1
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
2
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
3
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
4
|
Kalita J, Padhi AK, Tripathi T. Designing a vaccine for fascioliasis using immunogenic 24 kDa mu-class glutathione s-transferase. INFECTION GENETICS AND EVOLUTION 2020; 83:104352. [PMID: 32387753 DOI: 10.1016/j.meegid.2020.104352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
Fascioliasis, caused by the liver fluke Fasciola gigantica, is a significant zoonotic disease of the livestock and human, causing substantial economic loss worldwide. Triclabendazole (TCBZ) is the only drug available for the management of the disease against which there is an alarming increase in drug resistance. No vaccine is available commercially for the protection against this disease. Increasing resistance to TCBZ and the lack of a successful vaccine against fascioliasis demands the development of vaccines. In the present study, a structural immunoinformatics approach was used to design a multi-epitope subunit vaccine using the glutathione S-transferase (GST) protein of Fasciola gigantica. The GST antigen is a safe, non-allergic, highly antigenic, and effective vaccine candidate against various parasitic flukes and worms. The cytotoxic T lymphocytes, helper T lymphocytes, and B-cell epitopes were selected for constructing the vaccine based on their immunogenic behavior and binding affinity. The physicochemical properties, allergenicity, and antigenicity of the designed vaccine were analyzed. To elucidate the tertiary structure of the vaccine, homology modeling was performed, followed by structure refinement and docking against the TLR2 immune receptor. Molecular dynamics simulations showed a stable interaction between the vaccine and the receptor complex. Finally, in silico cloning was performed to evaluate the expression and translation of the vaccine construct in the E. coli expression system. Further studies require experimental validation for the safety and immunogenic behavior of the designed vaccine.
Collapse
Affiliation(s)
- Jupitara Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K Padhi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
5
|
Li P, Rios Coronado PE, Longstaff XRR, Tarashansky AJ, Wang B. Nanomedicine Approaches Against Parasitic Worm Infections. Adv Healthc Mater 2018; 7:e1701494. [PMID: 29602254 DOI: 10.1002/adhm.201701494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Indexed: 01/10/2023]
Abstract
Nanomedicine approaches have the potential to transform the battle against parasitic worm (helminth) infections, a major global health scourge from which billions are currently suffering. It is anticipated that the intersection of two currently disparate fields, nanomedicine and helminth biology, will constitute a new frontier in science and technology. This progress report surveys current innovations in these research fields and discusses research opportunities. In particular, the focus is on: (1) major challenges that helminth infections impose on mankind; (2) key aspects of helminth biology that inform future research directions; (3) efforts to construct nanodelivery platforms to target drugs and genes to helminths hidden in their hosts; (4) attempts in applying nanotechnology to enable vaccination against helminth infections; (5) outlooks in utilizing nanoparticles to enhance immunomodulatory activities of worm-derived factors to cure allergy and autoimmune diseases. In each section, achievements are summarized, limitations are explored, and future directions are assessed.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | | | | | | | - Bo Wang
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
6
|
You H, Cai P, Tebeje BM, Li Y, McManus DP. Schistosome Vaccines for Domestic Animals. Trop Med Infect Dis 2018; 3:tropicalmed3020068. [PMID: 30274464 PMCID: PMC6073927 DOI: 10.3390/tropicalmed3020068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis is recognized as a tropical disease of considerable public health importance, but domestic livestock infections due to Schistosoma japonicum, S. bovis, S. mattheei and S. curassoni are often overlooked causes of significant animal morbidity and mortality in Asia and Africa. In addition, whereas schistosomiasis japonica is recognized as an important zoonosis in China and the Philippines, reports of viable schistosome hybrids between animal livestock species and S. haematobium point to an underappreciated zoonotic component of transmission in Africa as well. Anti-schistosome vaccines for animal use have long been advocated as part of the solution to schistosomiasis control, benefitting humans and animals and improving the local economy, features aligning with the One Health concept synergizing human and animal health. We review the history of animal vaccines for schistosomiasis from the early days of irradiated larvae and then consider the recombinant DNA technology revolution and its impact in developing schistosome vaccines that followed. We evaluate the major candidates tested in livestock, including the glutathione S-transferases, paramyosin and triose-phosphate isomerase, and summarize some of the future challenges that need to be overcome to design and deliver effective anti-schistosome vaccines that will complement current control options to achieve and sustain future elimination goals.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Biniam Mathewos Tebeje
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Yuesheng Li
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
7
|
Qian M, Wei L, Hao L, Tang S. Pharmacokinetics of new high-concentration and long-acting praziquantel oily suspensions after intramuscular administration in cattle. J Vet Pharmacol Ther 2016; 40:454-458. [DOI: 10.1111/jvp.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- M. Qian
- College of Veterinary Medicine; China Agricultural University; Beijing China
| | - L. Wei
- College of Veterinary Medicine; China Agricultural University; Beijing China
- Beijing Animal Health Inspection; Beijing China
| | - L. Hao
- China Institute of Veterinary Drug Control; Beijing China
| | - S. Tang
- College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
8
|
Ross AGP, Sleigh AC, Li YS, Williams GM, Li Y, Waine GJ, Tang GT, Forsyth SJ, McManus DP. Epidemiological identification of Chinese individuals putatively susceptible or insusceptible toSchistosoma japonicum: a prelude to immunogenetic study of human resistance to Asian schistosomiasis. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Cheng PC, Lin CN, Peng SY, Kang TF, Lee KM. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004459. [PMID: 26891172 PMCID: PMC4758724 DOI: 10.1371/journal.pntd.0004459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/23/2016] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42-44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica.
