1
|
Pajer K, Bellák T, Grósz T, Nógrádi B, Patai R, Sinkó J, Vinay L, Liabeuf S, Erdélyi M, Nógrádi A. Riluzole treatment modulates KCC2 and EAAT-2 receptor expression and Ca 2+ accumulation following ventral root avulsion injury. Eur J Cell Biol 2023; 102:151317. [PMID: 37099936 DOI: 10.1016/j.ejcb.2023.151317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tímea Grósz
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Neurology, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - József Sinkó
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385 Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385 Marseille, France
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Chan SY, Kuo CW, Liao TT, Peng CW, Hsieh TH, Chang MY. Time-course gait pattern analysis in a rat model of foot drop induced by ventral root avulsion injury. Front Hum Neurosci 2022; 16:972316. [PMID: 36601128 PMCID: PMC9806139 DOI: 10.3389/fnhum.2022.972316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Foot drop is a common clinical gait impairment characterized by the inability to raise the foot or toes during walking due to the weakness of the dorsiflexors of the foot. Lumbar spine disorders are common neurogenic causes of foot drop. The accurate prognosis and treatment protocols of foot drop are not well delineated in the scientific literature due to the heterogeneity of the underlying lumbar spine disorders, different severities, and distinct definitions of the disease. For translational purposes, the use of animal disease models could be the best way to investigate the pathogenesis of foot drop and help develop effective therapeutic strategies for foot drops. However, no relevant and reproducible foot drop animal models with a suitable gait analysis method were developed for the observation of foot drop symptoms. Therefore, the present study aimed to develop a ventral root avulsion (VRA)-induced foot drop rat model and record detailed time-course changes of gait pattern following L5, L6, or L5 + L6 VRA surgery. Our results suggested that L5 + L6 VRA rats exhibited changes in gait patterns, as compared to sham lesion rats, including a significant reduction of walking speed, step length, toe spread, and swing phase time, as well as an increased duration of the stance phase time. The ankle kinematic data exhibited that the ankle joint angle increased during the mid-swing stage, indicating a significant foot drop pattern during locomotion. Time-course observations displayed that these gait impairments occurred as early as the first-day post-lesion and gradually recovered 7-14 days post-injury. We conclude that the proposed foot drop rat model with a video-based gait analysis approach can precisely detect the foot drop pattern induced by VRA in rats, which can provide insight into the compensatory changes and recovery in gait patterns and might be useful for serving as a translational platform bridging human and animal studies for developing novel therapeutic strategies for foot drop.
Collapse
Affiliation(s)
- Shu-Yen Chan
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan,Discipline of Marketing, College of Management, Yuan Ze University, Taoyuan, Taiwan,*Correspondence: Ming-Yuan Chang Tsung-Hsun Hsieh
| |
Collapse
|
3
|
García G, Martínez-Magaña CJ, Oviedo N, Granados-Soto V, Murbartián J. Bestrophin-1 Participates in Neuropathic Pain Induced by Spinal Nerve Transection but not Spinal Nerve Ligation. THE JOURNAL OF PAIN 2022; 24:689-705. [PMID: 36521670 DOI: 10.1016/j.jpain.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS. Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
4
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
5
|
Abstract
A consensus on the optimal treatment of painful neuromas does not exist. Our objective was to identify available data and to examine the role of surgical technique on outcomes following surgical management of painful neuromas. In accordance with the PRISMA guidelines, we performed a comprehensive literature search to identify studies measuring the efficacy of the surgical treatment of painful neuromas in the extremities (excluding Morton's neuroma and compression neuropathies). Surgical treatments were categorized as excision-only, excision and transposition, excision and cap, excision and repair, or neurolysis and coverage. Data on the proportion of patients with a meaningful reduction in pain were pooled and a random-effects meta-analysis was performed. The effects of confounding, study quality, and publication bias were examined with stratified, meta-regression, and bias analysis. Fifty-four articles met the inclusion criteria, many with multiple treatment groups. Outcomes reporting varied significantly and few studies controlled for confounding. Overall, surgical treatment of neuroma pain was effective in 77% of patients [95% confidence interval: 73-81]. No significant differences were seen between surgical techniques. Among studies with a mean pain duration greater than 24 months, or median number of operations greater than 2 prior to definitive neuroma pain surgery, excision and transposition or neurolysis and coverage were significantly more likely than other operative techniques to result in a meaningful reduction in pain (P < 0.05). Standardization in the reporting of surgical techniques, outcomes, and confounding factors is needed in future studies to enable providers to make comparisons across disparate techniques in the surgical treatment of neuroma pain.
Collapse
|
6
|
Abstract
Pain is a frequent cause of physician visits. Many physicians find these patients challenging because they often have complicated histories, emotional comorbidities, confusing examinations, difficult problems to fix, and the possibility of factitious complaints for attention or narcotic pain medications. As a result, many patients are lumped into the category of chronic, centralized pain and relegated to pain management. However, recent literature suggests that surgical management of carefully diagnosed generators of pain can greatly reduce patients' pain and narcotic requirements. This article reviews recent literature on surgical management of pain and four specific sources of chronic pain amenable to surgical treatment: painful neuroma, nerve compression, myofascial/musculoskeletal pain, and complex regional pain syndrome type II.
Collapse
Affiliation(s)
- Louis H Poppler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Yang J, Xie MX, Hu L, Wang XF, Mai JZ, Li YY, Wu N, Zhang C, Li J, Pang RP, Liu XG. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav Immun 2018; 71:52-65. [PMID: 29709527 DOI: 10.1016/j.bbi.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.
Collapse
Affiliation(s)
- Jie Yang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Man-Xiu Xie
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, East 651 Dongfeng Rd, Guangzhou 510060, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Fang Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jie-Zhen Mai
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cheng Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
8
|
Bigbee AJ, Akhavan M, Havton LA. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats. Front Neurol 2017; 8:291. [PMID: 28824522 PMCID: PMC5534445 DOI: 10.3389/fneur.2017.00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA) injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR) for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4) binding, whereas IR for calcitonin gene-related peptide (CGRP) was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs) showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.
