1
|
Mouly AM, Bouillot C, Costes N, Zimmer L, Ravel N, Litaudon P. PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cereb Cortex 2021; 32:2717-2728. [PMID: 34668524 DOI: 10.1093/cercor/bhab376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.
Collapse
Affiliation(s)
- Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France.,CERMEP-Life Imaging, Bron Cedex 69677, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Nadine Ravel
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| |
Collapse
|
2
|
Courtiol E, Buonviso N, Litaudon P. Odorant features differentially modulate beta/gamma oscillatory patterns in anterior versus posterior piriform cortex. Neuroscience 2019; 409:26-34. [PMID: 31022464 DOI: 10.1016/j.neuroscience.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/01/2022]
Abstract
Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). The present study was designed to analyze how different odorant molecular features can affect the local field potential (LFP) oscillatory signals in both the aPC and the pPC in anesthetized rats. As reported in the OB, three oscillatory patterns were observed: standard pattern (gamma + beta), gamma-only and beta-only patterns. These patterns occurred with significantly different probabilities in the two PC areas. We observed that odor identity has a strong influence on the probability of occurrence of LFP beta and gamma oscillatory activity in the aPC. Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
3
|
Differential inhibition of pyramidal cells and inhibitory interneurons along the rostrocaudal axis of anterior piriform cortex. Proc Natl Acad Sci U S A 2018; 115:E8067-E8076. [PMID: 30087186 DOI: 10.1073/pnas.1802428115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial representation of stimuli in sensory neocortices provides a scaffold for elucidating circuit mechanisms underlying sensory processing. However, the anterior piriform cortex (APC) lacks topology for odor identity as well as afferent and intracortical excitation. Consequently, olfactory processing is considered homogenous along the APC rostral-caudal (RC) axis. We recorded excitatory and inhibitory neurons in APC while optogenetically activating GABAergic interneurons along the RC axis. In contrast to excitation, we find opposing, spatially asymmetric inhibition onto pyramidal cells (PCs) and interneurons. PCs are strongly inhibited by caudal stimulation sites, whereas interneurons are strongly inhibited by rostral sites. At least two mechanisms underlie spatial asymmetries. Enhanced caudal inhibition of PCs is due to increased synaptic strength, whereas rostrally biased inhibition of interneurons is mediated by increased somatostatin-interneuron density. Altogether, we show differences in rostral and caudal inhibitory circuits in APC that may underlie spatial variation in odor processing along the RC axis.
Collapse
|
4
|
Jiang H, Schuele S, Rosenow J, Zelano C, Parvizi J, Tao JX, Wu S, Gottfried JA. Theta Oscillations Rapidly Convey Odor-Specific Content in Human Piriform Cortex. Neuron 2017; 94:207-219.e4. [PMID: 28384472 DOI: 10.1016/j.neuron.2017.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
Olfactory oscillations are pervasive throughout vertebrate and invertebrate nervous systems. Such observations have long implied that rhythmic activity patterns play a fundamental role in odor coding. Using intracranial EEG recordings from rare patients with medically resistant epilepsy, we find that theta oscillations are a distinct electrophysiological signature of olfactory processing in the human brain. Across seven patients, odor stimulation enhanced theta power in human piriform cortex, with robust effects at the level of single trials. Importantly, classification analysis revealed that piriform oscillatory activity conveys olfactory-specific information that can be decoded within 110-518 ms of a sniff, and maximally within the theta frequency band. This temporal window was also associated with increased theta-specific phase coupling between piriform cortex and hippocampus. Together these findings suggest that human piriform cortex has access to olfactory content in the time-frequency domain and can utilize these signals to rapidly differentiate odor stimuli.
Collapse
Affiliation(s)
- Heidi Jiang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Stephan Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Jay A Gottfried
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
5
|
GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb. J Neurosci 2017; 36:8289-304. [PMID: 27511004 DOI: 10.1523/jneurosci.3823-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory perception emerges from the confluence of sensory inputs that encode the composition of external environment and top-down feedback that conveys information from higher brain centers. In olfaction, sensory input activity is initially processed in the olfactory bulb (OB), serving as the first central relay before being transferred to the olfactory cortex. In addition, the OB receives dense connectivity from feedback projections, so the OB has the capacity to implement a wide array of sensory neuronal computation. However, little is known about the impact and the regulation of this cortical feedback. Here, we describe a novel mechanism to gate glutamatergic feedback selectively from the anterior olfactory cortex (AOC) to the OB. Combining in vitro and in vivo electrophysiological recordings, optogenetics, and fiber-photometry-based calcium imaging applied to wild-type and conditional transgenic mice, we explore the functional consequences of circuit-specific GABA type-B receptor (GABABR) manipulation. We found that activation of presynaptic GABABRs specifically depresses synaptic transmission from the AOC to OB inhibitory interneurons, but spares direct excitation to principal neurons. As a consequence, feedforward inhibition of spontaneous and odor-evoked activity of principal neurons is diminished. We also show that tunable cortico-bulbar feedback is critical for generating beta, but not gamma, OB oscillations. Together, these results show that GABABRs on cortico-bulbar afferents gate excitatory transmission in a target-specific manner and thus shape how the OB integrates sensory inputs and top-down information. SIGNIFICANCE STATEMENT The olfactory bulb (OB) receives top-down inputs from the olfactory cortex that produce direct excitation and feedforward inhibition onto mitral and tufted cells, the principal neurons. The functional role of this feedback and the mechanisms regulating the balance of feedback excitation and inhibition remain unknown. We found that GABAB receptors are expressed in cortico-bulbar axons that synapse on granule cells and receptor activation reduces the feedforward inhibition of spontaneous and odor-driven mitral and tufted cells' firing activity. In contrast, direct excitatory inputs to these principal neurons remain unchanged. This study demonstrates that activation of GABAB receptors biases the excitation/inhibition balance provided by cortical inputs to the OB, leading to profound effects on early stages of sensory information processing.