Collapse
Affiliation(s)
- Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (PCC); (KML)
| | - Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Mng University, Taipei, Taiwan
- Institute of Tropical Medicine, National Yang-Mng University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Fu Kang
- Institute of Tropical Medicine, National Yang-Mng University, Taipei, Taiwan
| | - Kin-Mu Lee
- Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- * E-mail: (PCC); (KML)
| |
Collapse
|
10
|
Yang J, Fu Z, Hong Y, Wu H, Jin Y, Zhu C, Li H, Lu K, Shi Y, Yuan C, Cheng G, Feng X, Liu J, Lin J. The Differential Expression of Immune Genes between Water Buffalo and Yellow Cattle Determines Species-Specific Susceptibility to Schistosoma japonicum Infection. PLoS One 2015; 10:e0130344. [PMID: 26125181 PMCID: PMC4488319 DOI: 10.1371/journal.pone.0130344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/19/2015] [Indexed: 01/10/2023] Open
Abstract
Water buffalo are less susceptible to Schistosoma japonicum infection than yellow cattle. The factors that affect such differences in susceptibility remain unknown. A Bos taurus genome-wide gene chip was used to analyze gene expression profiles in the peripheral blood of water buffalo and yellow cattle pre- and post-infection with S. japonicum. This study showed that most of the identified differentially expressed genes (DEGs) between water buffalo and yellow cattle pre- and post-infection were involved in immune-related processes, and the expression level of immune genes was lower in water buffalo. The unique DEGs (390) in yellow cattle were mainly associated with inflammation pathways, while the unique DEGs (2,114) in water buffalo were mainly associated with immune-related factors. The 83 common DEGs may be the essential response genes during S. japonicum infection, the highest two gene ontology (GO) functions were associated with the regulation of fibrinolysis. The pathway enrichment analysis showed that the DEGs constituted similar immune-related pathways pre- and post-infection between the two hosts. This first analysis of the transcriptional profiles of natural hosts has enabled us to gain new insights into the mechanisms that govern their susceptibility or resistance to S. japonicum infections.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Haiwei Wu
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People’s Republic of China
| |
Collapse
|
11
|
Mbanefo EC, Kumagai T, Kodama Y, Kurosaki T, Furushima-Shimogawara R, Cherif MS, Mizukami S, Kikuchi M, Huy NT, Ohta N, Sasaki H, Hirayama K. Immunogenicity and anti-fecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. Parasitol Int 2015; 64:24-31. [PMID: 25603531 DOI: 10.1016/j.parint.2015.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/10/2014] [Accepted: 01/11/2015] [Indexed: 01/10/2023]
Abstract
There is still urgent need for a vaccine against schistosomiasis, especially in Schistosoma japonicum endemic areas where even a vaccine that will interrupt zoonotic transmission will be potentially effective as an intervention tool. We had developed a novel nanoparticle gene delivery system, which has proven efficacious in gene transfection to target immune cells with complementary adjuvant effect and high protective efficacy in several diseases. Here, we applied this nanoparticle system in combination with S. japonicum glutathione S-transferase (SjGST) DNA vaccine to show the immunogenicity and anti-fecundity effect of the nanoparticle coated vaccine formulation against murine schistosomiasis. The nanoparticle-coated DNA vaccine formulation induced desired immune responses. In comparison with the nanoparticle coated empty vector, it produced significantly increased antigen-specific humoral response, T-helper 1 polarized cytokine environment, higher proportion of IFN-γ producing CD4(+) T-cells and the concomitant decrease in IL-4 producing CD4(+) T-cells. Although there was no effect on worm burden, we recorded a marked reduction in tissue egg burden. There was up to 71.3% decrease in tissue egg burden and 55% reduction in the fecundity of female adult worms. Our data showed that SjGST DNA vaccine, delivered using the nanoparticle gene delivery system, produced anti-fecundity effect on female adult schistosomes as previously described by using conventional subunit vaccine with adjuvant, proving this DNA vaccine formulation as a promising candidate for anti-pathology and transmission blocking application.
