1
|
Manich G, del Valle J, Cabezón I, Camins A, Pallàs M, Pelegrí C, Vilaplana J. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. AGE (DORDRECHT, NETHERLANDS) 2014; 36:151-65. [PMID: 23867972 PMCID: PMC3889905 DOI: 10.1007/s11357-013-9560-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/01/2013] [Indexed: 05/19/2023]
Abstract
Clustered pathological granules related to a degenerative process appear and increase progressively with age in the hippocampus of numerous mouse strains. We describe herein the presence of a neo-epitope of carbohydrate nature in these granules, which is not present in other brain areas and thus constitutes a new marker of these degenerative structures. We also found that this epitope is recognised by a contaminant IgM present in several antibodies obtained from mouse ascites and from both mouse and rabbit sera. These findings entail the need to revise the high number of components that are thought to be present in the granules, such as the controversial β-amyloid peptides described in the granules of senescence-accelerated mouse prone-8 (SAMP8) mice. Characterisation of the composition of SAMP8 granules, taking into account the presence of the neo-epitope and the contaminant IgM, showed that granules do not contain either β-amyloid peptides or tau protein. The presence of the neo-epitope in the granules but not in other brain areas opens up a new direction in the study of the neurodegenerative processes associated with age. The SAMP8 strain, in which the progression of the granules is enhanced, may be a useful model for this purpose.
Collapse
Affiliation(s)
- Gemma Manich
- />Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Jaume del Valle
- />Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- />CIBERNED, Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Itsaso Cabezón
- />Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Antoni Camins
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- />CIBERNED, Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Mercè Pallàs
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- />CIBERNED, Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Carme Pelegrí
- />Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- />CIBERNED, Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Jordi Vilaplana
- />Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- />CIBERNED, Centros de Biomedicina en Red de Enfermedades Neurodegenerativas, Barcelona, Spain
| |
Collapse
|
2
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
3
|
Burger C, Lopez MC, Baker HV, Mandel RJ, Muzyczka N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol Learn Mem 2008; 89:379-96. [PMID: 18234529 DOI: 10.1016/j.nlm.2007.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 12/13/2022]
Abstract
We have previously described the transcriptional changes that occur in the hippocampal CA1 field of aged rats following a Morris Water Maze (MWM) training paradigm. In this report we proceed with the analysis of the dentate region from the same animals. Animals were first identified as age learning-impaired or age-superior learners when compared to young rats based on their performance in the MWM. Messenger RNA was isolated from the dentate gyrus of each animal to interrogate Affymetrix RAE 230A rat genome microarrays. Microarray profiling identified 1129 genes that were differentially expressed between aged and young rats as a result of aging, and independent of their behavioral training (p<0.005). We applied Ingenuity Pathway Analysis (IPA) algorithms to identify the significant biological processes underlying age-related changes in the dentate gyrus. The most significant functions, as calculated by IPA, included cell movement, cell growth and proliferation, nervous system development and function, cellular assembly and organization, cell morphology and cell death. These significant processes are consistent with age-related changes in neurogenesis, and the neurogenic markers were generally found to be downregulated in senescent animals. In addition, statistical analysis of the different experimental groups of aged animals recognized 85 genes (p<0.005) that were different in the dentate gyrus of aged rats that had learned the MWM when compared to learning impaired and a number of controls for stress, exercise and non-spatial learning. The list of learning-related genes expressed in the dentate adds to the set of genes we previously described in the CA1 region. This long list of genes constitutes a starting tool to elucidating the molecular pathways involved in learning and memory formation.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, University of Wisconsin-Madison, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
4
|
Burger C, López MC, Feller JA, Baker HV, Muzyczka N, Mandel RJ. Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol Learn Mem 2006; 87:21-41. [PMID: 16829144 DOI: 10.1016/j.nlm.2006.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/04/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
Aged rats display a broad range of behavioral performance in spatial learning. The aim of this study was to identify candidate genes that are associated with learning and memory impairments. We first categorized aged-superior learners and age learning-impaired rats based on their performance in the Morris water maze (MWM) and then isolated messenger RNA from the CA1 hippocampal region of each animal to interrogate Affymetrix microarrays. Microarray analysis identified a set of 50 genes that was transcribed differently in aged-superior learners that had successfully learned the spatial strategy in the MWM compared to aged learning-impaired animals that were unable to learn and a variety of groups designed to control for all non-learning aspects of exposure to the water maze paradigm. A detailed analysis of the navigation patterns of the different groups of animals during acquisition and probe trials of the MWM task was performed. Young animals used predominantly an allocentric (spatial) search strategy and aged-superior learners appeared to use a combination of allocentric and egocentric (response) strategies, whereas aged-learning impaired animals displayed thigmotactic behavior. The significant 50 genes that we identified were tentatively classified into four groups based on their putative role in learning: transcription, synaptic morphology, ion conductivity and protein modification. Thus, this study has potentially identified a set of genes that are responsible for the learning impairments in aged rats. The role of these genes in the learning impairments associated with aging will ultimately have to be validated by manipulating gene expression in aged rats. Finally, these 50 genes were functioning in the context of an aging CA1 region where over 200 genes was found to be differentially expressed compared to a young CA1.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Yang S, Zhou W, Zhang Y, Yan C, Zhao Y. Effects of Liuwei Dihuang decoction on ion channels and synaptic transmission in cultured hippocampal neuron of rat. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:166-72. [PMID: 16442252 DOI: 10.1016/j.jep.2005.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 10/17/2005] [Accepted: 12/13/2005] [Indexed: 05/06/2023]
Abstract
The effect of Liuwei Dihuang decoction (LW), a traditional Chinese medicine (TCM) prescription, on voltage-dependent currents and synaptic transmission were investigated in cultured hippocampal neurons of rat by whole-cell patch clamp recording technique. After application with serum from LW-treated rats, termed LW-containing serum (LWCS) for 48 h, the amplitude of delay rectifying K+ current (IK) and voltage-gated Ca2+ current (ICa) decreased. While the frequency of spontaneous excitatory post-synaptic current (sEPSC) and miniature excitatory post-synaptic current (mEPSC) increased significantly. Yet the amplitude of voltage-depended Na+ current (INa) and transient outward K+ current (IA), membrane capacitance and resistance remained unchanged. The results indicated that LWCS possessed the effect of modulating or improving neuronal and synaptic function, which possibly contribute to the cognition enhancing effect of LW.
