2 secretion. These data suggest a beneficial effect of folic acid and magnesium on the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Hangyuan Guo
- Department of Cardiology, Huayu Hospital, China Medical University, Shaoxing, Zhejiang, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sukocheva OA, Abramov AY, Levitskaya JO, Gagelgans AI, Carpenter DO. Modulation of intracellular Ca(2+) concentration by vitamin B12 in rat thymocytes. Blood Cells Mol Dis 2001; 27:812-24. [PMID: 11783944 DOI: 10.1006/bcmd.2001.0450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied several novel effects of vitamin B12 (cyanocobalamin) on cellular Ca(2+) homeostasis in rat thymocytes. We determined the effect of various concentrations of vitamin B12 on intracellular Ca(2+) concentration ([Ca(2+)]i) and parameters of Ca(2+)in signaling using the fluorescent dye Fura-2. The basal [Ca(2+)]i in Ca(2+)-containing media was 115 +/- 5 nM but in vitamin B12 (10 nM)-treated thymocytes [Ca(2+)]i was decreased to 60 +/- 15 nM (mean +/- SEM) during the first 5 min. The decline in [Ca(2+)]i was accompanied by an increase in the endoplasmic reticulum Ca(2+) store, presumably as a result of Ca-ATPase activation. At the same time 100 nM-10 mM B12 induced the accumulation of Ca(2+) in mitochondria. Somewhat higher concentrations of B12 (1-10 microM) had no effect on [Ca(2+)]i. A further increase in B12 concentration with range from 50 microM to 1 mM caused a dose-dependent elevation of [Ca(2+)]i from the basal level (115 +/- 5 nM) up to 200 +/- 50 nM in thymocytes, and this elevation was partially blocked in Ca(2+)-free media. This high concentration of vitamin B12 caused a gradual decrease of endoplasmic reticulum Ca(2+) stores by means of Ca-ATPase inhibition. The B12-induced increase in [Ca(2+)]i was not observed after depletion of intracellular Ca(2+) stores, induced by addition of 2',5'-di(tert-butyl)-1,4-benzohydroquinone (BHQ), an inhibitor of endoplasmic reticulum Ca (2+)-ATPase, concanavalin A, or arachidonic acid. These studies show that vitamin B12 regulates [Ca(2+)]i via several different mechanisms at different B12 concentrations. Participation of G proteins and calmodulin activity in B12-mediated [Ca(2+)]i increase is discussed.
Collapse
Affiliation(s)
- O A Sukocheva
- Wadsworth Laboratories, E-221, Empire State Plaza, P1 South Dock J3, Albany, New York 12201-0509, USA.
| | | | | | | | | |
Collapse
|
6
|
Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001; 20:319-49. [PMID: 11286896 DOI: 10.1016/s1350-9462(00)00028-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vasospasm can have many different causes and can occur in a variety of diseases, including infectious, autoimmune, and ophthalmic diseases, as well as in otherwise healthy subjects. We distinguish between the primary vasospastic syndrome and secondary vasospasm. The term "vasospastic syndrome" summarizes the symptoms of patients having such a diathesis as responding with spasm to stimuli like cold or emotional stress. Secondary vasospasm can occur in a number of autoimmune diseases, such as multiple sclerosis, lupus erythematosus, antiphospholipid syndrome, rheumatoid polyarthritis, giant cell arteritis, Behcet's disease, Buerger's disease and preeclampsia, and also in infectious diseases such as AIDS. Other potential causes for vasospasm are hemorrhages, homocysteinemia, head injury, acute intermittent porphyria, sickle cell disease, anorexia nervosa, Susac syndrome, mitochondriopathies, tumors, colitis ulcerosa, Crohn's disease, arteriosclerosis and drugs. Patients with primary vasospastic syndrome tend to suffer from cold hands, low blood pressure, and even migraine and silent myocardial ischemia. Valuable diagnostic tools for vasospastic diathesis are nailfold capillary microscopy and angiography, but probably the best indicator is an increased plasma level of endothelin-1. The eye is frequently involved in the vasospastic syndrome, and ocular manifestations of vasospasm include alteration of conjunctival vessels, corneal edema, retinal arterial and venous occlusions, choroidal ischemia, amaurosis fugax, AION, and glaucoma. Since the clinical impact of vascular dysregulation has only really been appreciated in the last few years, there has been little research in the according therapeutic field. The role of calcium channel blockers, magnesium, endothelin and glutamate antagonists, and gene therapy are discussed.
