1
|
Zhou Y, He X, Zhang W, Zhang W, Zhao H, Zhou X, Gu Q, Shen H, Yang H, Liu X, Huang L, Shi Q. Cell-recruited microspheres for OA treatment by dual-modulating inflammatory and chondrocyte metabolism. Mater Today Bio 2024; 27:101127. [PMID: 38979128 PMCID: PMC11228804 DOI: 10.1016/j.mtbio.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease potentially exacerbated due to inflammation, cartilage degeneration, and increased friction. Both mesenchymal stem cells (MSCs) and pro-inflammatory macrophages play important roles in OA. A promising approach to treating OA is to modify multi-functional hydrogel microspheres to target the OA microenvironment and structure. Arginyl-glycyl-aspartic acid (RGD) is a peptide widely used in bioengineering owing to its cell adhesion properties, which can recruit BMSCs and macrophages. We developed TLC-R, a microsphere loaded with TGF-β1-containing liposomes. The recruitment effect of TLC-R on macrophages and BMSCs was verified by in vitro experiments, along with its function of promoting chondrogenic differentiation of BMSCs. And we evaluated the effect of TLC-R in balancing OA metabolism in vitro and in vivo. When TLC-R was co-cultured with BMSCs and lipopolysaccharide (LPS)-treated macrophages, it showed the ability to recruit both cells in substantial numbers. As the microspheres degraded, TGF-β1 and chondroitin sulfate (ChS) were released to promote chondrogenic differentiation of the recruited BMSCs, modulate chondrocyte metabolism and inhibit inflammation induced by the macrophages. Furthermore, in vivo analysis showed that TLC-R restored the narrowed space, reduced osteophyte volume, and improved cartilage metabolic homeostasis in OA rats. Altogether, TLC-R provides a comprehensive and novel solution for OA treatment by dual-modulating inflammatory and chondrocyte metabolism.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Wen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Weiguo Zhang
- Department of Radiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, 9 Chongwen Road, Suzhou, Jiangsu, 215123, PR China
| | - Huan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Hao Shen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Xingzhi Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| |
Collapse
|
2
|
Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug delivery and enhanced osteogenic differentiation in vitro. Int J Pharm 2024; 657:124134. [PMID: 38643810 DOI: 10.1016/j.ijpharm.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.
Collapse
Affiliation(s)
- Haowen Qi
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Bingqing Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingjuan Wang
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
3
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
4
|
Qiao Y, Liu X, Zhou X, Zhang H, Zhang W, Xiao W, Pan G, Cui W, Santos HA, Shi Q. Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration. Adv Healthc Mater 2020; 9:e1901239. [PMID: 31814318 DOI: 10.1002/adhm.201901239] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/17/2019] [Indexed: 11/09/2022]
Abstract
Polypeptides with short chains of amino acid monomers have been widely applied in the clinic because of their various biological functions. However, the easily-inactivated characteristics and burst releasing of the peptides limit their application in vivo. Here, a novel osteogenic polypeptide hydrogel (GelMA-c-OGP) is created by co-cross-linking template photo-cross-linked gelatin (GelMA) with photo-cross-linkable osteogenic growth peptides (OGP) using ultraviolet radiation. GelMA enables the formation of hydrogel with photo-cross-linkable OGP with good mechanical properties and also promotes bone regeneration. GelMA-c-OGP hydrogel accelerates the bone formation procedure of osteogenic precursor cells by significantly enhancing the expression of osteogenic-related genes BMP-2, OCN, and OPN, and increasing the precipitation of calcium salts in osteoblasts. Similarly, GelMA-c-OGP hydrogel promotes bone regeneration in vivo. Furthermore, it is observed that more collagen fibers connect cortical bones in the GelMA-c-OGP implanted group than the control group by hematoxylin-eosin and immunohistochemical staining of Collagen I and TGF-β. The co-cross-linked OGP polypeptide converts from liquid to solid hydrogel with transient UV light in situ, which also can strengthen the mechanical property of the defect bone and avoid burst osteogenic peptide, releasing during the bone defect healing period. Overall, this hydrogel delivering system has a significant impact on bone defect healing compared with traditional methods.