Collapse
Affiliation(s)
- Sheng Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | | | |
Collapse
|
6
|
Sato H, Adachi-Usami E. Accelerated aging of senescence accelerated mice R-1 demonstrated by flash visually evoked cortical potentials. Exp Gerontol 2003; 38:279-83. [PMID: 12581791 DOI: 10.1016/s0531-5565(02)00179-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To determine the physiological alterations of visual functions induced by aging, the latency of the N40 peak of the flash visual evoked cortical potentials at several stimulus frequencies were analyzed from senescence accelerated mice (SAM). The senescence prone (P-8) and senescence resistant (R-1) SAM lines were studied. In both the P-8 and ICR (the standard outbred albino laboratory mouse also called CD-1) mice, the peak latency was not significantly different at 6 and 12 months of age. In contrast, there was a prolongation of the peak latency in the R-1 line at 12 months compared to that at 6 months. We conclude that there is an acceleration of the aging process in the R-1 line for visually evoked responses. Thus, the R-1 line might be an independent line suited for the study of aging effects on visual functions.
Collapse
Affiliation(s)
- Haruhiko Sato
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1 Chuoku, Chiba 260-8670, Japan.
| | | |
Collapse
|
7
|
Morley JE, Farr SA, Kumar VB, Banks WA. Alzheimer's disease through the eye of a mouse. Acceptance lecture for the 2001 Gayle A. Olson and Richard D. Olson prize. Peptides 2002; 23:589-99. [PMID: 11836012 DOI: 10.1016/s0196-9781(01)00630-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is now ample evidence that beta-amyloid proteins decrease memory. The SAMP8 mouse (P8) develops an early decline in the ability to learn and to retain new information. The studies reviewed here suggest that this is due to overproduction of beta-amyloid. Both antibodies to beta-amyloid and specific antisense to the amyloid precursor protein reverse these deficits in the P8 mouse. This antisense can cross the blood brain barrier. It is hypothesized that the overproduction of beta-amyloid leads to a decline in Delta(9) desaturase activity with an alteration in membrane fatty acids. This results in altered membrane mobility leading to a decline in neurotransmitter activity and a decreased release of acetylcholine. This decreased cholinergic activity results in a decreased ability of the P8 mouse to learn and retain new information.
Collapse
Affiliation(s)
- John E Morley
- Geriatric Research, Education, & Clinical Center (GRECC), VA Medical Center, St. Louis, MO, USA.
| | | | | | | |
Collapse
|
8
|
Zhou J, Zhang F, Zhang Y. Corticosterone inhibits generation of long-term potentiation in rat hippocampal slice: involvement of brain-derived neurotrophic factor. Brain Res 2000; 885:182-91. [PMID: 11102572 DOI: 10.1016/s0006-8993(00)02934-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the effect of corticosterone (CORT) on the generation of long-term potentiation (LTP) and its underlying mechanism involving neurotrophin gene expression in CA1 synapses of rat hippocampal slice were examined. Our experimental results showed incubation of hippocampal slice with CORT for 3 h had no effect on either the slope or amplitude of excitatory postsynaptic potentials (EPSP) evoked in hippocampal CA1 pyramidal dentrites, indicating no marked change in basal synaptic transmission. However, when tetanic stimulation (100 pulses, 100 Hz) was delivered to the Schaffer collateral pathway, CORT application significantly attenuated the tetanus-induced increases of both EPSP slope and amplitude, demonstrating an inhibitory effect of CORT on LTP generation. In addition, CORT treatment significantly reduced both slope and amplitude ratios of the second evoked EPSP to the first one when paired-pulse facilitation (PPF) was established at different interpulse intervals from 20 to 40 ms, suggesting that a presynaptic mechanism may be involved in CORT-induced hippocampal synaptic plasticity. Reverse-transcription polymerase chain reaction (RT-PCR) analysis showed that CORT-treated hippocampal CA1 cells underwent a significant decrease in the expression of mRNA for nerve growth factor-beta (NGF-beta) and brain-derived neurotrophic factor (BDNF), but not for neurotrophin-3 (NT-3) compared with those in control. Moreover, BDNF co-applied with CORT significantly antagonized CORT-induced deficit in PPF. Taken together, the present results suggest that CORT-induced inhibition of LTP may be, at least to some extent, mediated by a presynaptic mechanism and decrease in the BDNF expression in rat hippocampal CA1 cells induced by CORT may partially account for this presynaptic mechanism.
Collapse
Affiliation(s)
- J Zhou
- Laboratory of Neuropharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | | | | |
Collapse
|