1
|
Mumcu A. A different approach to the quantification of human seminal plasma metabolites using high-resolution NMR spectroscopy. J Pharm Biomed Anal 2023; 229:115356. [PMID: 37011551 DOI: 10.1016/j.jpba.2023.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In this study, a reliable method was established for the absolute quantification of metabolite concentrations in human seminal plasma using ERETIC2, a quantification tool developed by Bruker based on the PULCON principle. The performance of the ERETIC2 was examined using an AVANCE III HD NMR spectrometer (600 MHz) equipped with a triple inverse 1.7 mm TXI probe in terms of some experimental parameters that may affect the accuracy and precision of the quantitative results. Then, the accuracy, precision, and repeatibility of ERETIC2 were determined using L-asparagine solutions at different concentrations. And it was evaluated by comparing it with the classical internal standard (IS) quantification method. The relative standard deviation (RSD) values for ERETIC2 were calculated in the range of 0.55-1.90% and the minimum recovery value was 99.9%, while the RSD values for the IS method were calculated in the range of 0.88-5.83% and recovery value was minimum 91.0%. Besides, the RSD values of the inter-day precisions for the ERETIC2 and IS methods were obtained to be in the range of 1.25 - 3.03% and 0.97 - 3.46%, respectively. Finally, the concentration values of seminal plasma metabolites were determined using different pulse programs with both methods for samples obtained from normozoospermic control and azoospermic patient groups. The results proved that this quantification method developed using NMR spectroscopy is easy to use in complex sample systems such as biological fluids and is a good alternative to the classical internal standard method in terms of accuracy and sensitivity. In addition, the improvement of the spectral resolution and sensitivity with the microcoil probe technology and the possibility of analyzing with minimum sample quantities has contributed positively to the results of this method.
Collapse
|
2
|
Jupin M, van Heijster FHA, Heerschap A. Metabolite interactions in prostatic fluid mimics assessed by 1H NMR. MAGMA (NEW YORK, N.Y.) 2022; 35:683-694. [PMID: 34919194 DOI: 10.1007/s10334-021-00983-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Molecular interactions in prostatic fluid are of biological interest and may affect MRI and MRS of the prostate. We investigated the existence of interactions between the major components of this fluid: spermine, citrate and myoinositol, metal ions, including zinc, and proteins. MATERIALS AND METHODS Solutions of 90 mM citrate, 18 mM spermine and 6 mM myo-inositol, mimicking expressed prostatic fluid, were investigated by 1H NMR using changes in T2 relaxation and chemical shift as markers for interactions. RESULTS AND DISCUSSION Adding to this metabolite mixture the ions Na+ , K+, Ca++, Mg++ and Zn++, decreased the T2 relaxation times of citrate and spermine protons by factors of 3 and 2, respectively, with Zn++ causing the largest effect, indicating ion-metabolite interactions. The T2 of 18 mM spermine dropped by a factor of 2 upon addition with 90 mM citrate, but no effect on T2 was seen with myo-inositol pointing to a specific citrate-spermine interaction. Moreover, the T2 of citrate in the presence of spermine decreased by adding metal ions and increasing amounts of Zn++, indicating complexation of citrate and spermine with metal ions, particularly with Zn. The addition of bovine serum albumin (BSA), as an index protein, substantially further decreased the T2 of spermine and citrate implying the formation of a transient spermine-metal ion-citrate-BSA complex. Finally, we found that the T2 of citrate in extracellular fluid of prostate cancer cells, as a mimic of fluid in cancerous prostates, decreased by adding fetal calf serum, indicating protein binding.
Collapse
Affiliation(s)
- Marc Jupin
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands
- Biophysical Chemistry, Institute for Materials and Molecules, Radboud University, Heyendaalseweg 135, 6524AJ, Nijmegen, The Netherlands
| | - Frits H A van Heijster
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Stamatelatou A, Scheenen TWJ, Heerschap A. Developments in proton MR spectroscopic imaging of prostate cancer. MAGMA (NEW YORK, N.Y.) 2022; 35:645-665. [PMID: 35445307 PMCID: PMC9363347 DOI: 10.1007/s10334-022-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 10/25/2022]
Abstract
In this paper, we review the developments of 1H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of 1H MRSI without water signal suppression. These may enable a new evaluation of the complementary role and significance of MRSI in prostate cancer management.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Tom W J Scheenen
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
4
|
De Cesare S, McKenna CA, Mulholland N, Murray L, Bella J, Campopiano DJ. Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveals fine details of substrate specificity. Org Biomol Chem 2021; 19:4904-4909. [PMID: 33998641 DOI: 10.1039/d1ob00122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that the l-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range of N-acyl-amino acid substrates. This activity was revealed by 1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Collapse
Affiliation(s)
- Silvia De Cesare
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Catherine A McKenna
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | - Lorna Murray
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Juraj Bella
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
5
|
Asampille G, Cheredath A, Joseph D, Adiga SK, Atreya HS. The utility of nuclear magnetic resonance spectroscopy in assisted reproduction. Open Biol 2020; 10:200092. [PMID: 33142083 PMCID: PMC7729034 DOI: 10.1098/rsob.200092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Infertility affects approximately 15-20% of individuals of reproductive age worldwide. Over the last 40 years, assisted reproductive technology (ART) has helped millions of childless couples. However, ART is limited by a low success rate and risk of multiple gestations. Devising methods for selecting the best gamete or embryo that increases the ART success rate and prevention of multiple gestation has become one of the key goals in ART today. Special emphasis has been placed on the development of non-invasive approaches, which do not require perturbing the embryonic cells, as the current morphology-based embryo selection approach has shortcomings in predicting the implantation potential of embryos. An observed association between embryo metabolism and viability has prompted researchers to develop metabolomics-based biomarkers. Nuclear magnetic resonance (NMR) spectroscopy provides a non-invasive approach for the metabolic profiling of tissues, gametes and embryos, with the key advantage of having a minimal sample preparation procedure. Using NMR spectroscopy, biologically important molecules can be identified and quantified in intact cells, extracts or secretomes. This, in turn, helps to map out the active metabolic pathways in a system. The present review covers the contribution of NMR spectroscopy in assisted reproduction at various stages of the process.