Collapse
Affiliation(s)
- Yusen Qiao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| | - Xingzhi Liu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| | - Xichao Zhou
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
- Department of Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurku Bioscience CenterUniversity of Turku and Åbo Akademi University Turku FI‐20520 Finland
| | - Wen Zhang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| | - Wei Xiao
- Department of OrthopedicsSichuan Science City Hospital No.64 Mianshan Road Mianyang Sichuan 621054 P. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE)University of Helsinki Helsinki FI‐00014 Finland
| | - Qin Shi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| |
Collapse
|
5
|
Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019; 85:294-309. [PMID: 30553873 DOI: 10.1016/j.actbio.2018.12.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20 wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9 ± 5.6% and 325.7 ± 20.2 mg/cm3, respectively, which were much higher than the values 8.1 ± 2.5% (BV/TV) and 124 ± 35.8 mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Collapse
Affiliation(s)
- Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Fuyu Chen
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Asadi V, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I. Novel bovine carbonic anhydrase encapsulated in a metal–organic framework: a new platform for biomimetic sequestration of CO2. RSC Adv 2019; 9:28460-28469. [PMID: 35529640 PMCID: PMC9071054 DOI: 10.1039/c9ra04603h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, maximizing the utilization of CO2 and its precipitation as CaCO3 by using immobilized bovine carbonic anhydrase (BCA) was evaluated. In this way, selection of suitable carriers which have a gas adsorption function would enhance the CO2 sequestration efficiency of the carbonic anhydrase (CA). So a metal–organic framework (MOF), an excellent material for gas adsorption and enzyme immobilization was used. In this manner, BCA was encapsulated into the microporous zeolite imidazolate framework, ZIF-8, for the first time, using a bottle-around-a-ship method. Systematic characterization including powder X-ray diffraction (PXRD), UV-vis, and Fourier transform infrared (FT-IR) spectroscopies, BET, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) confirmed that the entrapment of BCA molecules was successfully achieved during the crystal growth of ZIF-8 with an enzyme loading of ca. 100 ± 1.2 mg g−1 of BCA–ZIF-8. Optimization of the matrix for increasing the stability of the enzyme in an encapsulated form is the main aim of the present study. The de novo approach was proposed because this method provides better enzyme protection from degradation, minimizes enzyme leaching and enables multiple reuse. Then, the influence of different parameters, including pH, temperature, storage and reusability, was evaluated for enzyme@MOF composites versus free enzymes. The prepared biocatalyst exhibited outstanding activity in a wide pH and temperature range and demonstrates high storage stability up to 37 days. This efficient and simple association procedure seems well-adapted to produce an enzymatic bio-catalyst for biocatalytic hydration of CO2. The FT-IR analysis revealed that the structure of BCA was well maintained during the encapsulation process. The thermal stability and reusability of the BCA–ZIF-8 increased noticeably due to the structural rigidity and confinement of the ZIF-8 scaffolds. These two parameters are very important for practical applications. A novel heterogeneous bio-catalyst was developed for CO2 capture by encapsulating bovine carbonic anhydrase into ZIF-8.![]()
Collapse
Affiliation(s)
- Vahideh Asadi
- Department of Chemistry
- Catalysis Division
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | - Reihaneh Kardanpour
- Department of Chemistry
- Catalysis Division
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | | | - Majid Moghadam
- Department of Chemistry
- Catalysis Division
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | - Valiollah Mirkhani
- Department of Chemistry
- Catalysis Division
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | | |
Collapse
|
7
|
Qi F, Wu J, Li H, Ma G. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1729-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Park JY, Kim YH, Min J. CO2 reduction and organic compounds production by photosynthetic bacteria with surface displayed carbonic anhydrase and inducible expression of phosphoenolpyruvate carboxylase. Enzyme Microb Technol 2017; 96:103-110. [DOI: 10.1016/j.enzmictec.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
|
9
|
Bédouet L, Verret V, Louguet S, Servais E, Pascale F, Beilvert A, Baylatry MT, Labarre D, Moine L, Laurent A. Anti-angiogenic drug delivery from hydrophilic resorbable embolization microspheres: An in vitro study with sunitinib and bevacizumab. Int J Pharm 2015; 484:218-27. [DOI: 10.1016/j.ijpharm.2015.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
|
10
|
Fan LH, Liu N, Yu MR, Yang ST, Chen HL. Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO₂ sequestration. Biotechnol Bioeng 2011; 108:2853-64. [PMID: 21732326 DOI: 10.1002/bit.23251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 11/11/2022]
Abstract
Carbonic anhydrase (CA) has recently gained renewed interests for its potential as a mass-transfer facilitator for CO(2) sequestration. However, the low stability and high price severely limit its applications. In this work, the expression of α-CA from Helicobacter pylori on the outer membrane of Escherichia coli using a surface-anchoring system derived from ice nucleation protein (INP) from Pseudomonas syringae was developed. To find the best surface anchoring motif, full-length INP (114 kDa), truncated INP (INP-NC, 33 kDa), and INP's N-domain with first two subunits (INP-N, 22 kDa) were evaluated. Two vectors, pKK223-3 and pET22b(+), with different promoters (T7 and Tac) were used to construct the fusion genes, and for each vector, three recombinant strains, each expressing a different length of the fusion protein, were obtained. SDS-PAGE, Western blot, immunofluorescence microscopy, FACS, and whole-cell ELISA confirmed the expression of fusion proteins on the surface of E. coli. The smallest fusion protein with INP-N as the anchoring motif had the highest expression level and CA activity, suggesting that INP-N is the best carrying protein due to its smaller size. Also, the T7 promoter in pET22b(+) induced with 0.2 mM IPTG gave high protein expression levels, whereas the Tac promoter in pKK223-3 gave low expression levels. The surface displayed CA was at least twofold more stable than that of the free form, and did not show any adverse effect on cell growth and outer membrane integrity. Cells with surface displayed CA were successfully used to facilitate CO(2) sequestration in contained liquid membrane (CLM).