Collapse
Affiliation(s)
- Allison J Bigbee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mahnaz Akhavan
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
9
|
Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun 2017; 64:59-64. [PMID: 27993689 PMCID: PMC5474358 DOI: 10.1016/j.bbi.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Peter M. Grace
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Mark R. Hutchinson
- School of Medicine, University of Adelaide, Adelaide, Australia,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,Corresponding author: Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
10
|
Chang HH, Havton LA. A ventral root avulsion injury model for neurogenic underactive bladder studies. Exp Neurol 2016; 285:190-196. [PMID: 27222131 DOI: 10.1016/j.expneurol.2016.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Detrusor underactivity (DU) is defined as a contraction of reduced strength and/or duration during bladder emptying and results in incomplete and prolonged bladder emptying. The clinical diagnosis of DU is challenging when present alone or in association with other bladder conditions such as detrusor overactivity, urinary retention, detrusor hyperactivity with impaired contractility, aging, and neurological injuries. Several etiologies may be responsible for DU or the development of an underactive bladder (UAB), but the pathobiology of DU or UAB is not well understood. Therefore, new clinically relevant and interpretable models for studies of UAB are much needed in order to make progress towards new treatments and preventative strategies. Here, we review a neuropathic cause of DU in the form of traumatic injuries to the cauda equina (CE) and conus medullaris (CM) portions of the spinal cord. Lumbosacral ventral root avulsion (VRA) injury models in rats mimic the clinical phenotype of CM/CE injuries. Bilateral VRA injuries result in bladder areflexia, whereas a unilateral lesion results in partial impairment of lower urinary tract and visceromotor reflexes. Surgical re-implantation of avulsed ventral roots into the spinal cord and pharmacological strategies can augment micturition reflexes. The translational research need for the development of a large animal model for UAB studies is also presented, and early studies of lumbosacral VRA injuries in rhesus macaques are discussed.
Collapse
Affiliation(s)
- Huiyi H Chang
- Institute of Urology, University of Southern California, Los Angeles, CA, United States.
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Li W, Wang JX, Zhou ZH, Lu Y, Li XQ, Liu BJ, Chen HS. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF. Neurol Res 2016; 38:80-5. [DOI: 10.1080/01616412.2015.1135570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Rau KK, Spears RC, Petruska JC. The prickly, stressful business of burn pain. Exp Neurol 2014; 261:752-6. [DOI: 10.1016/j.expneurol.2014.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/21/2023]
|
14
|
Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014; 227:166-80. [DOI: 10.1016/j.jneumeth.2014.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
|
15
|
Darian-Smith C, Lilak A, Alarcón C. Corticospinal sprouting occurs selectively following dorsal rhizotomy in the macaque monkey. J Comp Neurol 2013; 521:2359-72. [PMID: 23239125 DOI: 10.1002/cne.23289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
Abstract
The corticospinal tract in the macaque and human forms the major descending pathway involved in volitional hand movements. Following a unilateral cervical dorsal root lesion, by which sensory input to the first three digits (D1-D3) is removed, monkeys are initially unable to perform a grasp retrieval task requiring sensory feedback. Over several months, however, they recover much of this capability. Past studies in our laboratory have identified a number of changes in the afferent circuitry that occur as function returns, but do changes to the efferent pathways also contribute to compensatory recovery? In this study we examined the role of the corticospinal tract in pathway reorganization following a unilateral cervical dorsal rhizotomy. Several months after animals received a lesion, the corticospinal pathways originating in the primary somatosensory and motor cortex were labeled, and terminal distribution patterns on the two sides of the cervical cord were compared. Tracers were injected only into the region of D1-D3 representation (identified electrophysiologically). We observed a strikingly different terminal labeling pattern post lesion for projections originating in the somatosensory versus motor cortex. The terminal territory from the somatosensory cortex was significantly smaller compared with the contralateral side (area mean = 0.30 vs. 0.55 mm2), indicating retraction or atrophy of terminals. In contrast, the terminal territory from the motor cortex did not shrink, and in three of four animals, aberrant terminal label was observed in the dorsal horn ipsilateral to the lesion, indicating sprouting. These differences suggest that cortical regions play a different role in post-injury recovery
Collapse
Affiliation(s)
- Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305-5342, USA.
| | | | | |
Collapse
|
16
|
Abstract
The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully within a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay, the nucleus of the solitary tract (nTS), after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2 to 20 days after injury. This increased microglial population resulted primarily from microglial proliferation from 1.5 to 3 days, which was supplemented by microglial migration within subdivisions of the nTS between days 2 and 3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of glial fibrillary acidic protein (GFAP) by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days, by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long-lasting taste alterations following CT lesion.
Collapse
Affiliation(s)
- Dianna L Bartel
- Rocky Mountain Taste and Smell Center, Neuroscience Program, Department of Cellular and Developmental Biology, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, USA.
| |
Collapse
|
17
|
Xiao L, Cheng J, Zhuang Y, Qu W, Muir J, Liang H, Zhang D. Botulinum Toxin Type A Reduces Hyperalgesia and TRPV1 Expression in Rats with Neuropathic Pain. PAIN MEDICINE 2013; 14:276-86. [DOI: 10.1111/pme.12017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Chew DJ, Murrell K, Carlstedt T, Shortland PJ. Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain. J Neurotrauma 2013; 30:160-72. [PMID: 22934818 DOI: 10.1089/neu.2012.2481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Huang C, Zou W, Lee K, Wang E, Zhu X, Guo Q. Different symptoms of neuropathic pain can be induced by different degrees of compressive force on the C7 dorsal root of rats. Spine J 2012; 12:1154-60. [PMID: 23245939 DOI: 10.1016/j.spinee.2012.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 07/19/2012] [Accepted: 10/26/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Neuropathic pain after nerve injuries is characterized by positive and negative sensory symptoms and signs. The extent of sensory fiber loss after nerve injuries has been demonstrated to correlate with symptoms of neuropathic pain by quantitative sensory testing and confirmed by biopsies of small nerve fibers. However, the relationship between the pathologic changes of large nerves on injuries and resulting pain symptoms remains unclear. PURPOSE To investigate the relationship between the extent of dorsal root injury and resulting symptoms of neuropathic pain. STUDY DESIGN Nerve injury and assessment of the following pain-related behaviors and neuropathologic changes. METHODS A total of 24 adult male Sprague-Dawley rats weighing 250 to 300 g were randomly divided into three groups (n=8 each): sham group operated on but without nerve compression, 70 gf group, and 180 gf group; a compression force of 70 or 180 g was applied to the right C7 dorsal root, separately. Threshold thermal and mechanical pains were measured before surgery (baseline) and on the first, third, fifth, and seventh day after surgery. On the seventh day after surgery, all rats were killed, and the structural alterations of nerve fibers within the compressed areas were examined. RESULTS A compression force of 70 g resulted in hyperalgesia, whereas a compression force of 180 g induced hypoalgesia in the ipsilateral forepaw in response to both mechanical and thermal stimulations within 7 days after injury. Light microscopy and electron microscopy revealed a mild to moderate sensory fiber loss after 70-gf compression and a more severe sensory fiber loss after 180-gf compression. CONCLUSIONS Transient injuries on sensory fibers can produce either positive or negative symptoms of neuropathic pain, and the different extent of sensory fiber loss after different degrees of injuries might account for the varied resulting symptoms of neuropathic pain.