Collapse
Affiliation(s)
- Gitanjali Asampille
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Aswathi Cheredath
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - David Joseph
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Satish K. Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | | |
Collapse
|
6
|
Mah CY, Nassar ZD, Swinnen JV, Butler LM. Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J Urol 2019; 7:258-270. [PMID: 32742926 PMCID: PMC7385522 DOI: 10.1016/j.ajur.2019.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/16/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is an androgen-dependent cancer with unique metabolic features compared to many other solid tumors, and typically does not exhibit the “Warburg effect”. During malignant transformation, an early metabolic switch diverts the dependence of normal prostate cells on aerobic glycolysis for the synthesis of and secretion of citrate towards a more energetically favorable metabolic phenotype, whereby citrate is actively oxidised for energy and biosynthetic processes (i.e. de novo lipogenesis). It is now clear that lipid metabolism is one of the key androgen-regulated processes in prostate cells and alterations in lipid metabolism are a hallmark of prostate cancer, whereby increased de novo lipogenesis accompanied by overexpression of lipid metabolic genes are characteristic of primary and advanced disease. Despite recent advances in our understanding of altered lipid metabolism in prostate tumorigenesis and cancer progression, the intermediary metabolism of the normal prostate and its relationship to androgen signaling remains poorly understood. In this review, we discuss the fundamental metabolic relationships that are distinctive in normal versus malignant prostate tissues, and the role of androgens in the regulation of lipid metabolism at different stages of prostate tumorigenesis.
Collapse
Affiliation(s)
- Chui Yan Mah
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
7
|
González-Sánchez M, Cuesta-Vargas AI, Del Mar Rodríguez González M, Caro ED, Núñez GO, Galán-Mercant A, Belmonte JJB. Effectiveness of a muticomponent workout program integrated in an evidence based multimodal program in hyperfrail elderly patients: POWERAGING randomized clinical trial protocol. BMC Geriatr 2019; 19:171. [PMID: 31226936 PMCID: PMC6588921 DOI: 10.1186/s12877-019-1188-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short-term and mid-term comparison of the efficacy of a multimodal program that incorporates a therapeutic workout program, medication review, diet adjustment and health education, in comparison to the standard medical practice in the improvement of the neuromuscular and physiological condition. Furthermore, it is intended to analyse the maintenance of these effects in a long-term follow-up (12 months) from the onset of the intervention. METHODS A randomized clinical trial of elderly frail patients drawn from the Clinical Management Unit "Tiro de Pichón", Health District of Malaga, will be included in the study (after meeting the inclusion / exclusion criteria) will be randomized in two groups: a control group that will undergo an intervention consistent of medication review + diet adjustment + health education (regular workout recommendations within a complete advice on healthy lifestyles) and an experimental group whose intervention will consist of a multimodal treatment: therapeutic workout program+ medication review+ diet adjustment + health education. The sociodemographic, clinical and tracing variables will be reflected at the beginning of the study. In addition, the follow-up variables will be gathered at the second and sixth months after the beginning of the treatment and at the third and sixth months after the treatment (follow-up). The follow-up variables that will be measured are: body mass index, general health condition, fatigue, frailty, motor control, attention- concentration- memory, motor memory, spatial orientation, grip strength, balance (static, semi-dynamic), gait speed and metabolomics. A descriptive analysis of the sociodemographic variables of the participants will be conducted. One-Factor ANOVA will be used for the Within-Subject analysis and as for the Between-Subject analysis, the outcome variables between both the groups in each moment of the data collection will be compared. DISCUSSION A multimodal program that incorporates a therapeutic workout program, medication review, diet adjustment and health education may be effective treatment to reduce the functional decline in elderly. The results of the study will provide information on the possible strengths and benefits in multimodal program in elderly. TRIAL REGISTRATION ClinicalTrials.gov NCT02772952 registered May 2017.
Collapse
Affiliation(s)
- Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Universidad de Malaga, Málaga, Spain
| | - Antonio Ignacio Cuesta-Vargas
- Department of Physiotherapy, Faculty of Health Sciences, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Universidad de Malaga, Málaga, Spain.