Collapse
Affiliation(s)
- Evaristus Chibunna Mbanefo
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN) and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - Takashi Kumagai
- Section of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, 113-8519, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, 852-8501, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, 852-8501, Japan
| | - Rieko Furushima-Shimogawara
- Section of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, 113-8519, Japan
| | - Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN) and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN) and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN) and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan
| | - Nguyen Tien Huy
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan
| | - Nobuo Ohta
- Section of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, 113-8519, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, 852-8501, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN) and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| |
Collapse
|
12
|
Abstract
Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
Collapse
|
13
|
Yang J, Hong Y, Yuan C, Fu Z, Shi Y, Zhang M, Shen L, Han Y, Zhu C, Li H, Lu K, Liu J, Feng X, Lin J. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat. PLoS One 2013; 8:e70367. [PMID: 23940568 PMCID: PMC3734127 DOI: 10.1371/journal.pone.0070367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/18/2013] [Indexed: 01/14/2023] Open
Abstract
Background Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. Results The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. Conclusion The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, People's Republic of China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
- * E-mail: (JL); (XF)
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, People's Republic of China
- * E-mail: (JL); (XF)
| |
Collapse
|
14
|
Yang J, Feng X, Fu Z, Yuan C, Hong Y, Shi Y, Zhang M, Liu J, Li H, Lu K, Lin J. Ultrastructural observation and gene expression profiling of Schistosoma japonicum derived from two natural reservoir hosts, water buffalo and yellow cattle. PLoS One 2012; 7:e47660. [PMID: 23110087 PMCID: PMC3482235 DOI: 10.1371/journal.pone.0047660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/14/2012] [Indexed: 01/10/2023] Open
Abstract
Water buffalo and yellow cattle are the two of the most important natural reservoir hosts for Schistosoma japonicum in endemic areas of China, although their susceptibility differs, with water buffalo being less conducive to the growth and development of S. japonicum. Results from the current study show that the general morphology and ultrastructure of adult schistosomes derived from the two hosts also differed. Using high-throughput microarray technology, we also compared the gene expression profiles of adult schistosomes derived from the two hosts. We identified genes that were differentially expressed in worms from the two natural hosts. Further analysis revealed that genes associated with protein kinase and phosphatase, the stimulus response, and lipid and nucleotide metabolism were overexpressed, whereas genes associated with reproduction, anatomical structure morphogenesis and multifunctional motif were underexpressed in schistosomes from water buffalo. These differentially expressed genes were mainly involved in nucleotide, energy, lipid metabolism, energy metabolism, transcription, transport and signaling pathway. This suggests that they are key molecules affecting the survival and development of schistosomes in different natural host species. The results of this study add to current understanding of the interplay between parasites and their natural hosts, and provide valuable information for the screening of vaccine candidates or new drug targets against schistosomiasis in the natural reservoir hosts in endemic areas.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Yang J, Fu Z, Feng X, Shi Y, Yuan C, Liu J, Hong Y, Li H, Lu K, Lin J. Comparison of worm development and host immune responses in natural hosts of Schistosoma japonicum, yellow cattle and water buffalo. BMC Vet Res 2012; 8:25. [PMID: 22414188 PMCID: PMC3317828 DOI: 10.1186/1746-6148-8-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/13/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Yellow cattle and water buffalo are two of the most important natural hosts for Schistosoma japonicum in China. Previous observation has revealed that yellow cattle are more suited to the development of S. japonicum than water buffalo. Understanding more about the molecular mechanisms involved in worm development, as well as the pathological and immunological differences between yellow cattle and water buffalo post infection with S japonicum will provide useful information for the vaccine design and its delivery procedure. RESULTS The worm length (p < 0.01), worm recovery rate (p < 0.01) and the percentage of paired worms (p < 0.01) were significantly greater in yellow cattle than those in water buffalo. There were many white egg granulomas in the livers of yellow cattle, but fewer were observed in water buffalo at 7 weeks post infection. The livers of infected yellow cattle contained significantly increased accumulation of inflammatory cells, and the schistosome eggs were surrounded with large amounts of eosinophil infiltration. In contrast, no hepatocyte swelling or lymphocyte infiltration, and fewer white blood cells, was observed in water buffalo. The percentage of CD4⁺ T cells was higher in yellow cattle, while the percentage of CD8⁺ T cells was higher in water buffalo from pre-infection to 7 w post infection. The CD4/CD8 ratios were decreased in both species after challenge with schistosomes. Comparing with water buffalo, the IFN-γ level was higher and decreased significantly, while the IL-4 level was lower and increased gradually in yellow cattle from pre-infection to 7 w post infection. CONCLUSIONS In this study, we confirmed that yellow cattle were more suited to the development of S. japonicum than water buffalo, and more serious pathological damage was observed in infected yellow cattle. Immunological analysis suggested that CD4⁺ T cells might be an integral component of the immune response and might associate with worm development in yellow cattle. A shift from Th1 to Th2 type polarized immunity was only shown clearly in schistosome-infected yellow cattle, but no shift in water buffalo. The results provide valuable information for increased understanding of host-schistosome interactions, and for control of schistosomiasis.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Piao X, Cai P, Liu S, Hou N, Hao L, Yang F, Wang H, Wang J, Jin Q, Chen Q. Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 2011; 6:e18267. [PMID: 21494327 PMCID: PMC3071802 DOI: 10.1371/journal.pone.0018267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/24/2011] [Indexed: 01/17/2023] Open
Abstract
Background Schistosoma japonicum is one of the remarkable
Platyhelminths that are endemic in China and Southeast Asian countries. The
parasite is dioecious and can reside inside the host for many years. Rapid
reproduction by producing large number of eggs and count-react host
anti-parasite responses are the strategies that benefit long term survival
of the parasite. Praziquantel is currently the only drug that is effective
against the worms. Development of novel antiparasite reagents and
immune-prevention measures rely on the deciphering of parasite biology. The
decoding of the genomic sequence of the parasite has made it possible to
dissect the functions of genes that govern the development of the parasite.