Collapse
Affiliation(s)
- Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha 410008, China
| | | | | | | | | | | |
Collapse
|
20
|
Postlaminectomy stabilization of the spine in a rat model of neuropathic pain reduces pain-related behavior. Spine (Phila Pa 1976) 2012; 37:1874-82. [PMID: 22531471 DOI: 10.1097/brs.0b013e31825a2c2b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Spine deformity and pain-related behavior after laminectomy with and without spine stabilization were investigated. OBJECTIVE We tested hypothesis that spine stabilization after extensive laminectomy can prevent spine deformation and consequent pain-related behavior. SUMMARY OF BACKGROUND DATA Various ablative procedures requiring laminectomy have been tested for prevention or reversal of pain-related behavior in studies using experimental animals. However, there is no precise description indicating how laminectomy should be performed. Lack of standardized surgical techniques makes it difficult to achieve uniformity of result reporting and to compare results of different research groups meaningfully. METHODS To test our hypothesis, extensive laminectomy with and without spine stabilization was performed in Sprague-Dawley rats. U-shaped surgical wire was used for stabilization of the spine. A validated test of mechanical hyperalgesia was used to test the development of neuropathic pain behavior after surgery. Deformity of the spine was evaluated by calculating deviation from the central axis on radiographs obtained in anteroposterior projection. RESULTS Surgical stabilization of the spine after laminectomy prevented development of spinal deformity. Laminectomy without stabilization induced hyperalgesia on the 8th and 15th days after surgery. Group with stabilized spine exhibited significant reduction in pain-related behavior on the 8th and 15th postoperative days compared with the group without stabilization. CONCLUSION Surgical stabilization of the spine after laminectomy prevented development of spinal deformity and pain-related behavior. Our results suggest that spine stabilization procedure should be used in all experimental pain models in which laminectomy is performed.
Collapse
|
21
|
Chang HH, Havton LA. Modulation of the visceromotor reflex by a lumbosacral ventral root avulsion injury and repair in rats. Am J Physiol Renal Physiol 2012; 303:F641-7. [PMID: 22696606 DOI: 10.1152/ajprenal.00094.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased abdominal muscle wall activity may be part of a visceromotor reflex (VMR) response to noxious stimulation of the bladder. However, information is sparse regarding the effects of cauda equina injuries on the VMR in experimental models. We studied the effects of a unilateral L6-S1 ventral root avulsion (VRA) injury and acute ventral root reimplantation (VRI) into the spinal cord on micturition reflexes and electromyographic activity of the abdominal wall in rats. Cystometrogram (CMG) and electromyography (EMG) of the abdominal external oblique muscle (EOM) were performed. All rats demonstrated EMG activity of the EOM associated with reflex bladder contractions. At 1 wk after VRA and VRI, the duration of the EOM EMG activity associated with reflex voiding was significantly prolonged compared with age-matched sham rats. However, at 3 wk postoperatively, the duration of the EOM responses remained increased in the VRA series but had normalized in the VRI group. The EOM EMG duration was normalized for both VRA and VRI groups at 8-12 wk postoperatively. CMG recordings show increased contraction duration at 1 and 3 wk postoperatively for the VRA series, whereas the contraction duration was only increased at 1 wk postoperatively for the VRI series. Our studies suggest that a unilateral lumbosacral VRA injury results in a prolonged VMR to bladder filling using a physiological saline solution. An acute root replantation decreased the VMR induced by VRA injury and provides earlier sensory recovery.
Collapse
Affiliation(s)
- Huiyi H Chang
- Dept. of Anesthesiology and Perioperative Care, Reeve-Irvine Research Center, Univ. of California at Irvine School of Medicine, 837 Health Science Road, Irvine, CA 92697, USA
| | | |
Collapse
|
22
|
O'Neill S, Manniche C, Graven-Nielsen T, Arendt-Nielsen L. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain. Eur J Pain 2012; 11:415-20. [PMID: 16815054 DOI: 10.1016/j.ejpain.2006.05.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/24/2006] [Accepted: 05/23/2006] [Indexed: 11/16/2022]
Abstract
Some chronic painful conditions including e.g. fibromyalgia, whiplash associated disorders, endometriosis, and irritable bowel syndrome are associated with generalized musculoskeletal hyperalgesia. The aim of the present study was to determine whether generalized deep-tissue hyperalgesia could be demonstrated in a group of patients with chronic low-back pain with intervertebral disc herniation. Twelve patients with MRI confirmed lumbar intervertebral disc herniation and 12 age and sex matched controls were included. Subjects were exposed to quantitative nociceptive stimuli to the infraspinatus and anterior tibialis muscles. Mechanical pressure (thresholds and supra-threshold) and injection of hypertonic saline (pain intensity, duration, distribution) were used. Pain intensity to experimental stimuli was assessed on a visual analogue scale (VAS). Patients demonstrated significantly higher pain intensity (VAS), duration, and larger areas of pain referral following saline injection in both infraspinatus and tibialis anterior. The patients rated significantly higher pain intensity to supra-threshold mechanical pressure stimulation in both muscles. In patients, the pressure pain-threshold was lower in the anterior tibialis muscle compared to controls. In conclusion, generalized deep-tissue hyperalgesia was demonstrated in chronic low-back pain patients with radiating pain and MRI confirmed intervertebral disc herniation, suggesting that this central sensitization should also be addressed in the pain management regimes.