- School of Clinical Science, Faculty of Health, Queensland University of Technology, QLD, Kelvin Grove, Australia.
| | - María Del Mar Rodríguez González
- Servicio Andaluz de Salud, Distrito Sanitario Málaga. CS. Tiro Pichón, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Malaga, Spain
| | - Elvira Díaz Caro
- Servicio Andaluz de Salud, Distrito Sanitario Málaga. CS. Tiro Pichón, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Malaga, Spain
| | - Germán Ortega Núñez
- Department of Physiotherapy, Faculty of Health Sciences, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Universidad de Malaga, Málaga, Spain
- Servicio Andaluz de Salud, Distrito Sanitario Málaga. CS. Tiro Pichón, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Malaga, Spain
- Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Alejandro Galán-Mercant
- MOVE-IT Research group and Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy University of Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cádiz, Cádiz, Spain
| | - Juan José Bedoya Belmonte
- Servicio Andaluz de Salud, Distrito Sanitario Málaga. CS. Tiro Pichón, Instituto de Investigación de Biomedicina de Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
8
|
Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 2016; 14:135-53. [PMID: 27087910 PMCID: PMC4821453 DOI: 10.1016/j.csbj.2016.02.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 01/14/2023] Open
Abstract
Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC-MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.
Collapse
Affiliation(s)
- Anthony C Dona
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom
| | - Michael Kyriakides
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom
| | - Flora Scott
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabeth A Shephard
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
9
|
Cuesta-Vargas AI, Carabantes F, Caracuel Z, Conejo I, Alba E. Effectiveness of an individualized program of muscular strength and endurance with aerobic training for improving germ cell cancer-related fatigue in men undergoing chemotherapy: EFICATEST study protocol for a randomized controlled trial. Trials 2016; 17:8. [PMID: 26732120 PMCID: PMC4702371 DOI: 10.1186/s13063-015-1143-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Patients with testicular germ cell cancer (GCC) have a high cure rate; however, cancer-related fatigue is the most common complication among patients with GCC undergoing treatment with chemotherapy. Although exercise is widely recommended, information about the physio-pathological effects of cancer therapy on skeletal muscle is very limited. Our aim is to evaluate the effects of an individualized program of muscular strength and endurance with aerobic training on cancer-related fatigue. Methods/Design The present study is a randomized controlled trial comparing an individualized program of muscular strength and endurance with aerobic training compared to a control group. We will conduct this trial in patients undergoing chemotherapy, recruited by the Department of Oncology of Virgen de la Victoria Hospital (Málaga). Patients will be included and evaluated before the first cycle of chemotherapy and assigned randomly to the experimental or control group. Cancer-related fatigue, physical condition and biological samples will be measured at the beginning and at the end of an 8-week intervention by the same evaluator, who will be unaware of the allocation of participants to each group. Furthermore, there will be monitoring for 6 months (24 weeks) after training for all outcome variables. Discussion This study hopes to offer patients with GCC an individualized exercise program with aerobic training for cancer-related fatigue. Such a scheme, if beneficial, could be implemented successfully within public health. Trial registration ClinicalTrials.gov Identifier: NCT02433197. Date of registration: 13 April 2015.
Collapse
Affiliation(s)
- Antonio Ignacio Cuesta-Vargas
- Department of Physiotherapy, Faculty of Health Sciences, Instituto de Investigacion de Biomedicina de Malaga (IBIMA), Universidad de Malaga, Málaga, Spain. .,School of Clinical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Francisco Carabantes
- Department of Medical Oncology, Carlos Haya Regional University Hospital, Málaga, Spain.
| | - Zaira Caracuel
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Malaga, Málaga, Spain.
| | - Inmaculada Conejo
- Department of Physiotherapy, Faculty of Health Sciences, Instituto de Investigacion de Biomedicina de Malaga (IBIMA), Universidad de Malaga, Málaga, Spain.
| | - Emilio Alba
- Department of Medical Oncology, Carlos Haya Regional University Hospital, Málaga, Spain.
| |
Collapse
|
10
|
Protected Designation of Origin Extra Virgin Olive Oils Assessment by Nuclear Magnetic Resonance and Multivariate Statistical Analysis: “Terra di Bari”, an Apulian (Southeast Italy) Case Study. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-015-2778-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Bonechi C, Collodel G, Donati A, Martini S, Moretti E, Rossi C. Discrimination of human semen specimens by NMR data, sperm parameters, and statistical analysis. Syst Biol Reprod Med 2015; 61:353-9. [PMID: 26236922 DOI: 10.3109/19396368.2015.1054003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human seminal fluid is a complex mixture of secretions originated from epididymis and the male accessory sex glands. It contains a variety of both inorganic and organic components, among which proteins are a major part of the high molecular-mass substances. In this study, 83 human seminal plasma samples were analyzed using a combined Nuclear Magnetic Resonance (NMR) Spectroscopy and Principal Component Analysis (PCA) approach to discriminate patients in relation to semen characteristics and/or conditions affecting the fertility status. Results showed a discrimination between patients with leukocytospermia and with the concomitant presence of varicocele/ex varicocele and leukocytospermia. Patients with testicular cancer, necrozoospermia, and azoospermia were separated from the other patient clusters. In addition, a differentiation of semen quality was also possible. This study represents to first use of sperm parameters together with NMR data as variables in the PCA analysis. Furthermore, this methodology allows the identification of the metabolites which play the most important role in identifying differences among human seminal plasma samples.