In this study, the polyadenylated transcripts from male and female
S. japonicum were isolated for deep sequencing and the
sequences were systematically analysed. Results First, the number of genes actively expressed in the two sexes of S.
japonicum was similar, but around 50% of genes were
biased to either male or female in expression. Secondly, it was, at the
first time, found that more than 50% of the coding region of the
genome was transcribed from both strands. Among them, 65% of the
genes had sense and their cognate antisense transcripts co-expressed,
whereas 35% had inverse relationship between sense and antisense
transcript abundance. Further, based on gene ontological analysis, more than
2,000 genes were functionally categorized and biological pathways that are
differentially functional in male or female parasites were elucidated. Conclusions Male and female schistosomal parasites differ in gene expression patterns,
many metabolic and biological pathways have been identified in this study
and genes differentially expressed in gender specific manner were presented.
Importantly, more than 50% of the coding regions of the S.
japonicum genome transcribed from both strands, antisense
RNA-mediated gene regulation might play a critical role in the parasite
biology.
Collapse
Affiliation(s)
- Xianyu Piao
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Liu
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Hao
- College of Life Science and Technology,
Southwest University of Nationalities, Chengdu, Sichuan, China
| | - Fan Yang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Ministry of
Education, Institute of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
17
|
Yadav M, Liebau E, Haldar C, Rathaur S. Identification of major antigenic peptide of filarial glutathione-S-transferase. Vaccine 2010; 29:1297-303. [PMID: 21144917 DOI: 10.1016/j.vaccine.2010.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
In our earlier report, a 26kDa Setaria cervi glutathione-S-transferase showed significant protection (82%) in jirds infected with L3 larvae of Brugia malayi. In the present study we have identified the major antigenic epitopes in ScGST. Carboxypeptidase B has been used to digest the ScGST in to smaller fragments. The digested products were separated as four protein bands on SDS-PAGE. The smallest fragment of 6kDa (P4) from ScGST was identified as major antigenic epitope because of its significant reactivity with jird anti ScGST sera and human filarial sera in immunoblotting. The MALDI-LC/MS sequencing of ScGST P4 peptide ((5)KLTYFSIRGRGLAEPIRL(20), (22)KVPDDQQFLDDLISR(36) and (47)VFHFGQGPHHGPPR(62)) suggested that this protein band has a fragment of 5-62 residues long that matched with the N-terminal end of filarial GST. The antigenicity plot of ScGST was compared with BmGST model and both exhibited three immunogenic peaks within the first 60 residues towards N-terminal. In BmGST the N-terminal region was also detected with N-glycosylation signal peptide NAS adding to its high immunogenic property. Further, P4 showed strong reactivity with IgG1 and IL-4 response in endemic normal sera suggested its role in Th2 response which in turn is correlated with antibody dependent cell mediated cytotoxicity. Thus taking these results into account we propose 5-62 residues long N-terminal peptide of GST as a potential target for further vaccination studies against filarial infection.
Collapse
Affiliation(s)
- Marshleen Yadav
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
18
|
Cheng PC, Tsaihong JC, Lee KM. Application of recombinant Sjc26GST for serodiagnosis of Schistosoma japonicum infection in water buffalo (Bos buffelus). Vet Parasitol 2007; 150:314-20. [PMID: 17997225 DOI: 10.1016/j.vetpar.2007.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 01/10/2023]
Abstract
Schistosomiasis japonica is currently the most serious parasitic disease in mainland China and it is estimated that several million people are infected. Furthermore, it is also responsible for the deaths of many domestic animals. In order to establish an effective diagnostic method, the gene encoding Sjc26GST was cloned and expressed in Escherichia coli as a fusion protein with His-tag. The purified reSjc26GST was used as an antigen for an enzyme-linked immunosorbent assay (ELISA) and for immunoblotting detection of Schistosoma japonicum antibodies in water buffaloes. Our results showed that mean OD values of specific serum IgG antibodies from egg-positive buffaloes were 3.37-fold higher than what was found in egg-negative buffaloes from non-endemic areas. The data also showed the OD value of the endemic egg-negative group reached as high as 1.69 times as that found in non-endemic areas. The positivity rate of egg-positive buffaloes was 100%, but was 30.3% in the endemic egg-negative group. Infected bovine antisera also recognized reSjc26GST, a 27kDa protein as determined by Western blot. These results suggest that the recombinant GST expressed in E. coli should be an effective diagnostic reagent for detection of antibody against S. japonicum in buffaloes. Due to straightforward production, excellent sensitivity and high specificity, the reSjc26GST described in this study can be considered as a candidate protein for immunological diagnosis of bovine schistosomiasis. Developing reSjc26GST, with its potential diagnostic values, will be useful for diagnosis and surveillance of schistosomiasis in controlling the spread of this parasitic disease in domestic animals.
Collapse
Affiliation(s)
- Po-Ching Cheng
- Institute of Tropical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
19
|
Wu ZD, Lü ZY, Yu XB. Development of a vaccine against Schistosoma japonicum in China: a review. Acta Trop 2005; 96:106-16. [PMID: 16168945 DOI: 10.1016/j.actatropica.2005.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2005] [Indexed: 01/10/2023]
Abstract
Significant progress has been made over the past 50 years in the control of schistosomiasis japonica in China. However, recent data suggest that the disease is re-emerging. By the end of 2003, Schistosoma japonicum was still endemic in 110 counties in seven provinces in the southern part of China where the long-term reduction of the disease has been replaced by an increase in the number of people infected and areas infested by the intermediate host snail, i.e. Oncomelania hupensis. Explanations are multifactorial, including the construction of the Three Gorges dam, major flooding events, recovery of the Dongting Lake and the possible impact of climate change. An efficacious vaccine against S. japonicum would represent a significant addition to the current arsenal of control tools, particularly in the framework of an integrated control approach. The vaccine could be targeted either towards the prevention of infection or towards the reduction of parasite fecundity. Although progress in this field has been relatively slow, encouraging results have been obtained in recent years using defined native and recombinantly derived S. japonicum antigens. These findings suggest that development of a safe and efficacious vaccine is feasible. This paper reviews the progress in the development of a vaccine against S. japonicum in China, and includes also data from foreign researchers who are engaged in collaborative work with Chinese scientists.