Collapse
|
6
|
Courtiol E, Wilson DA. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception. Perception 2016; 46:320-332. [PMID: 27687814 DOI: 10.1177/0301006616663216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Brain Struct Funct 2016; 222:577-586. [PMID: 27194619 DOI: 10.1007/s00429-016-1235-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
How olfactory cortical areas interpret odor maps evoked in the olfactory bulb and translate odor information into behavioral responses is still largely unknown. Indeed, rat olfactory cortices encompass an extensive network located in the ventral part of the brain, thus complicating the use of invasive functional methods. In vivo imaging techniques that were previously developed for brain activation studies in humans have been adapted for use in rodents and facilitate the non-invasive mapping of the whole brain. In this study, we report an initial series of experiments designed to demonstrate that microPET is a powerful tool to investigate the neural processes underlying odor-induced behavioral response in a large-scale olfactory neuronal network. After the intravenous injection of [18F]Fluorodeoxyglucose ([18F]FDG), awake rats were placed in a ventilated Plexiglas cage for 50 min, where odorants were delivered every 3 min for a 10-s duration in a random order. Individual behavioral responses to odor were classified into categories ranging from 1 (head movements associated with a short sniffing period in response to a few stimulations) to 4 (a strong reaction, including rearing, exploring and sustained sniffing activity, to several stimulations). After [18F]FDG uptake, rats were anesthetized to perform a PET scan. This experimental session was repeated 2 weeks later using the same animals without odor stimulation to assess the baseline level of activation in each individual. Two voxel-based statistical analyses (SPM 8) were performed: (1) a two-sample paired t test analysis contrasting baseline versus odor scan and (2) a correlation analysis between voxel FDG activity and behavioral score. As expected, the contrast analysis between baseline and odor session revealed activations in various olfactory cortical areas. Significant increases in glucose metabolism were also observed in other sensory cortical areas involved in whisker movement and in several modules of the cerebellum involved in motor and sensory function. Correlation analysis provided new insight into these results. [18F]FDG uptake was correlated with behavioral response in a large part of the anterior piriform cortex and in some lobules of the cerebellum, in agreement with the previous data showing that both piriform cortex and cerebellar activity in humans can be driven by sniffing activity, which was closely related to the high behavioral scores observed in our experiment. The present data demonstrate that microPET imaging offers an original perspective for rat behavioral neuroimaging.
Collapse
|
8
|
Boisselier L, Ferry B, Gervais R. Involvement of the lateral entorhinal cortex for the formation of cross-modal olfactory-tactile associations in the rat. Hippocampus 2014; 24:877-91. [PMID: 24715601 DOI: 10.1002/hipo.22277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 01/08/2023]
Abstract
While the olfactory and tactile vibrissal systems have been extensively studied in the rat, the neural basis of these cross-modal associations is still elusive. Here we tested the hypothesis that the lateral entorhinal cortex (LEC) could be particularly involved. In order to tackle this question, we have developed a new behavioral paradigm which consists in finding one baited cup (+) among three, each of the cups presenting a different and specific odor/texture (OT) combination. During the acquisition of a first task (Task OT1), the three cups were associated with the following OT combination: O1T1 for the baited cup; O2T1 and O1T2 for non-baited ones. Most rats learn this task within three training sessions (20 trials/session). In a second task (Task OT2) animals had to pair another OT combination with the reward using a new set of stimuli (O3T3+, O4T3, and O3T4). Results showed that rats manage to learn Task OT2 within one session only. In a third task (Task OT3) animals had to learn another OT combination based on previously learned items (e.g. O4T4+, O1T4 and O4T1). This task is called the "recombination task." Results showed that control rats solve the recombination task within one session. Animals bilaterally implanted with cannulae in the LEC were microinfused with d-APV (3 µg/0.6 µL) just before the acquisition or the test session of each task. The results showed that NMDA receptor blockade in LEC did not affect recall of Task OT1 but strongly impaired acquisition of both Task OT2 and OT3. Moreover, two control groups of animals infused with d-APV showed no deficit in the acquisition of unimodal olfactory and tactile tasks. Taken together, these data show that the NMDA system in the LEC is involved in the acquisition of association between an olfactory and a tactile stimulus during cross-modal learning task.