Collapse
Affiliation(s)
- Claudia Bonechi
- a Department of Biotechnology , Chemistry and Pharmacy, University of Siena , Via Aldo Moro , Siena , Italy .,b Centre for Colloid and Surface Science (CSGI), University of Florence , Florence , Italy , and
| | - Giulia Collodel
- c Department of Molecular and Developmental Medicine , Policlinico Universitario Santa Maria alle Scotte , Siena , Italy
| | - Alessandro Donati
- a Department of Biotechnology , Chemistry and Pharmacy, University of Siena , Via Aldo Moro , Siena , Italy .,b Centre for Colloid and Surface Science (CSGI), University of Florence , Florence , Italy , and
| | - Silvia Martini
- a Department of Biotechnology , Chemistry and Pharmacy, University of Siena , Via Aldo Moro , Siena , Italy .,b Centre for Colloid and Surface Science (CSGI), University of Florence , Florence , Italy , and
| | - Elena Moretti
- c Department of Molecular and Developmental Medicine , Policlinico Universitario Santa Maria alle Scotte , Siena , Italy
| | - Claudio Rossi
- a Department of Biotechnology , Chemistry and Pharmacy, University of Siena , Via Aldo Moro , Siena , Italy .,b Centre for Colloid and Surface Science (CSGI), University of Florence , Florence , Italy , and
| |
Collapse
|
12
|
Diverse nitrogen sources in seminal fluid act in synergy to induce filamentous growth of Candida albicans. Appl Environ Microbiol 2015; 81:2770-80. [PMID: 25662979 DOI: 10.1128/aem.03595-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic fungus Candida albicans is the leading cause of vulvovaginal candidiasis (VVC). VVC represents a major quality-of-life issue for women during their reproductive years, a stage of life where the vaginal epithelium is subject to periodic hormonally induced changes associated with menstruation and concomitant exposure to serum as well as potential intermittent contact with seminal fluid. Seminal fluid potently triggers Candida albicans to switch from yeastlike to filamentous modes of growth, a developmental response tightly linked to virulence. Conversely, vaginal fluid inhibits filamentation. Here, we used artificial formulations of seminal and vaginal fluids that faithfully mimic genuine fluids to assess the contribution of individual components within these fluids to filamentation. The high levels of albumin, amino acids, and N-acetylglucosamine in seminal fluid act synergistically as potent inducers of filamentous growth, even at atmospheric levels of CO2 and reduced temperatures (30 °C). Using a simplified in vitro model that mimics the natural introduction of seminal fluid into the vulvovaginal environment, a pulse of artificial seminal fluid (ASF) was found to exert an enduring potential to overcome the inhibitory efficacy of artificial vaginal fluid (AVF) on filamentation. These findings suggest that a transient but substantial change in the nutrient levels within the vulvovaginal environment during unprotected coitus can induce resident C. albicans cells to engage developmental programs associated with virulent growth.
Collapse
|
13
|
Everett JR. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency. Comput Struct Biotechnol J 2015; 13:131-44. [PMID: 25750701 PMCID: PMC4348432 DOI: 10.1016/j.csbj.2015.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 01/03/2023] Open
Abstract
A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.
Collapse
Affiliation(s)
- Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
14
|
Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 2014; 31:1195-204. [PMID: 24965760 DOI: 10.1007/s10815-014-0282-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/16/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The aim of this study was to analyze the seminal plasma of patients with idiopathic/male factor infertility and healthy controls with proven fertility by NMR spectroscopy, with a hope of establishing difference in biomarker profiles, if any, between the groups. METHODS A total of 103 subjects visiting the infertility clinic of Manipal University with normozoospermic parameters, oligozoospermia, asthenozoospermia, azoospermia and teratozoospermia were included. Semen characteristics were analysed by standard criteria. Seminal plasma was subjected to NMR spectroscopy at a 700 MHz (1)H frequency. The resultant data was analyzed by appropriate software. RESULTS The analysis revealed significant differences between the fertile control group and other forms of male infertility. Interestingly, seminal plasma profile of the idiopathic infertility group showed distinct segregation from the control population as well as other infertile groups. The difference in biomarker profiles between the idiopathic infertility and the rest of the groups combined could originate from either the up-regulation or down regulation of a several compounds, including lysine, arginine, tyrosine, citrate, proline and fructose. CONCLUSION Our data suggests the presence of a metabolic reason behind the origin of idiopathic infertility. (1)H NMR based metabonomic profiling based on concentration of biomarker lysine has the potential to aid in the detection and diagnosis of idiopathic infertility in an efficient manner.
Collapse
|
15
|
Kobus T, Wright AJ, Scheenen TWJ, Heerschap A. Mapping of prostate cancer by 1H MRSI. NMR IN BIOMEDICINE 2014; 27:39-52. [PMID: 23761200 DOI: 10.1002/nbm.2973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/08/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
In many studies, it has been demonstrated that (1)H MRSI of the human prostate has great potential to aid prostate cancer management, e.g. in the detection and localisation of cancer foci in the prostate or in the assessment of its aggressiveness. It is particularly powerful in combination with T2 -weighted MRI. Nevertheless, the technique is currently mainly used in a research setting. This review provides an overview of the state-of-the-art of three-dimensional MRSI, including the specific hardware required, dedicated data acquisition sequences and information on the spectral content with background on the MR-visible metabolites. In clinical practice, it is important that relevant MRSI results become available rapidly, reliably and in an easy digestible way. However, this functionality is currently not fully available for prostate MRSI, which is a major obstacle for routine use by inexperienced clinicians. Routine use requires more automation in the processing of raw data than is currently available. Therefore, we pay specific attention in this review on the status and prospects of the automated handling of prostate MRSI data, including quality control. The clinical potential of three-dimensional MRSI of the prostate is illustrated with literature examples on prostate cancer detection, its localisation in the prostate, its role in the assessment of cancer aggressiveness and in the selection and monitoring of therapy.