Collapse
Affiliation(s)
- Zhong-Dao Wu
- Department of Parasitology, The School of Pre-clinical Medicine, Sun Yat-sen University, Guangzhou 510089, China.
| | | | | |
Collapse
|
20
|
McManus DP. Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol 2005; 27:297-308. [PMID: 16138851 DOI: 10.1111/j.1365-3024.2005.00784.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite intensive long-term control programmes, schistosomiasis japonica remains a serious public health problem in China and the Philippines. The termination of mass praziquantel-treatment has seen a dramatic recent rebound in both its prevalence and associated morbidity. Schistosomiasis japonica is a zoonosis but, despite complicating control efforts, this feature provides a practical method for attacking Schistosoma japonicum through development and deployment of a transmission blocking veterinary vaccine. A recently completed bovine drug intervention trial and mathematical modelling of the transmission of S. japonicum underpin the concept that such a vaccine, targeting water buffalo, would have major implications for future integrated schistosomiasis control in China. A major block to success is the low ceiling efficacy achieved with current vaccine molecules. To solve this challenge, an antigen discovery pipeline needs to be established for identification of new vaccine targets that induce greater potency than the current anti-S. japonicum candidate vaccines. Excretory-secretory products and molecules exposed on epithelial surfaces (including receptors) which interact directly with the host immune system warrant especial attention. Extensive schistosome genomics programmes currently underway coupled with new advances in proteomics and microarray technology provide an unparalleled opportunity to identify new molecules exploitable as vaccine targets. These will then need to be produced in quantity and rigorously tested first in the laboratory and then the field. If a transmission blocking veterinary vaccine developed for bovines can be put into practice in combination with other control strategies such as human chemotherapy, elimination of S. japonicum from China may be achievable.
Collapse
Affiliation(s)
- D P McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| |
Collapse
|
21
|
Wu Z, Liu S, Zhang S, Tong H, Gao Z, Liu Y, Lin D, Liu Z, Wu G, Yi H, Song G, Xu Y. Persistence of the protective immunity to Schistosoma japonicum in Chinese yellow cattle induced by recombinant 26kDa glutathione-S-transferase (reSjc26GST). Vet Parasitol 2004; 123:167-77. [PMID: 15325043 DOI: 10.1016/j.vetpar.2004.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 02/16/2004] [Accepted: 02/24/2004] [Indexed: 01/10/2023]
Abstract
To observe the long lasting effect of the recombinant Sj26GST sub-unit vaccine against Schistosoma japonicum in cattle, animals aged from 5 to 12 months were vaccinated with reSjc26GST, and were challenged by natural infection 6 months or 12 months after vaccination. Worm burdens per cattle and egg burden in tissue (per gram) of cattle with or without vaccination were compared. The results showed that anti-reSjc26GST antibodies were produced in vaccinated cattle. Following natural infection, the vaccinated and the control non-vaccinated cattle were all found to be infected with S. japonicum. A 30% reduction in worm number was observed in the vaccinated cattle when compared with the control cattle. The anti-fecundity effect was characterized by an average of 60% decrease in eggs deposited in the liver of vaccinated cattle; such a decrease is obviously very significant. In addition to the anti-fecundity effect induced in the vaccinated cattle, the number of miracidum hatched per 50 g faeces and the number of eggs released in intestinal tissues per gram were reduced or decreased. Results suggested that the immune responses induced by reSjc26GST in cattle were similar to that in buffaloes and in pigs. In addition, our result demonstrated that the lasting effect of immunity to S. japonicum induced in cattle after vaccination with reSjc 26 GST could persist at least 12 months.
Collapse
Affiliation(s)
- Zhongdao Wu
- Jiangxi Provincial Institute of Parasitic Diseases, Nanchang 330046, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
There is continued transmission of schistosomiasis japonica in China and Philippines despite highly effective control programs that focus on the application of the highly effective drug praziquantel (PZQ). The massive Three Gorges Dam across the Yangtze River in Southern China, soon to be completed, is expected to significantly increase schistosomiasis transmission and introduce the disease into areas currently unaffected. After long-term experience it is generally accepted that PZQ chemotherapy, although the cornerstone of current control programs, does have significant limitations. Furthermore, efficient drug delivery requires a substantial infrastructure to regularly cover all parts of an endemic area. Although there is not yet clear-cut evidence for the existence of PZQ-resistant schistosome strains, decreased susceptibility to the drug has been observed in several countries. As a result, a protective vaccine represents an essential component for the long-term control of schistosomiasis. This article briefly reviews aspects of anti-schistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against Schistosoma japonicum will then be discussed as will new approaches that may improve on the efficacy of available vaccines, and aid in the identification of new targets for immune attack. With new and extensive data becoming available from the S. japonicum genome project, the prospects for developing an effective vaccine are encouraging. The challenges that remain are many but it is crucial that the momentum towards developing effective anti-schistosome vaccines is maintained.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Australian Center for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4029, Australia.