Collapse
Affiliation(s)
- Søren O'Neill
- Human Locomotion Science, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
23
|
Havton LA. A lumbosacral ventral root avulsion injury and repair model for studies of neuropathic pain in rats. Methods Mol Biol 2012; 851:185-193. [PMID: 22351091 DOI: 10.1007/978-1-61779-561-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuropathic pain may develop after a variety of injuries to peripheral nerves and roots. Most injury models have included a direct injury to primary afferent fibers or neurons. Recently, it has been demonstrated that injury to motor fibers in ventral roots may also result in neuropathic pain. A lumbosacral ventral root avulsion injury results in acute and persistent mechanical allodynia, but not thermal hyperesthesia. Interestingly, an acute replantation of the avulsed ventral roots into the spinal cord results in amelioration of the neuropathic pain. A detailed description of this injury and repair model is provided.
Collapse
Affiliation(s)
- Leif A Havton
- Department of Anesthesiology, School of Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Carlstedt T, Havton L. The longitudinal spinal cord injury: lessons from intraspinal plexus, cauda equina and medullary conus lesions. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:337-54. [PMID: 23098723 DOI: 10.1016/b978-0-444-52137-8.00021-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spinal nerve root avulsion injury interrupts the transverse segmental spinal cord nerve fibers. There is degeneration of sensory, motor, and autonomic axons, loss of synapses, deterioration of local segmental connections, nerve cell death, and reactions among non neuronal cells with central nerve system (CNS) scar formation, i.e., a cascade of events similar to those known to occur in any injury to the spinal cord. This is the longitudinal spinal cord injury (SCI). For function to be restored, nerve cells must survive and there must be regrowth of new nerve fibers along a trajectory consisting of CNS growth-inhibitory tissue in the spinal cord as well as peripheral nervous system (PNS) growth-promoting tissue in nerves. Basic science results have been translated into a successful surgical strategy to treat root avulsion injuries in man. In humans, this technique is currently the most promising treatment of any spinal cord injury, with return of useful muscle function together with pain alleviation. Experimental studies have also identified potential candidates for adjunctive therapies that, together with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries, can restore not only motor but also autonomic and sensory trajectories to augment the recovery of neurological function. This is the first example of a spinal cord lesion that can be treated surgically, leading to restoration of somatic and autonomic activity and alleviation of pain.
Collapse
|
25
|
Todd AJ. How to recognise collateral damage in partial nerve injury models of neuropathic pain. Pain 2011; 153:11-12. [PMID: 22079327 DOI: 10.1016/j.pain.2011.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/12/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
26
|
Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 2011; 37:613-32. [DOI: 10.1111/j.1365-2990.2011.01176.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Van Boxem K, van Bilsen J, de Meij N, Herrler A, Kessels F, Van Zundert J, van Kleef M. Pulsed radiofrequency treatment adjacent to the lumbar dorsal root ganglion for the management of lumbosacral radicular syndrome: a clinical audit. PAIN MEDICINE 2011; 12:1322-30. [PMID: 21812907 DOI: 10.1111/j.1526-4637.2011.01202.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Lumbosacral radicular syndrome (LRS) is probably the most frequent neuropathic pain syndrome. Three months to 1 year after onset, 30% of the patients still experience ongoing pain. The management of those patients is complex, and treatment success rates are rather low. The beneficial effect of pulsed radiofrequency (PRF) therapy has been described for the treatment of LRS in case reports and in retrospective and prospective studies. Up until now, no neurological complications have been reported after PRF treatment. The current clinical audit has been performed to assess the amount of pain relief after a single PRF treatment. METHODS Sixty consecutive patients who received a PRF treatment adjacent to the lumbar dorsal root ganglion for the management of LRS in the period 2007-2009 were included. The main study objective was to measure the reduction of pain after the pulsed radiofrequency treatment by using the global perceived effect. The primary end point was defined as at least 50% pain relief for a period of 2 months or longer. RESULTS The primary end point was achieved in 29.5% of all the PRF interventions. After 6 months, 50% pain relief was still present in 22.9% of the cases and after 12 months in 13.1% of the cases. The need for pain medication was significantly lower after pulsed radiofrequency treatment in the success group compared with the nonsuccess group. CONCLUSIONS PRF treatment can be considered for the management of LRS patients. These results need to be confirmed in a randomized clinical trial.
Collapse
Affiliation(s)
- Koen Van Boxem
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Xiao L, Cheng J, Dai J, Zhang D. Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats. PAIN MEDICINE 2011; 12:1385-94. [PMID: 21810163 DOI: 10.1111/j.1526-4637.2011.01182.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aim to determine the effects of Botulinum toxin type A (BTX-A) on neuropathic pain behavior and the expression of P2X(3) receptor in dorsal root ganglion (DRG) in rats with neuropathic pain induced by L5 ventral root transection (L5 VRT). METHODS Neuropathic pain was induced by L5 VRT in male Sprague-Dawley rats. Either saline or BTX-A was administered to the plantar surface. Behavioral tests were conducted preoperatively and at predefined postoperative days. The expression of P2X(3) receptors in DRG neurons was detected by immunoreactivity at postoperative days 3, 7, 14, and 21. RESULTS The number of positive P2X(3) neurons in the ipsilateral L5 DRG increased significantly after L5 VRT (P<0.001). This increase persisted for at least 3 weeks after the operation. No significant changes in P2X(3) expression were detected in the contralateral L5, or in the L4 DRGs bilaterally. Subcutaneous administration of BTX-A, performed on the left hindpaw at days 4, 8, or 16 post VRT surgery, significantly reduced mechanical allodynia bilaterally and inhibited P2X(3) over-expression induced by L5 VRT. CONCLUSIONS L5 VRT led to over-expression of P2X(3) receptors in the L5 DRG and bilateral mechanical allodynia in rats. Subcutaneous injection of BTX-A significantly reversed the neuropathic pain behavior and the over-expression of P2X(3) receptor in nociceptive neurons. These data not only show over-expression of purinergic receptors in the VRT model of neuropathic pain but also reveal a novel mechanism of botulinum toxin action on nociceptive neurons.