Collapse
Affiliation(s)
- Lise Boisselier
- Centre de Recherche en Neurosciences de Lyon, Team Olfaction: From Coding to Memory, UMR CNRS 5292INSERM U 1028, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | | |
Collapse
|
9
|
Carlson KS, Dillione MR, Wesson DW. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats. J Neurophysiol 2014; 111:2109-23. [PMID: 24598519 DOI: 10.1152/jn.00829.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The olfactory tubercle (OT), a trilaminar structure located in the basal forebrain of mammals, is thought to play an important role in olfaction. While evidence has accumulated regarding the contributions of the OT to odor information processing, studies exploring the role of the OT in olfaction in awake animals remain unavailable. In the present study, we begin to address this void through multiday recordings of local field potential (LFP) activity within the OT of awake, freely exploring Long-Evans rats. We observed spontaneous OT LFP activity consisting of theta- (2-12 Hz), beta- (15-35 Hz) and gamma- (40-80 Hz) band activity, characteristic of previous reports of LFPs in other principle olfactory structures. Beta- and gamma-band powers were enhanced upon odor presentation. Simultaneous recordings of OT and upstream olfactory bulb (OB) LFPs revealed odor-evoked LFP power at statistically similar levels in both structures. Strong spectral coherence was observed between the OT and OB during both spontaneous and odor-evoked states. Furthermore, the OB theta rhythm more strongly cohered with the respiratory rhythm, and respiratory-coupled theta cycles in the OT occurred following theta cycles in the OB. Finally, we found that the animal's internal state modulated LFP activity in the OT. Together, these data provide initial insights into the network activity of the OT in the awake rat, including spontaneous rhythmicity, odor-evoked modulation, connectivity with upstream sensory input, and state-dependent modulation.
Collapse
Affiliation(s)
- Kaitlin S Carlson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Maggie R Dillione
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Daniel W Wesson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Ahmadlou M, Rostami R, Sadeghi V. Which attention-deficit/hyperactivity disorder children will be improved through neurofeedback therapy? A graph theoretical approach to neocortex neuronal network of ADHD. Neurosci Lett 2012; 516:156-60. [PMID: 22503723 DOI: 10.1016/j.neulet.2012.03.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
11
|
Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer's β-amyloidosis mouse model. J Neurosci 2011; 31:15962-71. [PMID: 22049439 DOI: 10.1523/jneurosci.2085-11.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The unique vulnerability of the olfactory system to Alzheimer's disease (AD) provides a quintessential translational tool for understanding mechanisms of synaptic dysfunction and pathological progression in the disease. Using the Tg2576 mouse model of β-amyloidosis, we show that aberrant, hyperactive olfactory network activity begins early in life, before detectable behavioral impairments or comparable hippocampal dysfunction and at a time when amyloid-β (Aβ) deposition is restricted to the olfactory bulb (OB). Hyperactive odor-evoked activity in the piriform cortex (PCX) and increased OB-PCX functional connectivity emerged at a time coinciding with olfactory behavior impairments. This hyperactive activity persisted until later in life when the network converted to a hyporesponsive state. This conversion was Aβ-dependent, because liver-X receptor agonist treatment to promote Aβ degradation rescued the hyporesponsive state and olfactory behavior. These data lend evidence to a novel working model of olfactory dysfunction in AD and, complimentary to other recent works, suggest that disease-relevant network dysfunction is highly dynamic and region specific, yet with lasting effects on cognition and behavior.
Collapse
|
12
|
Abstract
Natural odors, generally composed of many monomolecular components, are analyzed by peripheral receptors into component features and translated into spatiotemporal patterns of neural activity in the olfactory bulb. Here, we will discuss the role of the olfactory cortex in the recognition, separation and completion of those odor-evoked patterns, and how these processes contribute to odor perception. Recent findings regarding the neural architecture, physiology, and plasticity of the olfactory cortex, principally the piriform cortex, will be described in the context of how this paleocortical structure creates odor objects.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
13
|
Ahmadlou M, Adeli H. Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology. Neuroimage 2011; 58:401-8. [PMID: 21586331 DOI: 10.1016/j.neuroimage.2011.04.070] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 04/02/2011] [Accepted: 04/30/2011] [Indexed: 01/01/2023] Open
Abstract
Analysis of structure of the brain functional connectivity (SBFC) is a fundamental issue for understanding of the brain cognition as well as the pathology of brain disorders. Analysis of communities among sub-parts of a system is increasingly used for social, ecological, and other networks. This paper presents a new methodology for investigation of the SBFC and understanding of the brain based on graph theory and community pattern analysis of functional connectivity graph of the brain obtained from encephalograms (EEGs). The methodology consists of three main parts: fuzzy synchronization likelihood (FSL), community partitioning, and decisions based on partitions. As an example application, the methodology is applied to analysis of brain of patients with attention deficit/hyperactivity disorder (ADHD) and the problem of discrimination of ADHD EEGs from healthy (non-ADHD) EEGs.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Department of Biomedical Engineering, Amirkabir university of Technology, Tehran, Iran
| | | |
Collapse
|
14
|
Wilson DA, Hoptman MJ, Gerum SV, Guilfoyle DN. State-dependent functional connectivity of rat olfactory system assessed by fMRI. Neurosci Lett 2011; 497:69-73. [PMID: 21530613 DOI: 10.1016/j.neulet.2011.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
Functional connectivity between the piriform cortex and limbic and neocortical areas was assessed using functional magnetic resonance imaging (fMRI) of urethane anesthetized rats that spontaneously cycled between slow-wave and fast-wave states. Slow-wave and fast-wave states were determined indirectly through monitoring of respiration rate, which was confirmed to co-vary with state as determined by electrophysiological recordings. Previous electrophysiological data have suggested that the piriform cortex shifts between responsiveness to afferent odor input during fast-wave states and enhanced functional connectivity with limbic areas during slow-wave state. The present results demonstrate that fMRI-based resting state functional connectivity between the piriform cortex and both limbic and neocortical areas is enhanced during slow-wave state compared to fast-wave state using respiration as an indirect measure of state in urethane anesthetized rats. This state-dependent shift in functional connectivity may be important for sleep-dependent odor memory consolidation.