Collapse
Affiliation(s)
- Thiele Kobus
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | |
Collapse
|
16
|
Gupta A, Mahdi AA, Shukla KK, Ahmad MK, Bansal N, Sankhwar P, Sankhwar SN. Efficacy of Withania somnifera on seminal plasma metabolites of infertile males: a proton NMR study at 800 MHz. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:208-14. [PMID: 23796876 DOI: 10.1016/j.jep.2013.06.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Indian systems of medicine use roots of Withania somnifera for impotence, infertility treatment, stress, and the aging process. Although Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress, the molecular mechanism is not clear. AIM OF THE STUDY Our study uses high-resolution Nuclear Magnetic Resonance (NMR) spectroscopy to explore the scientific basis to reveal the pre- and post-treatment efficacy of Withania somnifera on seminal plasma of infertile men-which remains unexplored to date. MATERIALS AND METHODS A total of 180 infertile male patients were administered Withania somnifera root powder at the rate of 5 g/d for a 3-month period. The study included age-matched, healthy men as a control (n=50) group. Proton NMR spectroscopy was used to measure lactate, alanine, glutamate, glutamine, citrate, lysine, choline, glycerophosphocholine (GPC), glycine, tyrosine, histidine, phenylalanine, and uridine in all seminal plasma samples. To appraise infertility levels, we also measured sperm concentration, motility, lipid peroxide, and hormonal perturbation. RESULTS Withania somnifera therapy repairs the disturbed concentrations of lactate, alanine, citrate, GPC, histidine, and phenylalanine in seminal plasma and recovers the quality of semen of post-treated compared to pre-treated infertile men. Serum biochemistry was also improved over post-therapy in infertile men. Our findings reveal that Withania somnifera not only reboots enzymatic activity of metabolic pathways and energy metabolism but also invigorates the harmonic balance of seminal plasma metabolites and reproductive hormones in infertile men. CONCLUSION The results suggest that Withania somnifera may be used as an empirical therapy for clinical management and treatment of infertility.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Lucknow, India.
| | | | | | | | | | | | | |
Collapse
|
17
|
Scano P, Locci E, Noto A, Navarra G, Murgia F, Lussu M, Barberini L, Atzori L, De Giorgio F, Rosa MF, d'Aloja E. 1H NMR metabolite fingerprinting as a new tool for body fluid identification in forensic science. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:454-462. [PMID: 23737349 DOI: 10.1002/mrc.3966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
In this feasibility study, we propose, for the first time, (1)H NMR spectroscopy coupled with mathematical strategies as a valid tool for body fluid (BF) trace identification in forensic science. In order to assess the ability of this approach to identify traces composed either by a single or by two different BFs, samples of blood, urine, saliva, and semen were collected from different donors, and binary mixtures were prepared. (1)H NMR analyses were carried out for all samples. Spectral data of the whole set were firstly submitted to unsupervised principal component analysis (PCA); it showed that samples of the same BF cluster well on the basis of their characterizing molecular components and that mixtures exhibit intermediate characteristics among BF typologies. Furthermore, samples were divided into a training set and a test set. An average NMR spectral profile for each typology of BF was obtained from the training set and validated as representative of each BF class. Finally, a fitting procedure, based on a system of linear equations with the four obtained average spectral profiles, was applied to the test set and the mixture samples; it showed that BFs can be unambiguously identified, even as components of a mixture. The successful use of this mathematical procedure has the advantage, in forensics, of overcoming bias due to the analyst's personal judgment. We therefore propose this combined approach as a valid, fast, and non-destructive tool for addressing the challenges in the identification of composite traces in forensics.
Collapse
Affiliation(s)
- Paola Scano
- Dipartimento di Scienze Chimiche, Università di Cagliari, Cittadella Universitaria di Monserrato, SS 554 Bivio per Sestu, 09042, Monserrato (CA), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature 2012; 491:384-92. [PMID: 23151581 DOI: 10.1038/nature11708] [Citation(s) in RCA: 355] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolic phenotyping involves the comprehensive analysis of biological fluids or tissue samples. This analysis allows biochemical classification of a person's physiological or pathological states that relate to disease diagnosis or prognosis at the individual level and to disease risk factors at the population level. These approaches are currently being implemented in hospital environments and in regional phenotyping centres worldwide. The ultimate aim of such work is to generate information on patient biology using techniques such as patient stratification to better inform clinicians on factors that will enhance diagnosis or the choice of therapy. There have been many reports of direct applications of metabolic phenotyping in a clinical setting.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Identification and cellular location of glutamine synthetase in human sperm. Cell Tissue Res 2012; 350:183-7. [PMID: 22777743 DOI: 10.1007/s00441-012-1465-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Glutamine synthetase (GS) catalyzes the de novo synthesis of glutamine, an amino acid that has been shown to influence sperm motility in mammals. To date, no information is available about GS content in human sperm. In this study, we have characterized the presence and cellular location of GS in fresh human normozoospermic samples. We have detected a single band corresponding to GS by Western blot. Confocal analysis has revealed GS immunoreactivity in the post-acrosomal head region. Moreover, double-labeling experiments with either F-actin or calicin have demonstrated GS confinement in the post-acrosomal region of the perinuclear theca. These data have been validated by a post-embedding ultra-structural study. The presence of GS in the post-acrosomal region of the perinuclear theca suggests that human sperm can carry out in glutamine synthesis.