Collapse
Affiliation(s)
- Lizu Xiao
- Pain Medicine Department, Shenzhen No. 6 People's Hospital, Shenzhen, China
| | | | | | | |
Collapse
|
29
|
Jeon SM, Sung JK, Cho HJ. Expression of monocyte chemoattractant protein-1 and its induction by tumor necrosis factor receptor 1 in sensory neurons in the ventral rhizotomy model of neuropathic pain. Neuroscience 2011; 190:354-66. [PMID: 21712071 DOI: 10.1016/j.neuroscience.2011.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/07/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
The expression and role of monocyte chemoattractant protein-1 (MCP-1) in the rat dorsal root ganglion (DRG) and spinal cord was evaluated in the lumbar 5 ventral rhizotomy (L5 VR) model of neuropathic pain. MCP-1 protein expression in the L4/L5 DRG neurons following L5 VR peaked after 3 days, and then declined. Immunohistochemistry showed that no MCP-1 immunoreactivity was observed in the spinal cord after L5 VR, while enzyme-linked immunosorbent assay (ELISA) revealed a small but significant increase in MCP-1 protein content. L5 VR resulted in robust and prolonged mechanical allodynia and thermal hyperalgesia. Administration of anti-MCP-1 neutralizing antibody before and at early time points after L5 VR resulted in a significant attenuation of mechanical allodynia and thermal hyperalgesia, while post-treatment had a weaker effect on established neuropathic pain. Extensive colocalization of tumor necrosis factor receptor 1 (TNFR1) and MCP-1 was observed in the L5 DRG following L5 VR, and treatment with TNFR1 antisense oligonucleotide reduced L5 VR-induced MCP-1 expression in L5 DRG neurons and neuropathic pain behaviors. MCP-1/chemokine (C-C motif) receptor 2 signaling has been proposed as a major regulator of macrophage trafficking. In contrast to the effect on pain behaviors, however, intrathecal administration of anti-MCP-1 neutralizing antibody had no effect on the L5 VR-induced increase in ED-1-immunoreactive macrophages in the L5 DRG and the distal stump of the transected L5 ventral root. These data indicate that increased MCP-1 in DRG neurons might participate in the initiation, rather than the maintenance, of neuropathic pain induced by L5 VR. Furthermore, increased MCP-1 in the DRG is induced by TNF-α/TNFR1 and has no effect on the infiltration of macrophages into the DRG following L5 VR.
Collapse
Affiliation(s)
- S-M Jeon
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101, Dongin Dong, Daegu 700-422, South Korea
| | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW This review will discuss recent progress in experimental and translational research related to surgical repair of proximal nerve root injuries, and emerging potential therapies, which may be combined with replantation surgeries to augment functional outcomes after brachial plexus and cauda equina injuries. RECENT FINDINGS Progress in experimental studies of root and peripheral nerve injuries has identified potential candidates for adjunctive therapies, which may be combined with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries. We will discuss recent advances related to adjunctive neuroprotective strategies, neurotrophic factor delivery, and emerging cellular treatment strategies after extensive nerve root trauma. We will also provide an update on electrical stimulation to promote regenerative axonal growth and new insights on the recovery of sensory functions after root injury and repair. SUMMARY In the light of recent advances in experimental studies, we envision that future repair of brachial plexus and cauda equina injuries will include spinal cord surgery to restore motor and sensory trajectories and a variety of adjunctive therapies to augment the recovery of neurological function.
Collapse
|
31
|
Dorsi MJ, Lambrinos G, Dellon AL, Belzberg AJ. Dorsal rhizotomy for treatment of bilateral intercostal neuralgia following augmentation mammaplasty: case report and review of the literature. Microsurgery 2010; 31:41-4. [PMID: 21207497 DOI: 10.1002/micr.20828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/13/2010] [Accepted: 07/16/2010] [Indexed: 11/07/2022]
Abstract
Intercostal neuralgia may develop following breast augmentation. The authors describe a woman who suffered 2 years of severe pain associated with cutaneous hypaesthesia in a T3-T5 distribution. Serial, placebo-controlled T3-T5 dorsal root nerve blocks provided temporary pain relief. The patient experienced immediate and lasting pain relief (34 months) following bilateral T3-T5 dorsal rhizotomies. This case provides anecdotal evidence that dorsal rhizotomy is a beneficial intervention for refractory intercostal neuralgia.
Collapse
Affiliation(s)
- Michael J Dorsi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
32
|
Changes in undamaged fibers following peripheral nerve injury: A role for TNF-α. Pain 2010; 151:237-238. [DOI: 10.1016/j.pain.2010.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
|
33
|
He W, Liu X, Zhang Y, Guo SW. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci 2010; 17:1099-111. [PMID: 20923950 DOI: 10.1177/1933719110381927] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although pains of various kinds top the list of complaints from women with endometriosis and are the most debilitating of the disease, little is known about the mechanism/mechanisms of endometriosis-associated pains. To test the hypothesis that women with endometriosis have generalized hyperalgesia which may be alleviated by a successful surgery, we recruited 100 patients with surgically and histologically confirmed endometriosis and 70 women without, and tested their responses to pain stimulations. Before the surgery, all patients rated their dysmenorrhea severity by Visual Analog scale (VAS) and went through an ischemic pain test (IPT) and an electrical pain test (EPT). The controls were also administrated with IPT/EPT. Three and 6 months after surgery, all patients were administrated with IPT/EPT and rated their severity of dysmenorrhea. We found that patients with endometriosis had significantly higher IPT VAS scores and lower EPT pain threshold than controls, but after surgery their IPT scores and EPT pain threshold were significantly and progressively improved, along with their dysmenorrhea severity. Thus, we conclude that women with endometriosis have generalized hyperalgesia, which was alleviated by surgery. Consequently, central sensitization may be a possible mechanism underlying various forms of pain associated with endometriosis, and its recognition should have important implications for the development of novel therapeutics and better clinical management of endometriosis.