Collapse
Affiliation(s)
- D A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, USA.
| | | | | | | |
Collapse
|
15
|
Ahmadlou M, Adeli H. Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder. Clin EEG Neurosci 2011; 42:6-13. [PMID: 21309437 DOI: 10.1177/155005941104200105] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synchronization as a measure of quantification of similarities in dynamic systems is an important concept in many scientific fields such as nonlinear science, neuroscience, cardiology, ecology, and economics. When interdependencies and connections of coupled dynamic systems are not directly accessible and measurable such as those of the neurons of the brain, quantification of similarities between their time series outputs is the best possible way to detect the existent interdependencies among them. In recent years, Synchronization Likelihood (SL) has been used as one of the most suitable algorithms in highly nonlinear and non-stationary systems. In this method, the likelihood of patterns is measured statistically, and then it is determined which patterns of the time series are similar to each other considering a threshold. But the degree of similarities is not considered in the decision. In this paper, a new measure of synchronization, fuzzy SL, is presented using the theory of fuzzy logic and Gaussian membership functions. The new fuzzy SL is compared with the conventional SL using both a standard problem from the chaos literature and a complicated real life neurological diagnostic problem, that is, the EEG-based diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD). The results of ANOVA analysis indicate the interdependencies measured by the fuzzy SL are more reliable than the conventional SL for discriminating ADHD patients from healthy individuals.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Department of Biomedical Engineering, Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
16
|
Aitchison E, Weston SE, Constanti A, Whalley BJ. Anticholinesterase-induced epileptiform activity in immature rat piriform cortex slices, in vitro. Neurosci Lett 2010; 473:252-6. [PMID: 20193741 DOI: 10.1016/j.neulet.2010.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/28/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Acute in vitro brain slice models are commonly used to study epileptiform seizure generation and to test anti-epileptic drug action. Seizure-like activity can be readily induced by manipulating external ionic concentrations or by adding convulsant agents to the bathing medium. We previously showed that epileptiform bursting was induced in slices of immature (P14-28) rat piriform cortex (PC) by applying oxotremorine-M, a potent muscarinic receptor agonist. Here, we examined whether raising levels of endogenous acetylcholine (ACh) by exposure to anticholinesterases, could also induce epileptiform events in immature (P12-14) or early postnatal (P7-9) rat PC brain slices. METHODS The effects of anticholinesterases were investigated in rat PC neurons using both extracellular MEA (P7-9 slices) and intracellular (P12-14 slices) recording methods. RESULTS In P7-9 slices, eserine (20 microM) or neostigmine (20 microM) induced low amplitude, low frequency bursting activity in all three PC cell layers (I-III), particularly layer III, where neuronal muscarinic responsiveness is known to predominate. In P12-14 neurons, neostigmine produced a slow depolarization together with an increase in input resistance and evoked cell firing. Depolarizing postsynaptic potentials evoked by intrinsic fibre stimulation were selectively depressed although spontaneous bursting was not observed. Neostigmine effects were blocked by atropine (1 microM), confirming their muscarinic nature. We conclude that elevation of endogenous ACh by anticholinesterases can induce bursting in early postnatal PC brain slices, further highlighting the epileptogenic capacity of this brain region. However, this tendency declines with further development, possibly as local inhibitory circuit mechanisms become more dominant.
Collapse
Affiliation(s)
- Eleanor Aitchison
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
| | | | | | | |
Collapse
|
17
|
Hegoburu C, Sevelinges Y, Thevenet M, Gervais R, Parrot S, Mouly AM. Differential dynamics of amino acid release in the amygdala and olfactory cortex during odor fear acquisition as revealed with simultaneous high temporal resolution microdialysis. Learn Mem 2009; 16:687-97. [DOI: 10.1101/lm.1584209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S. A putatively novel form of spontaneous coordination in neural activity. Brain Res Bull 2009; 79:6-14. [PMID: 19167468 DOI: 10.1016/j.brainresbull.2008.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
We simultaneously recorded local field potentials from three sites along the olfactory-entorhinal axis in rats lightly anesthetized with isoflurane, as part of another experiment. While analyzing the initial data from that experiment with spectrograms, we discovered a potentially novel form of correlated neural activity, with near-simultaneous occurrence across the three widely separated brain sites. After validating their existence further, we named these events Synchronous Frequency Bursts (SFBs). Here we report our initial investigations into their properties and their potential functional significance. In Experiment 1, we found that SFBs have highly regular properties, consisting of brief (approximately 250 ms), high amplitude bursts of LFP energy spanning frequency ranges from the delta band (1-4 Hz) to at least the low gamma band (30-50 Hz). SFBs occurred almost simultaneously across recording sites, usually with onsets <25 ms apart, and there was no clear pattern of temporal leading or lagging among the sites. While the SFBs had fairly typical, exponentially decaying power spectral density plots, their coherence structure was unusual, with high peaks in several narrow frequency ranges and little coherence in other bands. In Experiment 2, we found that SFBs occurred far more often under light anesthesia than deeper anesthetic states, and were especially prevalent as the animals regained consciousness. Finally, in Experiment 3 we showed that SFBs occur simultaneously at a significant rate across brain sites from putatively different functional subsystems--olfactory versus motor pathways. We suggest that SFBs do not carry information per se, but rather, play a role in coordinating activity in different frequency bands, potentially brain-wide, as animals progress from sleep or anesthesia toward full consciousness.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