| | | |
Collapse
|
23
|
Druilhe P, Hagan P, Rook GAW. The importance of models of infection in the study of disease resistance. Trends Microbiol 2002; 10:S38-46. [PMID: 12377567 DOI: 10.1016/s0966-842x(02)02437-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Models currently occupy the crucial first step in the research flow for the development of new drugs and vaccines. Some animal models are better at reflecting the host-pathogen interaction in humans than others; this depends on the pathogen and its host specificity. Data gathered from what are often poorly adapted models provide a mosaic of sometimes contradictory information, yet there is little incentive to better delineate the relevance of models or to exploit recent advances to develop improved ones. This review reports on three particularly intractable human pathogens - Mycobacterium, Plasmodium and Schistosoma - and reflects that the extent to which these model systems mimic infection and protection processes in humans might not be sufficiently well defined.
Collapse
Affiliation(s)
- Pierre Druilhe
- Biomedical Parasitology Unit, Institute Pasteur, 25 rue du Dr Roux, Paris, France.
| | | | | |
Collapse
|
24
|
Shi F, Zhang Y, Lin J, Zuo X, Shen W, Cai Y, Ye P, Bickle QD, Taylor MG. Field testing of Schistosoma japonicum DNA vaccines in cattle in China. Vaccine 2002; 20:3629-31. [PMID: 12399187 DOI: 10.1016/s0264-410x(02)00398-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.
Collapse
Affiliation(s)
- Fuhui Shi
- Shanghai Institute of Animal Parasitology, Chinese Academy of Agricultural Sciences, 3 Lane 345 Shi-long Road, Shanghai 200232, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Williams GM, Sleigh AC, Li Y, Feng Z, Davis GM, Chen H, Ross AGP, Bergquist R, McManus DP. Mathematical modelling of schistosomiasis japonica: comparison of control strategies in the People's Republic of China. Acta Trop 2002; 82:253-62. [PMID: 12020899 DOI: 10.1016/s0001-706x(02)00017-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the first mathematical model on the transmission dynamics of Schistosoma japonicum. The work extends Barbour's classic model of schistosome transmission. It allows for the mammalian host heterogeneity characteristic of the S. japonicum life cycle, and solves the problem of under-specification of Barbour's model by the use of Chinese data we are collecting on human-bovine transmission in the Poyang Lake area of Jiangxi Province in China. The model predicts that in the lake/marshland areas of the Yangtze River basin: (1) once-yearly mass chemotherapy of humans is little better than twice-yearly mass chemotherapy in reducing human prevalence. Depending on the heterogeneity of prevalence within the population, targeted treatment of high prevalence groups, with lower overall coverage, can be more effective than mass treatment with higher overall coverage. Treatment confers a short term benefit only, with prevalence rising to endemic levels once chemotherapy programs are stopped; (2) depending on the relative contributions of bovines and humans, bovine treatment can benefit humans almost as much as human treatment. Like human treatment, bovine treatment confers a short-term benefit. A combination of human and bovine treatment will dramatically reduce human prevalence and maintains the reduction for a longer period of time than treatment of a single host, although human prevalence rises once treatment ceases; (3) assuming 75% coverage of bovines, a bovine vaccine which acts on worm fecundity must have about 75% efficacy to reduce the reproduction rate below one and ensure mid-term reduction and long-term elimination of the parasite. Such a vaccination program should be accompanied by an initial period of human treatment to instigate a short-term reduction in prevalence, following which the reduction is enhanced by vaccine effects; (4) if the bovine vaccine is only 45% efficacious (the level of current prototype vaccines) it will lower the endemic prevalence, but will not result in elimination. If it is accompanied by an initial period of human treatment and by a 45% improvement in human sanitation or a 30% reduction in contaminated water contact by humans, elimination is then possible.
Collapse
Affiliation(s)
- Gail M Williams
- Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Devaney E, Gillan V, Wheatley I, Jenson J, O'Connor R, Balmer P. Interleukin-4 influences the production of microfilariae in a mouse model of Brugia infection. Parasite Immunol 2002; 24:29-37. [PMID: 11856444 DOI: 10.1046/j.0141-9838.2001.00433.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sub-cutaneous infection of interleukin (IL)-4-/- mice on the BALB/c background with third stage larva (L3) of Brugia pahangi revealed an altered cytokine profile consistent with the absence of the Th2 promoting cytokine IL-4. Splenocytes from IL-4-/- mice secreted significantly more antigen (Ag)-specific IL-2 and interferon-gamma and significantly less Ag-specific IL-5, compared to those from L3-infected wild-type mice. However, levels of Ag-specific IL-13 were similar between groups. Despite the alteration in immune responses, there was no significant difference in recovery of developing worms from the peritoneal cavity of the two strains of mice at any time postinfection. However, at later time points of infection, the IL-4-/- mice contained large numbers of microfilariae (Mf) in the peritoneal cavity while the wild-type mice contained comparatively few Mf. The differences in Mf levels appear to relate to differences in worm fecundity in the two strains of mice, with adult female worms from the wild-type mice containing few developing Mf. Moreover, implantation of sexually mature adult female worms into the peritoneal cavity of both strains of mice resulted in equal levels of Mf, confirming that the primary role of IL-4 is to limit fecundity during the maturation phase of infection.