Collapse
Affiliation(s)
- Weiwei He
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
34
|
TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 2010; 151:266-279. [PMID: 20638792 DOI: 10.1016/j.pain.2010.06.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022]
Abstract
A large body of evidence has demonstrated that the ectopic discharges of action potentials in primary afferents, resulted from the abnormal expression of voltage gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury are important for the development of neuropathic pain. However, how nerve injury affects the expression of VGSCs is largely unknown. Here, we reported that selective injury of motor fibers by L5 ventral root transection (L5-VRT) up-regulated Nav1.3 and Nav1.8 at both mRNA and protein level and increased current densities of TTX-S and TTX-R channels in DRG neurons, suggesting that nerve injury may up-regulate functional VGSCs in sensory neurons indirectly. As the up-regulated Nav1.3 and Nav1.8 were highly co-localized with TNF-α, we tested the hypothesis that the increased TNF-α may lead to over-expression of the sodium channels. Indeed, we found that peri-sciatic administration of recombinant rat TNF-α (rrTNF) without any nerve injury, which produced lasting mechanical allodynia, also up-regulated Nav1.3 and Nav1.8 in DRG neurons in vivo and that rrTNF enhanced the expression of Nav1.3 and Nav1.8 in cultured adult rat DRG neurons in a dose-dependent manner. Furthermore, inhibition of TNF-α synthesis, which prevented neuropathic pain, strongly inhibited the up-regulation of Nav1.3 and Nav1.8. The up-regulation of the both channels following L5-VRT was significantly lower in TNF receptor 1 knockout mice than that in wild type mice. These data suggest that increased TNF-α may be responsible for up-regulation of Nav1.3 and Nav1.8 in uninjured DRG neurons following nerve injury.
Collapse
|
35
|
Kubícek L, Kopácik R, Klusáková I, Dubový P. Alterations in the vascular architecture of the dorsal root ganglia in a rat neuropathic pain model. Ann Anat 2010; 192:101-6. [PMID: 20149608 DOI: 10.1016/j.aanat.2010.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/13/2010] [Accepted: 01/20/2010] [Indexed: 11/16/2022]
Abstract
An alteration in the structural arrangement of blood vessels identified by RECA immunohistochemistry was studied in a rat L4 dorsal root ganglia (L4-DRG) neuropathic pain model. We compared a three-dimensional (3-D) reconstruction of the vascular architecture surrounding bodies of the primary sensory neurons in the L4-DRG of naïve rats with that of rats that had surgically undergone unilateral sciatic nerve ligature. Rhodamine-conjugated dextran (Fluoro-Ruby) was used for retrograde labelling of neurons, the axons of which had been injured by nerve ligature. In contrast to DRG from naïve rats and contralateral DRG from operated rats, an increased proportion of RECA+ vascular area and the appearance of nest-like arrangements of blood vessels around neuronal bodies with injured axons were observed in L4-DRG ipsilateral to the sciatic nerve ligature. Fractal analysis confirmed a higher degree of vascular branching, irregularity, and tortuosity in L4-DRG related with sciatic nerve injury. The results suggest that nerve injury induces changes in vascular architecture in associated DRG.
Collapse
Affiliation(s)
- Lubos Kubícek
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
36
|
Jang J, Lee B, Nam T, Kim J, Kim D, Leem J. Peripheral contributions to the mechanical hyperalgesia following a lumbar 5 spinal nerve lesion in rats. Neuroscience 2010; 165:221-32. [DOI: 10.1016/j.neuroscience.2009.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023]
|
37
|
Abstract
Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.
Collapse
|
38
|
Li F, Li L, Song XY, Zhong JH, Luo XG, Xian CJ, Zhou XF. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats - possible roles of brain-derived
neurotrophic factor, TrkB and p75 neurotrophin receptor. Eur J Neurosci 2009; 30:1280-96. [DOI: 10.1111/j.1460-9568.2009.06920.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Sorkin LS, Yaksh TL. Behavioral models of pain states evoked by physical injury to the peripheral nerve. Neurotherapeutics 2009; 6:609-19. [PMID: 19789066 PMCID: PMC5084283 DOI: 10.1016/j.nurt.2009.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/09/2009] [Indexed: 11/30/2022] Open
Abstract
Physical injury or compression of the root, dorsal root ganglion, or peripheral sensory axon leads to well-defined changes in biology and function. Behaviorally, humans report ongoing painful dysesthesias and aberrations in function, such that an otherwise innocuous stimulus will yield a pain report. These behavioral reports are believed to reflect the underlying changes in nerve function after injury, wherein increased spontaneous activity arises from the neuroma and dorsal root ganglion and spinal changes increase the response of spinal projection neurons. These pain states are distinct from those associated with tissue injury and pose particular problems in management. To provide for developing an understanding of the underlying mechanisms of these pain states and to promote development of therapeutic agents, preclinical models involving section, compression, and constriction of the peripheral nerve or compression of the dorsal root ganglion have been developed. These models give rise to behaviors, which parallel those observed in the human after nerve injury. The present review considers these models and their application.