19
|
Raineki C, Shionoya K, Sander K, Sullivan RM. Ontogeny of odor-LiCl vs. odor-shock learning: similar behaviors but divergent ages of functional amygdala emergence. Learn Mem 2009; 16:114-21. [PMID: 19181617 DOI: 10.1101/lm.977909] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1 sec)--both of which consistently produce odor-aversion learning throughout life and (3) odor-0.5-mA shock, which produces an odor preference in early life but an odor avoidance as pups mature. Pups were trained at postnatal day (PN) 7-8, 12-13, or 23-24, using odor-LiCl and two odor-shock conditioning paradigms of odor-0.5-mA shock and odor-1.2-mA shock. Here we show that in the youngest pups (PN7-8), odor-preference learning was associated with activity in the anterior piriform (olfactory) cortex, while odor-aversion learning was associated with activity in the posterior piriform cortex. At PN12-13, when all conditioning paradigms produced an odor aversion, the odor-0.5-mA shock, odor-1.2-mA shock, and odor-LiCl all continued producing learning-associated changes in the posterior piriform cortex. However, only odor-0.5-mA shock induced learning-associated changes within the basolateral amygdala. At weaning (PN23-24), all learning paradigms produced learning-associated changes in the posterior piriform cortex and basolateral amygdala complex. These results suggest at least two basic principles of the development of the neurobiology of learning: (1) Learning that appears similar throughout development can be supported by neural systems showing very robust developmental changes, and (2) the emergence of amygdala function depends on the learning protocol and reinforcement condition being assessed.
Collapse
Affiliation(s)
- Charlis Raineki
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, Orangeburg, New York 10962, USA
| | | | | | | |
Collapse
|
20
|
Sevelinges Y, Sullivan RM, Messaoudi B, Mouly AM. Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood. Learn Mem 2008; 15:649-56. [PMID: 18772252 DOI: 10.1101/lm.998508] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely olfactory cortical areas. For this, pups were trained daily from postnatal (PN) 8 to 12 in an odor-shock paradigm, and retrained at adulthood in the same task. (14)C 2-DG autoradiographic brain mapping was used to measure training-related activation in amygdala cortical nucleus (CoA), anterior (aPCx), and posterior (pPCx) piriform cortex. In addition, field potentials induced in the three sites in response to paired-pulse stimulation of the olfactory bulb were recorded in order to assess short-term inhibition and facilitation in these structures. Attenuated adult fear learning was accompanied by a deficit in 2-DG activation in CoA and pPCx. Moreover, electrophysiological recordings revealed that, in these sites, the level of inhibition was lower than in control animals. These data indicate that early life odor-shock learning produces changes throughout structures of the adult learning circuit that are independent, at least in part, from those involved in infant learning. Moreover, these enduring effects were influenced by the contingency of the infant experience since paired odor-shock produced greater disruption of adult learning and its supporting neural pathway than unpaired presentations. These results suggest that some enduring effects of early life experience are potentiated by contingency and extend beyond brain areas involved in infant learning.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Neurosciences Sensorielles, Comportement, Cognition, CNRS-Université de Lyon, Lyon IFR 19, France.
| | | | | | | |
Collapse
|
21
|
Litaudon P, Garcia S, Buonviso N. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 2008; 156:781-7. [PMID: 18790020 DOI: 10.1016/j.neuroscience.2008.07.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
Abstract
Oscillatory activity is a prominent characteristic of electrophysiological recordings in the olfactory system and has been proposed to play a key role in encoding olfactory representations. Studies in several systems have shown that some aspects of information coding involve characteristics that intertwine spikes and fast oscillations (in the beta and gamma range) of local field potentials (LFP). In the insect olfactory system, it has been proposed that oscillatory activity could provide a temporal link between cells. Following previous data, we have proposed that gamma band oscillations in mammals could subserve a gating function for the transfer of information between the olfactory bulb (OB) and the anterior piriform cortex (aPC), which are functionally coupled. In this study, we used an electrophysiological approach to investigate the temporal relationship between LFP gamma oscillations and single-unit activity by simultaneously recording LFP and single unit discharges in the rat aPC during odor evoked activity. Our data showed that mean spike discharges and gamma oscillatory bursts were synchronized with the same respiratory cycle epoch (around the inspiration/expiration transition). Temporal correlations between spikes and LFP revealed that cortical cell spikes were tightly phase-coupled with the peak of gamma oscillations and that this phase-coupling was not odor-dependent. Our results suggest that gamma oscillation may act as a temporal filter. Oscillatory phase-coupled spikes in the OB could act in increasing the probability of spike emission in the aPC cell during a narrow time-window, explaining the tight phase-coupling observed in the aPC. The role of spike-LFP phase-coupling as a binding function between odor features is discussed.
Collapse
Affiliation(s)
- P Litaudon
- Neurosciences Sensorielles, Comportement, Cognition, CNRS UMR 5020-Université Lyon 1, Université de Lyon, Institut Fédératif des Neurosciences de Lyon, 50 avenue Tony Garnier, 69366 Lyon cedex 07, France.
| | | | | |
Collapse
|
22
|
Rojas-Líbano D, Kay LM. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2008; 2:179-94. [PMID: 19003484 DOI: 10.1007/s11571-008-9053-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/27/2022] Open
Abstract
Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems.