Collapse
|
20
|
Gupta A, Mahdi AA, Ahmad MK, Shukla KK, Jaiswer SP, Shankhwar SN. 1H NMR spectroscopic studies on human seminal plasma: A probative discriminant function analysis classification model. J Pharm Biomed Anal 2011; 54:106-13. [DOI: 10.1016/j.jpba.2010.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/06/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
|
21
|
Coen M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology 2010; 278:326-40. [DOI: 10.1016/j.tox.2010.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022]
|
22
|
Spencer NG, Eykyn TR, deSouza NM, Payne GS. The effect of experimental conditions on the detection of spermine in cell extracts and tissues. NMR IN BIOMEDICINE 2010; 23:163-169. [PMID: 19757478 DOI: 10.1002/nbm.1438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this work was to investigate the effect of experimental conditions on the visibility of polyamines. In solution the chemical shift of the three groups of peaks (at approximately 1.8, 2.1 and 3.1 ppm) were found to be pH dependent. Relaxation times in aqueous solution at pH 7.0, 298 K and 11.74 T were measured to be: putrescine (T(1) = 2.49 s, T(2) = 2.07 s), spermidine (T(1) = 1.27 s, T(2) = 1.05 s) and spermine (T(1) = 1.02 s, T(2) = 0.82 s). Simple spin-echo sequences could not be used to measure T(2) as the spins also experience phase evolution from homonuclear coupling which imposes a modulation on the T(2) decay curve. This modulation is eliminated by using CPMG sequences with an echo spacing of <500 micros. Relaxation times for spermine in solution in presence of metal ions and protein showed that metal ions had little effect on T(2); however, addition of 15 mg/ml bovine serum albumin reduced T(2) of spermine (0.41 s at 298 K and 0.19 s at 277 K) but was not as short as the T(2) of the polyamine peak in prostatic tissue (0.03 s at 277 K). The MR visibility of polyamines in prostate cell extracts, PC-3 xenograft (intact as well as extracted) and intact human prostatic tissues were investigated. Polyamines were not detected in methanol/chloroform extracts, but were visible in perchloric acid extracts of prostate tumour cells. No polyamines were detected in the HR MAS spectra of three samples of whole PC-3 xenograft tissue studied. In summary, the chemical shift of polyamine species is pH dependent, while protein binding causes peak broadening and reduction in T(2). Perchloric acid extraction improves visibility of intracellular polyamines, but whole tissue polyamines are not seen in xenografts without epithelial/ ductal structure.
Collapse
Affiliation(s)
- Nicholas G Spencer
- CRUK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK.
| | | | | | | |
Collapse
|
23
|
Alexandrino AP, Rodrigues MAF, Matsuo T, Schuquel ITA, Costa WF, Santilli JC. Evaluation of seminal citrate level by 1H nuclear magnetic resonance spectroscopy in men with spinal cord injury. Spinal Cord 2009; 47:878-81. [PMID: 19652660 DOI: 10.1038/sc.2009.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A case-control evaluating seminal citrate in patients with spinal cord injury (SCI). OBJECTIVE Several studies have shown neurological prostatic dysfunction in patients with SCI, as confirmed by low levels of seminal prostate-specific antigen (PSA), which is used as a parameter of gland activity. However, seminal citrate, produced almost exclusively by the prostate, could also be used as a marker of prostate function. Thus, the objective of this study was to determine whether SCI causes any changes in seminal citrate concentration and to compare the results obtained for patients and healthy men (controls). SETTING The study was carried out in Brazil. METHODS We studied 30 men with SCI aged on average 37.77+/-10.04 years and 30 controls aged on average 38.03+/-10.06 years. Blood and semen samples were collected after 3 days of abstinence from ejaculation. Fifteen minutes after collection, semen was stored in liquid nitrogen and the samples were submitted to (1)H nuclear magnetic resonance ((1)H NMR). Serum was stored at a controlled temperature of -70 to -79 degrees C and later used for the determination of testosterone, prolactin and total PSA using an AxSYM instrument and Abbott reagents. RESULTS The median concentration of seminal citrate was significantly lower in patients than in controls (521.65 versus 858.30 mg per 100 ml, P<0.001). CONCLUSIONS Patients with SCI have a significant reduction of seminal citrate as a consequence of neurological dysfunction of the prostate.
Collapse
Affiliation(s)
- A P Alexandrino
- Disciplina de Urologia, Departamento de Clínica Cirúrgica-UEL, Londrina, Paraná, Brasil.
| | | | | | | | | | | |
Collapse
|
24
|
Maher AD, Cloarec O, Patki P, Craggs M, Holmes E, Lindon JC, Nicholson JK. Dynamic biochemical information recovery in spontaneous human seminal fluid reactions via 1H NMR kinetic statistical total correlation spectroscopy. Anal Chem 2009; 81:288-95. [PMID: 19117456 DOI: 10.1021/ac801993m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human seminal fluid (HSF) is a complex mixture of reacting glandular metabolite and protein secretions that provides critical support functions in fertilization. We have employed 600-MHz (1)H NMR spectroscopy to compare and contrast the temporal biochemical and biophysical changes in HSF from infertile men with spinal cord injury compared to age-matched controls. We have developed new approaches to data analysis and visualization to facilitate the interpretation of the results, including the first application of the recently published K-STOCSY concept to a biofluid, enhancing the extraction of information on biochemically related metabolites and assignment of resonances from the major seminal protein, semenogelin. Principal components analysis was also applied to evaluate the extent to which macromolecules influence the overall variation in the metabolic data set. The K-STOCSY concept was utilized further to determine the relationships between reaction rates and metabolite levels, revealing that choline, N-acetylglucosamine, and uridine are associated with higher peptidase activity. The novel approach adopted here has the potential to capture dynamic information in any complex mixture of reacting chemicals including other biofluids or cell extracts.