Collapse
Affiliation(s)
- Linda S. Sorkin
- grid.266100.30000000121074242Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Code 0818, 92093-0818 La Jolla, CA
| | - Tony L. Yaksh
- grid.266100.30000000121074242Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Code 0818, 92093-0818 La Jolla, CA
| |
Collapse
|
40
|
Rigaud M, Gemes G, Weyker PD, Cruikshank JM, Kawano T, Wu HE, Hogan QH. Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 2009; 111:381-92. [PMID: 19602958 PMCID: PMC2891519 DOI: 10.1097/aln.0b013e3181ae6212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca stores of the endoplasmic reticulum, which critically regulate the Ca signal and neuronal function. METHODS Intracellular Ca levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. RESULTS Endoplasmic reticulum Ca stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca-free bath solution, which removes the contribution of store-operated membrane Ca channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca-ATPase and the plasma membrane Ca ATPase pathways. Ca released by the sarco-endoplasmic Ca-ATPase blocker thapsigargin and by the Ca-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca stores in axotomized neurons were not expanded by neuronal activation by K depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca-ATPase was normal. Luminal Ca concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. CONCLUSIONS Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca stores and a reduced luminal Ca concentration. Depletion of Ca stores may contribute to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Marcel Rigaud
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Geza Gemes
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Paul D. Weyker
- Medical Student, University of Wisconsin, Madison, Wisconsin
| | - James M. Cruikshank
- Research Assistant, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takashi Kawano
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hsiang-En Wu
- Assistant Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Quinn H. Hogan
- Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Anesthesiologist, Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Experimental models of peripheral neuropathic pain based on traumatic nerve injuries - an anatomical perspective. Ann Anat 2009; 191:248-59. [PMID: 19403284 DOI: 10.1016/j.aanat.2009.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 12/29/2022]
Abstract
Peripheral neuropathic pain (PNP) frequently occurs as a consequence of nerve injury and may differ depending upon the type of insult and the individual patient. Progress in our knowledge of PNP induction mechanisms depends upon the utilization of appropriate experimental models in rodents based on various types of peripheral nerve lesions. In this review, we draw attention to current knowledge on basic cellular and molecular events in various experimental models used to induce the PNP symptoms. Spontaneous ectopic activity of axotomized and non-axotomized primary sensory neurons, the bodies of which are located in the dorsal root ganglion (DRG), seems to be a key mechanism of PNP induction. The primary sensory neurons are directly affected by nerve injury or indirectly by activated satellite glial cells and adjoining immune cells that release a variety of molecules changing the microenvironment of the neurons. Recently, it has become clear that molecules produced during Wallerian degeneration play an important role not only in axon-promoting conditions distal to nerve injury but also in initiation of neuropathic pain. The molecules, transported by the blood, influence afferent neurons and their axons not only in DRG associated, but also those not directly associated with the injured nerve (i.e., in the contralateral DRG or at different spinal segments). Generally, all experimental PNP models based on a partial injury of peripheral nerve segments contain mechanisms initiated by signal molecules of Wallerian degeneration.
Collapse
|
42
|
|
43
|
The extent of laminectomy affects pain-related behavior in a rat model of neuropathic pain. Eur J Pain 2008; 13:243-8. [PMID: 18547845 DOI: 10.1016/j.ejpain.2008.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/28/2008] [Accepted: 04/27/2008] [Indexed: 11/24/2022]
Abstract
One of the unresolved questions in neuropathic pain research is whether we can prevent or reverse mechanical hyperalgesia by rhizotomy or ganglionectomy. However, one of the obstacles in answering that question is lack of a standardized surgical procedure used in experimental ganglionectomy. We tested the hypothesis that laminectomy performed during ganglionectomy induces lumbar column deformity. We further examined whether spinal deformity is a source of pain-related behavior. Five conditions were studied. Fifth and sixth lumbar (L5 and L6) ganglionectomy were performed in rats using either minimal or extensive laminectomy technique. Two other groups had minimal and extensive laminectomy without ganglionectomies. A final control group had no surgery. Sensory responsiveness of the plantar aspect of the hind paw was repeatedly tested, and a plain radiograph in anteroposterior projection was made to assess the extent of deformity by measurement of deformity angles. Hyperalgesia resulted in groups with extensive laminectomy regardless of performance or absence of ganglionectomy, while in groups with minimal laminectomy there was no increase in pain-related behavior. Lateral deformity of the spine was observed in rats with or without ganglionectomy, confirming that laminectomy can produce deformity. The extent of deformity was more pronounced in rats exposed to the extensive laminectomy. Our results indicate that laminectomy can produce spine deformity and that there is a direct relationship between the extent of laminectomy and the development of mechanical hypersensitivity. The data presented suggest that there is a need for standardization of laminectomy procedure in rat experimental pain models.
Collapse
|
44
|
Shehab SA, Al-Marashda K, Al-Zahmi A, Abdul-Kareem A, Al-Sultan MA. Unmyelinated primary afferents from adjacent spinal nerves intermingle in the spinal dorsal horn: A possible mechanism contributing to neuropathic pain. Brain Res 2008; 1208:111-9. [DOI: 10.1016/j.brainres.2008.02.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/08/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
|
45
|
White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 2007; 104:20151-8. [PMID: 18083844 PMCID: PMC2154400 DOI: 10.1073/pnas.0709250104] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Chemokines and chemokine receptors are widely expressed by cells of the immune and nervous systems. This review focuses on our current knowledge concerning the role of chemokines in the pathophysiology of chronic pain syndromes. Injury- or disease-induced changes in the expression of diverse chemokines and their receptors have been demonstrated in the neural and nonneural elements of pain pathways. Under these circumstances, chemokines have been shown to modulate the electrical activity of neurons by multiple regulatory pathways including increases in neurotransmitter release through Ca-dependent mechanisms and transactivation of transient receptor channels. Either of these mechanisms alone, or in combination, may contribute to sustained excitability of primary afferent and secondary neurons within spinal pain pathways. Another manner in which chemokines may influence sustained neuronal excitability may be their ability to function as excitatory neurotransmitters within the peripheral and central nervous system. As is the case for traditional neurotransmitters, injury-induced up-regulated chemokines are found within synaptic vesicles. Chemokines released after depolarization of the cell membrane can then act on other chemokine receptor-bearing neurons, glia, or immune cells. Because up-regulation of chemokines and their receptors may be one of the mechanisms that directly or indirectly contribute to the development and maintenance of chronic pain, these molecules may then represent novel targets for therapeutic intervention in chronic pain states.