Collapse
Affiliation(s)
- Daniel Rojas-Líbano
- Committee on Neurobiology, Institute for Mind & Biology, The University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
23
|
Fuentes RA, Aguilar MI, Aylwin ML, Maldonado PE. Neuronal activity of mitral-tufted cells in awake rats during passive and active odorant stimulation. J Neurophysiol 2008; 100:422-30. [PMID: 18497360 DOI: 10.1152/jn.00095.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odorants induce specific modulation of mitral/tufted (MT) cells' firing rate in the mammalian olfactory bulb (OB), inducing temporal patterns of neuronal discharge embedded in an oscillatory local field potential (LFP). While most studies have examined anesthetized animals, little is known about the firing rate and temporal patterns of OB single units and population activity in awake behaving mammals. We examined the firing rate and oscillatory activity of MT cells and LFP signals in behaving rats during two olfactory tasks: passive exposure (PE) and two-alternative (TA) choice discrimination. MT inhibitory responses are predominant in the TA task (76.5%), whereas MT excitatory responses predominate in the PE task (59.2%). Rhythmic discharge in the 12- to 100-Hz range was found in 79.0 and 68.9% of MT cells during PE and TA tasks, respectively. Most odorants presented in PE task increase rhythmic discharges at frequencies >50 Hz, whereas in TA, one of four odorants produced a modest increment <40 Hz. LFP oscillations were clearly modulated by odorants during the TA task, increasing their oscillatory power at frequencies centered at 20 Hz and decreasing power at frequencies >50 Hz. Our results indicate that firing rate responses of MT cells in awake animals are behaviorally modulated with inhibition being a prominent feature of this modulation. The occurrence of oscillatory patterns in single- and multiunitary discharge is also related to stimulation and behavioral context, while the oscillatory patterns of the neuronal population showed a strong dependence on odorant stimulation.
Collapse
Affiliation(s)
- Romulo A Fuentes
- Centro de Neurociencias Integradas, and P Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla, Santiago, Chile
| | | | | | | |
Collapse
|
24
|
Abstract
Fast oscillations in neural assemblies have been proposed as a mechanism to facilitate stimulus representation in a variety of sensory systems across animal species. In the olfactory system, intervention studies suggest that oscillations in the gamma frequency range play a role in fine odor discrimination. However, there is still no direct evidence that such oscillations are intrinsically altered in intact systems to aid in stimulus disambiguation. Here we show that gamma oscillatory power in the rat olfactory bulb during a two-alternative choice task is modulated in the intact system according to task demands with dramatic increases in gamma power during discrimination of molecularly similar odorants in contrast to dissimilar odorants. This elevation in power evolves over the course of criterion performance, is specific to the gamma frequency band (65-85 Hz), and is independent of changes in the theta or beta frequency band range. Furthermore, these high amplitude gamma oscillations are restricted to the olfactory bulb, such that concurrent piriform cortex recordings show no evidence of enhanced gamma power during these high-amplitude events. Our results display no modulation in the power of beta oscillations (15-28 Hz) shown previously to increase with odor learning in a Go/No-go task, and we suggest that the oscillatory profile of the olfactory system may be influenced by both odor discrimination demands and task type. The results reported here indicate that enhancement of local gamma power may reflect a switch in the dynamics of the system to a strategy that optimizes stimulus resolution when input signals are ambiguous.
Collapse
Affiliation(s)
- Jennifer Beshel
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois 60637, and
| | - Nancy Kopell
- Department of Mathematics and Statistics and Center for BioDynamics, Boston University, Boston, Massachusetts 02215
| | - Leslie M. Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois 60637, and
| |
Collapse
|
25
|
Boucard A, Marchand A, Noguès X. Reliability and validity of structural equation modeling applied to neuroimaging data: a simulation study. J Neurosci Methods 2007; 166:278-92. [PMID: 17825426 DOI: 10.1016/j.jneumeth.2007.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/12/2007] [Accepted: 07/19/2007] [Indexed: 11/29/2022]
Abstract
Structural equation modeling aims at quantifying the strength of causal relationships within a set of interacting variables. Although the literature emphasizes that large sample sizes are required, this method is increasingly used with neuroimaging data of a limited number of subjects to study the relationships between cerebral structures. Here, we use a simulation approach to evaluate its ability to provide accurate information under the constraints of neuroimaging. Artificial samples representing the activity of a virtual set of structures were generated under both recursive and non-recursive connectivity models. Structural equation modeling was performed on these samples, and the quality of the analyses was evaluated by directly comparing the estimated path coefficients with the original ones. The validity and the reliability are shown to decrease with sample size, but the estimated models respect the relative strength of path coefficients in a large percentage of cases. The "smoothing method" appears to be the most appropriate to prevent improper solutions. Both the experimental error and the external structures influencing the network have a weak influence. Accordingly, structural equation modeling can be applied to neuroimaging data, but confidence intervals should be presented together with the path coefficient estimation.