Collapse
Affiliation(s)
- Li-Hai Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
11
|
A review on composite liposomal technologies for specialized drug delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:939851. [PMID: 21490759 PMCID: PMC3065812 DOI: 10.1155/2011/939851] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/23/2010] [Accepted: 12/07/2010] [Indexed: 12/21/2022]
Abstract
The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.
Collapse
|
12
|
Houchin ML, Topp EM. Physical properties of PLGA films during polymer degradation. J Appl Polym Sci 2009. [DOI: 10.1002/app.30813] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci 2008; 97:2395-404. [PMID: 17828756 DOI: 10.1002/jps.21176] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biodegradable poly(lactide-co-glycolide) (PLGA) polymers have been studied extensively for the controlled release of peptide and protein drugs. In addition to polymer biodegradation, chemical degradation of the incorporated peptide/protein has also been reported in PLGA devices, and the role of the polymer in promoting these reactions has been debated. This review summarizes the peptide/protein chemical degradation reactions that have been reported in PLGA systems and their mechanisms. Reported methods for stabilizing peptides and proteins in PLGA devices are also discussed.
Collapse
Affiliation(s)
- M L Houchin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | | |
Collapse
|
14
|
Chung TW, Tsai YL, Hsieh JH, Tsai WJ. Different ratios of lactide and glycolide in PLGA affect the surface property and protein delivery characteristics of the PLGA microspheres with hydrophobic additives. J Microencapsul 2008; 23:15-27. [PMID: 16830974 DOI: 10.1080/02652040500286110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study investigated whether the surface quantities of the additives and protein delivery characteristics for protein-loaded PLGA 85 (85:15), PLGA75 (75:25) and PLGA 50 (50:50) microspheres with hydrophobic additives, phosphatidylcholine (PC) as a model, are affected by the different ratios of lactide and glycolide in PLGA polymers. By applying phospholipids analysis, surface PC quantities of the microspheres are 2.1 +/- 1.2, 1.2 +/- 0.3 and 1.0 +/- 0.7 Pg (n = 3) per mg of PLGA 85, PLGA 75 and PLGA 50 microspheres with PC addition, respectively, that are affected by the ratio of lactide and glycolide in PLGA. The addition of PC causes the decreased encapsulation efficiency (E.E.) of albumin of the microspheres and the decreased percentages of E.E. are negative correspondent to ratio of lactide and glycolide in PLGA (e.g. -13.5, -20.2 and -24.5% for PLGA 85, PLGA 75 and PLGA 50, respectively) compared with those without addition. The cumulative releases of albumin were influenced by the ratio of lactide and glycolide in PLGA for both PC addition and non-addition microspheres. Moreover, the additions of PC reduce the initial burst and cumulative releases of albumin of the microspheres compared with those of non-added ones. Further investigation suggests that resistant water uptake of PC added microspheres may play a role on affecting those reduced protein release behaviours. In conclusion, the different ratios of lactide and glycolide in PLGA affect the surface quantities of PC, E.E. and cumulative release profiles of albumin for the PLGA microspheres with PC addition. The results of the study may help the better practical applications for protein delivery of the microspheres with hydrophobic additives.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Department of Chemical Engineering, National Yu-Lin University of Science and Technology, Tou-Liu, Yun-Lin, Taiwan, ROC.