Collapse
Affiliation(s)
- Fletcher A. White
- *Departments of Cell Biology, Neurobiology and Anatomy, and Anesthesiology, Loyola University Chicago, Maywood, IL 60626; and
| | - Hosung Jung
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL 60611
| | - Richard J. Miller
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL 60611
| |
Collapse
|
46
|
Reimplantation of avulsed lumbosacral ventral roots in the rat ameliorates injury-induced degeneration of primary afferent axon collaterals in the spinal dorsal columns. Neuroscience 2007; 152:338-45. [PMID: 18291596 DOI: 10.1016/j.neuroscience.2007.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 11/09/2007] [Accepted: 11/18/2007] [Indexed: 01/13/2023]
Abstract
Injuries to the cauda equina/conus medullaris portion of the spinal cord can result in motor, sensory, and autonomic dysfunction, and neuropathic pain. In rats, unilateral avulsion of the motor efferents from the lumbosacral spinal cord results in at-level allodynia, along with a corresponding glial and inflammatory response in the dorsal horn of the spinal cord segments immediately rostral to the lesion. Here, we investigated the fate of intramedullary primary sensory projections following a motor efferent lesion. The lumbosacral (L6 and S1) ventral roots were unilaterally avulsed from the rat spinal cord (VRA; n=9). A second experimental group had the avulsed roots acutely reimplanted into the lateral funiculus (Imp; n=5), as this neural repair strategy is neuroprotective, and promotes the functional reinnervation of peripheral targets. A laminectomy-only group served as controls (Lam; n=7). At 8 weeks post-lesion, immunohistochemical examination showed a 42% reduction (P<0.001) in the number of RT97-positive axons in the ascending tracts of the dorsal funiculus of the L4-5 spinal segment in VRA rats. Evidence for degenerating myelin was also present. Reimplantation of the avulsed roots ameliorated axon and myelin degeneration. Axons in the descending dorsal corticospinal tract were unaffected in all groups, suggesting a specificity of this lesion for spinal primary sensory afferents. These results show for the first time that a lesion restricted to motor roots can induce the degeneration of intramedullary sensory afferents. Importantly, reimplantation of the lesioned motor roots ameliorated sensory axon degeneration. These data further support the therapeutic potential for reimplantation of avulsed ventral roots following trauma to the cauda equina/conus medullaris.
Collapse
|
47
|
|
48
|
Dorsi MJ, Chen L, Murinson BB, Pogatzki-Zahn EM, Meyer RA, Belzberg AJ. The tibial neuroma transposition (TNT) model of neuroma pain and hyperalgesia. Pain 2007; 134:320-334. [PMID: 17720318 DOI: 10.1016/j.pain.2007.06.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/22/2007] [Accepted: 06/25/2007] [Indexed: 11/18/2022]
Abstract
Peripheral nerve injury may lead to the formation of a painful neuroma. In patients, palpating the tissue overlying a neuroma evokes paraesthesias/dysaesthesias in the distribution of the injured nerve. Previous animal models of neuropathic pain have focused on the mechanical hyperalgesia and allodynia that develops at a location distant from the site of injury and not on the pain from direct stimulation of the neuroma. We describe a new animal model of neuroma pain in which the neuroma was located in a position that is accessible to mechanical testing and outside of the innervation territory of the injured nerve. This allowed testing of pain in response to mechanical stimulation of the neuroma (which we call neuroma tenderness) independent of pain due to mechanical hyperalgesia. In the tibial neuroma transposition (TNT) model, the posterior tibial nerve was ligated and transected in the foot just proximal to the plantar bifurcation. Using a subcutaneous tunnel, the end of the ligated nerve was positioned just superior to the lateral malleolus. Mechanical stimulation of the neuroma produced a profound withdrawal behavior that could be distinguished from the hyperalgesia that developed on the hind paw. The neuroma tenderness (but not the hyperalgesia) was reversed by local lidocaine injection and by proximal transection of the tibial nerve. Afferents originating from the neuroma exhibited spontaneous activity and responses to mechanical stimulation of the neuroma. The TNT model provides a useful tool to investigate the differential mechanisms underlying the neuroma tenderness and mechanical hyperalgesia associated with neuropathic pain.
Collapse
Affiliation(s)
- Michael J Dorsi
- Department of Neurosurgery, The Johns Hopkins University, School of Medicine, 5-181 Meyer Building, Baltimore, MD 21287, USA Department of Neurology, The Johns Hopkins University, School of Medicine, 5-181 Meyer Building, Baltimore, MD 21287, USA Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA Department of Anesthesiology and Intensive Care, University of Muenster, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Moalem-Taylor G, Allbutt HN, Iordanova MD, Tracey DJ. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain Behav Immun 2007; 21:699-710. [PMID: 17005365 DOI: 10.1016/j.bbi.2006.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 06/30/2006] [Accepted: 07/12/2006] [Indexed: 01/20/2023] Open
Abstract
Experimental autoimmune neuritis (EAN) is a T cell mediated autoimmune disease of the peripheral nervous system that serves as an animal model of the acute inflammatory demyelinating polyradiculoneuropathy in Guillain-Barre syndrome (GBS). Although pain is a common symptom of GBS occurring in 55-85% of cases, it is often overlooked and the underlying mechanisms are poorly understood. Here we examined whether animals with EAN exhibit signs of neuropathic pain including hyperalgesia and allodynia, and assessed their peripheral nerve autoimmune inflammation. We immunized Lewis rats with peripheral myelin P2 peptide (amino acids 57-81) emulsified with complete Freund's adjuvant, or with adjuvant only as control. P2-immunized rats developed mild to modest monophasic EAN with disease onset at day 8, peak at days 15-17, and full recovery by day 28 following immunization. Rats with EAN showed a significant decrease in withdrawal latency to thermal stimuli and withdrawal threshold to mechanical stimuli, in both hindpaws and forepaws, during the course of the disease. We observed a significant infiltration of T cells bearing alphabeta receptors, and a significant increase in antigen-presenting cells expressing MHC class II as well as macrophages, in EAN-affected rats. Our results demonstrate that animals with active EAN develop significant thermal hyperalgesia and mechanical allodynia, accompanied by pronounced autoimmune inflammation in peripheral nerves. These findings suggest that EAN is a useful model for the pain seen in many GBS patients, and may facilitate study of neuroimmune mechanisms underlying pain in autoimmune neuropathies.
Collapse
Affiliation(s)
- Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Chao Ma
- Yale University School of Medicine, New Haven, Connecticut, 06510, USA.
| |
Collapse
|