Collapse
Affiliation(s)
- Anthony D Maher
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Imperial College London, South Kensington, SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
25
|
Johnson CH, Athersuch TJ, Wilson ID, Iddon L, Meng X, Stachulski AV, Lindon JC, Nicholson JK. Kinetic andJ-Resolved Statistical Total Correlation NMR Spectroscopy Approaches to Structural Information Recovery in Complex Reacting Mixtures: Application to Acyl Glucuronide Intramolecular Transacylation Reactions. Anal Chem 2008; 80:4886-95. [DOI: 10.1021/ac702614t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Caroline H. Johnson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Toby J. Athersuch
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Ian D. Wilson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Lisa Iddon
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Xiaoli Meng
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Andrew V. Stachulski
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - John C. Lindon
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Jeremy K. Nicholson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, U.K., Department of Drug Metabolism and Pharmacokinetics, AstraZeneca, Macclesfield, Cheshire SK10 4TG, U.K., and Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
26
|
Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. ACTA ACUST UNITED AC 2008; 5:332-43. [PMID: 18431374 DOI: 10.1038/ncpgasthep1125] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 02/19/2008] [Indexed: 01/21/2023]
Abstract
Metabonomics-the study of metabolic changes in an integrated biologic system-is an emerging field. This discipline joins the other 'omics' (genomics, transcriptomics and proteomics) to give rise to a comprehensive, systems-biology approach to the evaluation of holistic in vivo function. Metabonomics, especially when based on nuclear magnetic resonance spectroscopy, has the potential to identify biomarkers and prognostic factors, enhance clinical diagnosis, and expand hypothesis generation. As a consequence, the use of metabonomics has been extensively explored in the past decade, and applied successfully to the study of human diseases, toxicology, microbes, nutrition, and plant biology. This Review introduces the basic principles of nuclear magnetic resonance spectroscopy and commonly used tools for multivariate data analysis, before considering the applications and future potential of metabonomics in basic and clinical research, with emphasis on applications in the field of gastroenterology.
Collapse
|
27
|
Coen M, Holmes E, Lindon JC, Nicholson JK. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem Res Toxicol 2008; 21:9-27. [PMID: 18171018 DOI: 10.1021/tx700335d] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have reviewed the main contributions to the development of NMR-based metabonomic and metabolic profiling approaches for toxicological assessment, biomarker discovery, and studies on toxic mechanisms. The metabonomic approach, (defined as the quantitative measurement of the multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification) was originally developed to assist interpretation in NMR-based toxicological studies. However, in recent years there has been extensive fusion with metabolomic and other metabolic profiling approaches developed in plant biology, and there is much wider coverage of the biomedical and environmental fields. Specifically, metabonomics involves the use of spectroscopic techniques with statistical and mathematical tools to elucidate dominant patterns and trends directly correlated with time-related metabolic fluctuations within spectral data sets usually derived from biofluids or tissue samples. Temporal multivariate metabolic signatures can be used to discover biomarkers of toxic effect, as general toxicity screening aids, or to provide novel mechanistic information. This approach is complementary to proteomics and genomics and is applicable to a wide range of problems, including disease diagnosis, evaluation of xenobiotic toxicity, functional genomics, and nutritional studies. The use of biological fluids as a source of whole organism metabolic information enhances the use of this approach in minimally invasive longitudinal studies.
Collapse
Affiliation(s)
- Muireann Coen
- Department of Biomolecular Medicine, Surgery, Oncology, Reproductive Biology and Anesthetics Division, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | |
Collapse
|
28
|
Abstract
Advances in postgenomic technologies have radically changed the information output from complex biological systems, generating vast amounts of high complexity data that can be interpreted by means of chemometric and bioinformatic methods to achieve disease diagnosis and prognosis. High-resolution nuclear magnetic resonance (NMR) spectroscopy of biofluids such as plasma, cerebrospinal fluid (CSF), and urine can generate robust, interpretable metabolic fingerprints that contain latent information relating to physiological or pathological status. This technology has been successfully applied to both preclinical and clinical studies of neurodegenerative diseases such as Huntington's disease, muscular dystrophy, and cerebellar ataxia. An extension of this technology, (1)H magic-angle-spinning (HRMAS) NMR spectroscopy, can be used to generate metabolic information on small intact tissue samples, providing a metabolic link between metabolic profiling of biofluids and histology. In this review we provide a summary of high-resolution NMR studies in neurodegenerative disease and explore the potential of metabonomics in evaluating disease progression with respect to therapeutic intervention.