Collapse
Affiliation(s)
- Aurélie Boucard
- Centre de Neurosciences Intégratives et Cognitives, UMR 5228, CNRS, Université Bordeaux 1, Bâtiment B2, Avenue des Facultés, 33405 Talence, France
| | | | | |
Collapse
|
26
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S, Chapin JK. Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching. Exp Brain Res 2007; 180:217-35. [PMID: 17273874 PMCID: PMC2747650 DOI: 10.1007/s00221-007-0850-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
A major question in neuroscience concerns how widely separated brain regions coordinate their activity to produce unitary cognitive states or motor actions. To investigate this question, we employed multisite, multielectrode recording in rats to study how olfactory and motor circuits are coupled prior to the execution of an olfactory-driven, GO/NO-GO variant of a skilled, rapidly executed (approximately 350-600 ms) reaching task. During task performance, we recorded multi-single units and local field potentials (LFPs) simultaneously from the rats' olfactory cortex (specifically, the posterior piriform cortex) and from cortical and subcortical motor sites (the caudal forepaw M1, and the magnocellular red nucleus, respectively). Analyses on multi-single units across areas revealed an increase in beta-frequency spiking (12-30 Hz) during a approximately 100 ms window surrounding the Final Sniff of the GO cue before lifting the arm (the "Sniff-GO window") that was seldom seen when animals sniffed the NO-GO cue. Also during the Sniff-GO window, LFPs displayed a striking increase in beta, low-gamma, and high-gamma energy (12-30, 30-50, and 50-100 Hz, respectively), and oscillations in the high gamma band appeared to be coherent across the recorded sites. These results indicate that transient, multispectral coherence across cortical and subcortical brain sites is part of the coordination process prior to sensory-guided movement initiation.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Linda Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Sridhar Srinivasan
- Department of Electrical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John K. Chapin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
27
|
Fontanini A, Bower JM. Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Trends Neurosci 2006; 29:429-37. [PMID: 16842864 DOI: 10.1016/j.tins.2006.06.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/28/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Over the past few years, it has become clear that oscillatory dynamics of cortical networks are closely involved in sensory coding, attention, memory and sleep. Although most experimental and theoretical studies have focused on the neocortex, we believe that progress in understanding cortical oscillations can be advanced by also considering the olfactory system--which shares many basic properties with the neocortex and shows similar oscillatory patterns. Besides offering the advantage of a greater experimental tractability, the olfactory cortex might prove to be instrumental in uncovering general functional principles of neocortical oscillations, by virtue of the potentially important role of olfaction during neocortical evolution. In this article, we illustrate how such an evolution-based comparative approach can provide novel insights into neocortical slow-wave sleep oscillations and their relationship to respiration.
Collapse
Affiliation(s)
- Alfredo Fontanini
- Volen National Center for Complex Systems and Department of Psychology, MS 013, Brandeis University, Waltham, MA 02493, USA.
| | | |
Collapse
|
28
|
Whalley BJ, Constanti A. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility. Neuroscience 2006; 140:939-56. [PMID: 16616427 DOI: 10.1016/j.neuroscience.2006.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Aging/physiology
- Animals
- Animals, Newborn
- Causality
- Epilepsy/physiopathology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Male
- Muscarinic Agonists/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Olfactory Pathways/cytology
- Olfactory Pathways/growth & development
- Organ Culture Techniques
- Oxotremorine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Muscarinic M1/agonists
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
29
|
Buonviso N, Amat C, Litaudon P. Respiratory Modulation of Olfactory Neurons in the Rodent Brain. Chem Senses 2005; 31:145-54. [PMID: 16339270 DOI: 10.1093/chemse/bjj010] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this review we report data from freely breathing animals in an attempt to show how respiratory dynamics can influence bulbar and cortical activity. Relying on in vivo data as well as in vitro observations, we try to emphasize the multiple mechanisms that underlie this modulation, its multiple origins, and its possible functional role.
Collapse
Affiliation(s)
- Nathalie Buonviso
- Neurosciences & Systèmes Sensoriels, CNRS--Université Claude Bernard, Lyon I, France.
| | | | | |
Collapse
|
30
|
Martin C, Gervais R, Chabaud P, Messaoudi B, Ravel N. Learning-induced modulation of oscillatory activities in the mammalian olfactory system: the role of the centrifugal fibres. ACTA ACUST UNITED AC 2005; 98:467-78. [PMID: 16274975 DOI: 10.1016/j.jphysparis.2005.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.
Collapse
Affiliation(s)
- Claire Martin
- Institut des Sciences Cognitives, UMR 5015 CNRS/Université Lyon I, Bron, France.
| | | | | | | | | |
Collapse
|
31
|
Fontanini A, Bower JM. Variable coupling between olfactory system activity and respiration in ketamine/xylazine anesthetized rats. J Neurophysiol 2005; 93:3573-81. [PMID: 15689385 DOI: 10.1152/jn.01320.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we have characterized slow and fast oscillations at several stages of olfactory processing under light and deep ketamine/xylazine anesthesia in the albino rat. While monitoring the animal's respiration, we also obtained field potentials from the olfactory bulb and piriform (olfactory) cortex and simultaneously recorded membrane potentials in piriform cortex pyramidal cells. Our results demonstrate that oscillations are generally found at higher frequencies under lighter and lower frequencies under deeper anesthesia. In previous studies of cerebral cortex, similar results in ketamine/xylazine anesthetized animals have been interpreted to correspond with the higher frequencies found during waking and lower frequencies found in the sleep state. Correlation and coherence analysis between data obtained in the bulb and cortex reveals a clear difference in coupling depending on the anesthetic state of the animal. Specifically, activity recorded in the whole system is highly correlated with respiration during deep anesthesia, whereas only the olfactory bulb, and not the cortex, is correlated with respiration during light anesthesia. These data suggest that global activity in the piriform cortex is actually more directly tied to peripheral slow respiratory input during slow wave than fast wave states and that the coupling between olfactory structures can be dynamically modulated by the level of anesthesia and therefore presumably by different brain states as well.