Collapse
Affiliation(s)
- J Flammer
- University Eye Clinic Basel, Mittlere Strasse 91, CH-4012, Basel, Switzerland.
| | | | | |
Collapse
|
7
|
Li W, Zheng T, Altura BM, Altura BT. Sex steroid hormones exert biphasic effects on cytosolic magnesium ions in cerebral vascular smooth muscle cells: possible relationships to migraine frequency in premenstrual syndromes and stroke incidence. Brain Res Bull 2001; 54:83-9. [PMID: 11226717 DOI: 10.1016/s0361-9230(00)00428-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clinically, it is known that: (1) magnesium (Mg) supplementation relieves premenstrual problems (e.g., migraine, bloating and edema) occurring in the late luteal phase of the menstrual cycle; and (2) migraine syndromes, particularly in women, are associated with deficits in brain and serum ionized Mg levels. We investigated whether concentrations of sex steroid hormones, found in the serum during the menstrual cycle of women, are associated with changes in the levels of cytosolic free magnesium ions ([Mg2+]i in single cultured canine cerebral vascular smooth muscle cells. The resting level of [Mg2+]i in these cells was 645 +/- 89 microM before exposure to sex steroid hormones. Exposure of these vascular cells to a low concentration of estrogen (10 pg/ml) failed to interfere with the levels of [Mg2+]i. However, exposure to estrogen, at concentrations ranging from 40 to 200 pg/ml, induced significant loss of [Mg2+]i in a concentration-dependent manner. At a concentration of 200 pg/ml estrogen, the level of [Mg2+]i decreased approximately 30% in comparison with controls. Progesterone produced biphasic effects on the levels of [Mg2+]i, depending on its concentration. Exposure of the cultured cells to a low concentration of progesterone (0.5 ng/ml) resulted in an increased level of [Mg2+]i (from 690 +/- 50 microM to 753 +/- 56 microM, p < 0.05). However, when these cells were exposed to higher concentrations of progesterone (i.e., from 5.0 to 20 ng/ml), the cellular levels of [Mg2+]i were decreased significantly. The higher the estrogen or progesterone concentration, the lower the levels of [Mg2+]i. In contrast, testosterone, a male hormone, didn't produce any significant alteration in [Mg2+]i levels in these cerebral vascular smooth muscle cells. These data indicate that low, physiological concentrations of female sex hormones, estrogen and progesterone, help cerebral vascular smooth cells sustain normal concentrations of [Mg2+]i, which are beneficial to vascular function, whereas high levels of estrogen and progesterone deplete, significantly, [Mg2+]i in cerebral vascular smooth muscle cells, possibly resulting in cerebrovasospasms and reduced cerebral blood flows related to premenstrual syndromes, migraine and stroke risk. Our findings could provide new insight into the mechanism whereby migraine occurs frequently in the late luteal phase in the premenstrual syndrome. In addition, our results demonstrate that female sex steroids but not testosterone (in physiologic concentrations) can exert direct effects on [Mg2+]i in cerebral vascular cells.