| | | | | | | |
Collapse
|
15
|
Wang SS, Yang MC, Chung TW. Liposomes/chitosan scaffold/human fibrin gel composite systems for delivering hydrophilic drugs--release behaviors of tirofiban in vitro. Drug Deliv 2008; 15:149-57. [PMID: 18379927 DOI: 10.1080/10717540801952456] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A new liposomes/chitosan scaffold/human fibrin gel composite system (LCSHFG), as a depot drug delivery system, was developed to deliver low-molecular weight hydrophilic drugs. An antithrombosis drug, Tirofiban, was used as a model drug. Human fibrin gels encapsulated Tirofiban loaded liposomes were formed within chitosan scaffolds to configure the LCSHFG. The in vitro release behaviors of Tirofiban from LCSHFG were studied by characterizing the constituents of LCSHFG. The results show that the release periods of Tirofiban from LCSHFG with 50 microm pores in the chitosan scaffolds are generally 20% or longer more than those with 200 microm pores. The following results were obtained for the system that comprised 50 microm pores. The release periods of Tirofiban from LCSHFG loaded with stearylamine (SA)-liposomes can sustain 20% longer and significantly less burst release (p < 0.01, n = 3) than with liposomes. The release profiles of Tirofiban from LCSHFG change markedly when 0.5 and 2.5% glutaraldehyde is used to cross-link the system. Additionally, for all liposomes, the release periods of Tirofiban from cross-linked LCSHFG with 2.5% glutaraldehyde are 40% or more longer time (e.g., 19 days) with significantly less burst release (p < 0.01, n = 3) than those of noncrosslinked LCSHFG. Notably, the bioactivity of released Tirofiban from LCSHFG that is crosslinked by 2.5% glutaraldehyde effectively inhibits adenosine diphosphate inducing platelet aggregation. The work also suggests that LCSHFG may have potential as a depot drug delivery system for low-molecular-weight hydrophilic drugs.
Collapse
Affiliation(s)
- Shoi-Shen Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
16
|
Houchin ML, Heppert K, Topp EM. Deamidation, acylation and proteolysis of a model peptide in PLGA films. J Control Release 2006; 112:111-9. [PMID: 16529840 DOI: 10.1016/j.jconrel.2006.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/25/2006] [Accepted: 01/30/2006] [Indexed: 11/30/2022]
Abstract
The relative rates of deamidation, acylation and proteolysis (i.e. amide bond cleavage) were determined for a model peptide (VYPNGA) in poly (dl-lactide-co-glycolide) films. Films were stored at 70 degrees C and either 95%, 75%, 60%, 45%, 28%, or approximately 0% relative humidity and at 37 degrees C and 95% relative humidity. Peptide degradation products were identified by ESI+MS/MS and quantitated by LC/MS/MS. Extensive overlap of degradation mechanisms occurred, producing a complex mixture of products. Acylation was the dominant peptide degradation reaction (10-20% of total peptide) at early stages of PLGA hydrolysis and at intermediate relative humidity (60-45% RH). Deamidation and proteolysis were dominant (25-50% and 20-40% of total peptide, respectively) at later stages and at high relative humidity (95-75% RH). Understanding the relative rates of each peptide degradation reaction will allow for improved design of PLGA formulations that preserve the stability of peptide and protein drugs.
Collapse
Affiliation(s)
- M L Houchin
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
17
|
Chung TW, Yang MC, Tsai WJ. A fibrin encapsulated liposomes-in-chitosan matrix (FLCM) for delivering water-soluble drugs. Influences of the surface properties of liposomes and the crosslinked fibrin network. Int J Pharm 2006; 311:122-9. [PMID: 16446064 DOI: 10.1016/j.ijpharm.2005.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 11/29/2005] [Accepted: 12/12/2005] [Indexed: 11/24/2022]
Abstract
A depot drug delivery system, fibrin encapsulated liposome-in-chitosan matrix (FLCM), has been developed to deliver a water-soluble drug which is configured by a porous chitosan matrix containing a bovine fibrin network encapsulated different surface properties of liposomes. Quinacrine (QR), a water-soluble, low-molecular weight fluorescent marker, is used as a model drug to evaluate the delivery characteristics of the system. The SEM photographs show that the fibrin network adheres to the surfaces and pores of the chitosan matrix of a FLCM system. The QR release periods of the FLCM are sustained for about four times longer than those of QR encapsulated into the liposomes. However, the QR release periods and profiles of the FLCM are influenced by the surface properties of liposomes. The release of QR from FLCM is sustained for 9 days for neutral liposomes and only 5 days for PEG modified liposomes (PEG-liposome). After crosslinking the fibrin network of the FLCM with 0.5% of glutaldehyde, the release of QR is further sustained for 17 days with good linear profiles (e.g., 13 days) and with 50% of reduced burst release compared with those of without crosslinking, indicating that the stability of the fibrin network plays an important role on QR release of the system. More interestingly, the release periods and profiles of QR of the FLCM system are highly similar to those of Tirofiban, low-molecular weight of a water-soluble clinical cardiovascular drug, although the study has been done by human platelet poor plasma instead of bovine fibrinogen as a source of fibrin network. It suggests that the QR is a suitable model for investigating the drug delivery behaviors for water-soluble, low-molecular weight drugs of the FLCM. In conclusion, with QR as a model drug, FLCM with crosslinked fibrin network can effectively sustain the release of QR for 17 days but the release profiles are influenced by the surface properties of encapsulated liposomes. This study suggests that FLCM may have the potential as a depot drug delivery system for water-soluble drugs.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan, ROC.
| | | | | |
Collapse
|