Collapse
Affiliation(s)
- Alfredo Fontanini
- Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | | |
Collapse
|
32
|
Whalley BJ, Postlethwaite M, Constanti A. Further characterization of muscarinic agonist-induced epileptiform bursting activity in immature rat piriform cortex, in vitro. Neuroscience 2005; 134:549-66. [PMID: 15961237 DOI: 10.1016/j.neuroscience.2005.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | | | |
Collapse
|
33
|
Sevelinges Y, Gervais R, Messaoudi B, Granjon L, Mouly AM. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala. Learn Mem 2004; 11:761-9. [PMID: 15537739 PMCID: PMC534705 DOI: 10.1101/lm.83604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of plasticity in the olfactory pathway. Training consisted of a single training session including six pairings of an odor CS with a mild foot-shock unconditioned stimulus (US). Twenty-four hours later, the animals were tested for retention of the CS as assessed by the amount of freezing exhibited in the presence of the learned odor. Behavioral data showed that trained animals exhibited a significantly higher level of freezing in response to the CS than control animals. In the same animals, EFPs were recorded in parallel in the anterior piriform cortex (aPC), posterior piriform cortex (pPC), cortical nucleus of the amygdala (CoA), and basolateral nucleus of the amygdala (BLA) following electrical stimulation of the olfactory bulb. Specifically, EFPs recorded before (baseline) and after (during the retention test) training revealed that trained animals exhibited a lasting increase (present before and during presentation of the CS) in EFP amplitude in CoA, which is the first amygdaloid target of olfactory information. In addition, a transient increase was observed in pPC and BLA during presentation of the CS. These data indicate that the olfactory and auditory fear-conditioning neural networks have both similarities and differences, and suggest that the fear-related behaviors in each sensory system may have at least some distinct characteristics.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Institut des Sciences Cognitives, Unité Mixte de Recherche (UMR) 5015, Centre National de la Recherche Scientifique--Université Lyon 1, France
| | | | | | | | | |
Collapse
|
34
|
Litaudon P, Amat C, Bertrand B, Vigouroux M, Buonviso N. Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur J Neurosci 2003; 17:2457-61. [PMID: 12814377 DOI: 10.1046/j.1460-9568.2003.02654.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the piriform cortex (PC) in olfactory information processing remains mainly unknown. Indeed, until recently, only a few studies have investigated the response of PC neurons to odours and these studies did not take into account the functional heterogeneity of the PC previously described using an electrical stimulation paradigm. In this experiment, extracellular activity in response to odour was recorded in urethane anaesthetized rats in the different parts of the cortex ranging from anterior to posterior. A large percentage of cortical cells were silent at rest, and this percentage increased from anterior to posterior. Analysis of odour evoked activity revealed a large percentage of nonresponsive cells that increased from anterior to posterior. Cell activity was largely synchronized with breathing and different temporal patterns were observed. The anterior PC was characterized by odour-evoked responses phase-locked with the inhalation-exhalation transition period. By contrast, activity in the posterior PC was mainly phase-locked with inhalation or exhalation. These data confirm the spatial functional heterogeneity previously reported in the PC. Functional anatomy of the PC suggests that activity in the anterior PC can be mainly driven by afferent activity coming from the OB whereas posterior cells were certainly entrained by more complex mechanisms.
Collapse
Affiliation(s)
- P Litaudon
- Neurosciences et Systèmes Sensoriels, Université Lyon I-CNRS, 50 avenue Tony Garnier, 69366 Lyon cedex 07, France.
| | | | | | | | | |
Collapse
|
35
|
Bouret S, Sara SJ. Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur J Neurosci 2002; 16:2371-82. [PMID: 12492432 DOI: 10.1046/j.1460-9568.2002.02413.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piriform cortex (PCx) is the primary cortical projection region for olfactory information and has bidirectional monosynaptic connections with olfactory bulb and association cortices. PCx neurons display a complex receptive field, responding to odours rather than their molecular components, suggesting that these neurons are involved in higher order olfactory processing. Neuromodulators, especially noradrenaline (NA), have important influences on sensory processing in other cortical regions and might be responsible for the plasticity observed in PCx during learning. The present study is the first attempt to examine in vivo the actions of NA on sensory responses in the PCx. Stimulation of the noradrenergic nucleus locus coeruleus (LC) was used to induce release of NA in the forebrain in urethane-anaesthetized rats. Extracellular recording of single units was made simultaneously in anterior and posterior PCx. The responses to an odour stimulus were measured over 25 trials. Twenty-five subsequent odour presentations were preceded by stimulation of the ipsilateral LC through a bipolar electrode, previously placed in the LC under electrophysiological control. This priming stimulation modified the activity of 77 of the 135 recorded neurons. For most cells, LC stimulation enhanced cortical responses to odour in terms of both spike count and temporal organization, with some differential effects in anterior and posterior regions. These results are the first to show enhancement of sensory responses in the olfactory cortex by LC activation. Spontaneous activation of LC neurons such as occurs during learning could serve to enhance olfactory perception and promote learning.
Collapse
Affiliation(s)
- Sebastien Bouret
- Laboratoire neuromodulation et processus mnésiques, Neurobiologie des processus adaptatifs, CNRS UMR 7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|