Collapse
Affiliation(s)
- Eileen Devaney
- Department of Veterinary Parasitology, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Shi F, Zhang Y, Ye P, Lin J, Cai Y, Shen W, Bickle QD, Taylor MG. Laboratory and field evaluation of Schistosoma japonicum DNA vaccines in sheep and water buffalo in China. Vaccine 2001; 20:462-7. [PMID: 11672910 DOI: 10.1016/s0264-410x(01)00340-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vaccines are needed to control zoonotic Schistosoma japonicum infection and several vaccine candidates have now been identified. Two of these (Sj28GST and Sj23) have shown particular promise in sheep when injected with Freund's adjuvants. The objective of the present work was to find a vaccine formulation which may have potential for widespread use in the field. DNA vaccine formulations of these antigens were produced and tested first in sheep under laboratory conditions and then in both the laboratory and the field in water buffalo. In both host species partial protection as evidenced by a reduction in parasite counts in vaccinated compared with control animals was induced by both vaccines, and in water buffalo the vaccines were shown to be partially protective in the field as well as in the laboratory. These results suggest that the two DNA vaccines tested here may have potential for large-scale field use.
Collapse
Affiliation(s)
- F Shi
- Shanghai Institute of Animal Parasitology, Chinese Academy of Agricultural Sciences, 3 Lane 345 Shi-long Road, Shanghai 200232, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
He YX, Salafsky B, Ramaswamy K. Host--parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol 2001; 17:320-4. [PMID: 11423374 DOI: 10.1016/s1471-4922(01)01904-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Control of schistosomiasis caused by Schistosoma japonicum has been severely hindered by the fact that several non-human mammalian species, including domesticated as well as wild animals, serve as zoonotic carriers of this infection. For effective control, it is imperative that the full host spectrum of this infection is understood. Although about 46 species of mammals are known to carry natural infection with S. japonicum, only a few might be of potential threat to human infection. Generally, in an endemic area, transmission of schistosomiasis to human depends largely on the availability and abundance of permissive hosts. Another important factor that needs to be taken into consideration in developing control measures against S. japonicum is potential strain differences. This review collates pertinent host-parasite relationship of S. japonicum in mammals in an endemic area and assesses the epidemiological significance of these findings for human infection.
Collapse
Affiliation(s)
- Y X He
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Scott JC, McManus DP. Molecular cloning and enzymatic expression of the 28-kDa glutathione S-transferase of Schistosoma japonicum: evidence for sequence variation but lack of consistent vaccine efficacy in the murine host. Parasitol Int 2000; 49:289-300. [PMID: 11077263 DOI: 10.1016/s1383-5769(00)00058-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glutathione S-transferases (GSTs) have long been regarded as attractive vaccine (and drug) targets in schistosomes due to their suspected role in detoxification processes. Indeed, the 28-kDa GST of Schistosoma mansoni (SmGST28) has proven efficacy as an antigen for protective immunity reducing worm burden, female fecundity and egg viability. In contrast, the vaccinating effects of the bacterial expressed homologue of Philippine S. japonicum (SjpGST28) have proved disappointing, possibly because this recombinant form was an incomplete sequence, lacking five N-terminal amino acids which may have affected its vaccination efficacy. Here we describe the cloning and functional enzymatic expression of a complete cDNA encoding SjpGST28. We report also on the immunogenicity and vaccine efficacy of this molecule as a purified recombinant protein and as a DNA plasmid vaccine in the murine model. We further describe the cloning of several complete cDNAs encoding the Chinese homologue of SjpGST28 and the identification of 3 SjcGST28 sequence variants which are probably encoded by distinct alleles.
Collapse
Affiliation(s)
- J C Scott
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, Post Office Royal Brisbane Hospital, Herston, Queensland 4029, Brisbane, Australia
| | | |
Collapse
|
31
|
Cesari IM, Ballen DE, Perrone T, Oriol O, Hoebeke J, Bout D. Enzyme activities in Schistosoma mansoni soluble egg antigen. J Parasitol 2000; 86:1137-40. [PMID: 11128495 DOI: 10.1645/0022-3395(2000)086[1137:eaisms]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Schistosoma mansoni egg antigens are mostly responsible for the granulomatous pathology in human intestinal schistosomiasis. Several previous studies have indicated that the induction of an immune response against some parasite enzymes may protect against pathology. The present work was designed to identify enzyme activities present in a standard soluble egg antigen (SEA) preparation. Simple colorimetric analyses were performed incubating SEA with 2-naphthyl, 2-naphthylamide (2NA), or p-nitrophenyl substrates at different pHs in the absence of added effectors. Results showed prominent acid phosphatase (pH 5.4), alkaline phosphatase (pH 8.5), and N-acetyl-beta-glucosaminidase (pH 5.4) activities. Relevant peptidase activities were also detected at pH 6.5-7.5 against 2NA derivatives of (1) aliphatic (alpha-Ala > beta-Ala > Leu > Met > S-benzyl-Cys), polar (Ser > Gln), basic (Arg > Lys > ornithine), and acidic (Glu) amino acids; (2) dipeptides: X-Ala (X = Gly > Leu > Lys > Asp), X-Arg (X = Ala > Arg > Phe > Gly > Pro > Asp), Ser-Met, and Phe-Pro; and (3) tripeptides (Ala-Phe-Pro > Phe-Pro-Ala). The data demonstrated that S. mansoni SEA contains a rich set of hydrolases with different specificities that might play a role in the egg physiology and possibly also in the host-parasite relationships.