Collapse
Affiliation(s)
- W Li
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
8
|
Yang ZW, Wang J, Zheng T, Altura BT, Altura BM. Low [Mg(2+)](o) induces contraction and [Ca(2+)](i) rises in cerebral arteries: roles of ca(2+), PKC, and PI3. Am J Physiol Heart Circ Physiol 2000; 279:H2898-907. [PMID: 11087246 DOI: 10.1152/ajpheart.2000.279.6.h2898] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Removal of extracellular Ca(2+) concentration ([Ca(2+)](o)) and pretreatment of canine basilar arterial rings with either an antagonist of voltage-gated Ca(2+) channels (verapamil), a selective antagonist of the sarcoplasmic reticulum Ca(2+) pump [thapsigargin (TSG)], caffeine plus a specific antagonist of ryanodine-sensitive Ca(2+) release (ryanodine), or a D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]- mediated Ca(2+) release antagonist (heparin) markedly attenuates low extracellular Mg(2+) concentration ([Mg(2+)](o))-induced contractions. Low [Mg(2+)](o)-induced contractions are significantly inhibited by pretreatment of the vessels with Gö-6976 [a protein kinase C-alpha (PKC-alpha)- and PKC-betaI-selective antagonist], bisindolylmaleimide I (Bis, a specific antagonist of PKC), and wortmannin or LY-294002 [selective antagonists of phosphatidylinositol-3 kinases (PI3Ks)]. These antagonists were also found to relax arterial contractions induced by low [Mg(2+)](o) in a concentration-dependent manner. The absence of [Ca(2+)](o) and preincubation of the cells with verapamil, TSG, heparin, or caffeine plus ryanodine markedly attenuates the transient and sustained elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by low-[Mg(2+)](o) medium. Low [Mg(2+)](o)-produced increases in [Ca(2+)](i) are also suppressed markedly in the presence of Gö-6976, Bis, wortmannin, or LY-294002. The present study suggests that both Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from intracellular stores [both Ins(1,4,5)P(3) sensitive and ryanodine sensitive] play important roles in low-[Mg(2+)](o) medium-induced contractions of isolated canine basilar arteries. Such contractions are clearly associated with activation of PKC isoforms and PI3Ks.
Collapse
Affiliation(s)
- Z W Yang
- Department of Physiology and Pharmacology, Health Science Center at Brooklyn, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
9
|
Yang ZW, Wang J, Zheng T, Altura BT, Altura BM. Low [Mg(2+)](o) induces contraction of cerebral arteries: roles of tyrosine and mitogen-activated protein kinases. Am J Physiol Heart Circ Physiol 2000; 279:H185-94. [PMID: 10899055 DOI: 10.1152/ajpheart.2000.279.1.h185] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the mechanism of action of low extracellular magnesium ion concentration ([Mg(2+)](o)) on isolated canine basilar arteries and single cerebral vascular smooth muscle cells from these arteries. Low-[Mg(2+)](o) medium (0-0.6 mM) produces endothelium-independent contractions in isolated canine basilar arteries in a concentration-dependent manner; the lower the concentration of [Mg(2+)](o), the stronger the contractions. The low-[Mg(2+)](o) medium-induced contractions are significantly attenuated by pretreatment of the arteries with low concentrations of either SB-203580, U-0126, PD-98059, genistein, or an Src homology 2 (SH2) domain inhibitor peptide. IC(50) levels obtained for these five antagonists are consistent with reported inhibitor constant (K(i)) values for these tyrosine kinase and mitogen-activated protein kinase (MAPK) antagonists. Low-[Mg(2+)](o) medium (0-0.6 mM) produces transient intracellular calcium ion concentration ([Ca(2+)](i)) peaks followed by a slow, sustained, and elevated plateau of [Ca(2+)](i) in primary single smooth muscle cells from canine basilar arteries. Low-[Mg(2+)](o) medium induces rapid and stable increases in [Ca(2+)](i); these increases are inhibited markedly in the presence of either SB-203580, U-0126, PD-98059, genistein or a SH2 domain inhibitor peptide. Several specific antagonists of known endogenously formed vasoconstrictors do not inhibit or attenuate either the low-[Mg(2+)](o)-induced contractions or the elevation of [Ca(2+)](i). The present study suggests that activation of several cellular signaling pathways, such as protein tyrosine kinases (including the Src family) and MAPK, appears to play important roles in low-[Mg(2+)](o)-induced contractions and the elevation of [Ca(2+)](i) in smooth muscle cells from canine basilar arteries.
Collapse
Affiliation(s)
- Z W Yang
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
10
|
Bleich S, Degner D. Whole blood folate, homocysteine in serum, and risk of first acute myocardial infarction. Atherosclerosis 2000; 150:441-2. [PMID: 10917871 DOI: 10.1016/s0021-9150(00)00385-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|