Collapse
Affiliation(s)
- I M Cesari
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
32
|
Li Y, Auliff A, Jones MK, Yi X, McManus DP. Immunogenicity and immunolocalization of the 22.6 kDa antigen of Schistosoma japonicum. Parasite Immunol 2000; 22:415-24. [PMID: 10972848 DOI: 10.1046/j.1365-3024.2000.00319.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The 22.6 kDa tegumental-associated antigens of Schistosoma mansoni (Sm22.6) and Schistosoma japonicum (Sj22.6) are of recognized interest in schistosomiasis vaccine development, although no direct vaccination/challenge experiments using either Sm22.6 or Sj22.6 had been previously described. We report that Escherichia coli-expressed reSj22.6 failed to protect mice or water buffaloes against subsequent challenge with S. japonicum cercariae. This was despite the fact that specific IgG (buffaloes) and IgG and IgE (CBA mice) antibodies were generated against the 22.6 kDa molecule, observations consistent with some of our earlier findings. We could find no evidence from immunolocalization studies that Sj22.6 is expressed or exposed on the surface of the adult parasite since it appears to be restricted to the apical cytoplasm of the tegument and is not associated with the apical or basal membrane or any membrane-bound structures in the apical cytoplasm. Nevertheless, Sj22.6 must be released to the immune system during the course of infection because specific anti-Sj22.6 IgG antibodies were present in the sera of nonvaccinated but challenged mice. We conclude that it may be necessary to produce reSj22.6 in a more relevant expression system, such as baculovirus, to further establish its vaccine potential and that detailed immunochemical and immunolocalization studies of early developmental stages may be necessary to determine how Sj22.6 is released or shed in S. japonicum infections.
Collapse
Affiliation(s)
- Y Li
- Molecular Parasitology Unit, Tropical Health Program, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and the University of Queensland, Australia
| | | | | | | | | |
Collapse
|
33
|
Abstract
The development of an effective vaccine against the Asian schistosome is at a critical stage. Despite the fact that progress has been relatively slow, the successful use in animals of attenuated vaccines combined with recent encouraging results using defined native and recombinantly derived Schistosoma japonicum antigens, suggests that development of a safe and effective vaccine is feasible. This review examines current progress aimed at achieving this objective, and a summary is provided of recent results obtained with the most encouraging vaccine antigens. When available for wide-scale use, it is envisaged that the vaccine would be applied in the first instance, at least in China, in the veterinary context (to impact on human transmission) and then, perhaps, if required, clinically (to prevent or reduce disease). The search for the final product is likely to be demanding, and funding issues pertaining to Good Manufacturing Practice-scale-up of the vaccine for the required extensive veterinary coverage, and to support any future human trials, will need to be resolved. As such, we may still have to wait some time before the ultimate vaccine, possibly comprising a cocktail of several molecules, is available. Even then, the vaccine would probably be used optimally as one component of an integrated programme of schistosomiasis control that would include effective and well-tested approaches, such as health education and targeted chemotherapy.
Collapse
Affiliation(s)
- D P McManus
- Molecular Parasitology Unit, Tropical Health Program, Australian Centre for International and Tropical Health and Nutrition, Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Abstract
The search for an effective vaccine against schistosomiasis, a parasitic disease currently affecting over 200 million people, remains a desirable but as yet challenging and elusive goal. Progress in the area has been relatively slow but research demonstrating the ability of humans to acquire natural immunity to schistosome infection, together with the successful use in animals of attenuated vaccines, supplemented with encouraging results obtained with defined antigens, suggests that development of a vaccine is achievable. Noteworthy also are recent immune correlate findings which shed light on the complex, putatively protective immune responses in humans, which have improved the prospects of success. With the first human clinical trial having been completed with a schistosome vaccine candidate, this review examines current progress aimed at achieving the objective of a safe and effective vaccine for widespread use against schistosomiasis. The review emphasises work undertaken in the author's laboratory and those of his chief collaborators in the search for a vaccine against schistosomiasis japonica, a disease of major public health significance in The People's Republic of China and The Philippines. Schistosomiasis vaccines should not be considered as the panacea for schistosomiasis control as, when available, it is generally envisaged that they would be used as one component of an integrated strategy complementing currently available and effective tools such as chemotherapy, improvements to sanitation, piped water supply, effective sewage draining and health education.
Collapse
Affiliation(s)
- D P McManus
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, Australia.
| |
Collapse
|
35
|
Shuxian L, Guangchen S, Yuxin X, McManus DP, Hotez PJ. Progress in the development of a vaccine against schistosomiasis in China. Int J Infect Dis 1998; 2:176-80. [PMID: 9625614 DOI: 10.1016/s1201-9712(98)90124-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- L Shuxian
- Institute of Parasitic Diseases, Chinese Academy of Preventive Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|