Collapse
Affiliation(s)
- Elaine Holmes
- Biological Chemistry, Biomedical Sciences Division, Faculty of Natural Science, Imperial College London, South Kensington, UK.
| | | | | |
Collapse
|
29
|
Tsang TM, Griffin JL, Haselden J, Fish C, Holmes E. Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magn Reson Med 2005; 53:1018-24. [PMID: 15844164 DOI: 10.1002/mrm.20447] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy has been applied to the biochemical characterization of specific brain regions in rats in order to establish baseline levels of tissue metabolite profiles with which to compare models of neuropathology or toxic lesion. Cores of tissue (20 mg) from the brain stem, cerebellum, frontal cortex, and hippocampus were obtained from histologically defined coronal slices of brain from 18 male Sprague-Dawley rats. HRMAS (1)H NMR spectra were acquired for each of the regions sampled and the degree of intersample variability, as assessed by principal components analysis and discriminant analysis by projection to latent structure was found to be low. Clear region-specific differences in the biochemical profiles were observed using both comparison of metabolite ratios and/or pattern recognition methods. Relatively low concentrations of GABA in the cerebellum, high concentrations of taurine and N-acetylaspartate in the cortex, and high levels of choline, glycerophosphocholine, and phosphocholine in the hippocampus predominantly influenced the classification of the different brain regions. Additionally, N-acetylaspartylglutamate was detected in the brain stem, but was largely absent from the other regions examined. Such analyses provide a baseline reference for further HRMAS NMR spectroscopic studies to monitor disease and pharmacological insults in specific regions of the brain.
Collapse
Affiliation(s)
- T M Tsang
- Biological Chemistry, Biomedical Sciences Division, Faculty of Medicine, Imperial College, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
30
|
Griffin JL, Corcoran O. High-resolution magic-angle spinning 13C NMR spectroscopy of cerebral tissue. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2005; 18:51-6. [PMID: 15803337 DOI: 10.1007/s10334-004-0094-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 11/30/2022]
Abstract
Monitoring the metabolism of (13)C-labelled substrates by biological tissues allows both the rate of metabolism and the relative importance of metabolic pathways to be determined. In this study high-resolution magic-angle spinning (HRMAS) (13)C NMR spectroscopy is assessed as a technique for determining the labelling of metabolites in brain slices. Freshly prepared rat brain slices were superfused in isotonic salt solution containing [1-(13)C] glucose. HRMAS (1)H and (13)C NMR spectra were acquired of the slices ( approximately 10 mg) at 3 degrees C. Using (1)H NMR spectroscopy it was demonstrated that the concentration of key metabolites indicative of metabolic degradation, including N-acetyl aspartate and lactate, did not change significantly across the approximately 11 h time period required for (13)C NMR spectra. The approach produced high-resolution spectra of intact tissue with the labelling patterns of tissues being indicative of both labelling via pyruvate dehydrogenase found in both neuronal and glial cells, and pyruvate carboxylase, found only within glial cells. This approach is a versatile tool for monitoring the compartmentation of metabolites directly, and will also allow the investigation of aqueous and lipid metabolites simultaneously.
Collapse
Affiliation(s)
- J L Griffin
- Department of Biochemistry, University of Cambridge, UK.
| | | |
Collapse
|
31
|
Averna TA, Kline EE, Smith AY, Sillerud LO. A DECREASE IN
1
H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPICALLY DETERMINED CITRATE IN HUMAN SEMINAL FLUID ACCOMPANIES THE DEVELOPMENT OF PROSTATE ADENOCARCINOMA. J Urol 2005; 173:433-8. [PMID: 15643195 DOI: 10.1097/01.ju.0000148949.72314.d7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Because human prostatic fluid contributes almost 50% of the volume of seminal plasma and this fluid contains unique prostatic metabolites such as citrate, which are markedly altered during tumorigenesis, we investigated high resolution H nuclear magnetic resonance (NMR) spectroscopy of unprocessed human seminal plasma as a rapid, noninvasive diagnostic tool for prostate adenocarcinoma. MATERIALS AND METHODS Semen and prostatic massage samples from control and tumor bearing subjects were stored frozen at -20C and thawed prior to water suppressed NMR analysis. We found that freezing produced no significant alterations in the semen NMR spectra. Quantitative NMR spectroscopy was performed by first calibrating the water suppression data acquisition sequence with a series of standard samples containing known amounts of citrate within the physiological range. RESULTS Well resolved citrate resonances from the seminal plasma of 3 control subjects with prostate specific antigen (PSA) less than 1 ng/ml were integrated to give concentrations of 97 to 178 mM. Semen from a 47-year-old man with benign prostatic hyperplasia and a PSA of 5.5 ng/ml contained 156 mM citrate. In contrast, seminal plasma from 2 patients with prostate cancer, including a 46-year-old man with Gleason grade 8 and PSA 45.2 ng/ml, and a 64-year-old man with grade 6 and PSA 13.0 ng/ml, revealed citrate NMR signals corresponding to a concentration of only 28 and 24 mM, respectively. Spectra from prostatic massage fluid from a normal 23-year-old volunteer showed a citrate of 483 mM, while massage fluid from a 56-year-old patient with Gleason grade 4 cancer showed a citrate of only 1.35 mM. CONCLUSIONS To our knowledge this study is the first to use high resolution NMR of semen to diagnose prostate cancer. Given the known effects of adenocarcinoma on prostate metabolism, the study indicates that high resolution H NMR can be used to measure citrate in seminal fluid, potentially providing a new, rapid, noninvasive screening method.
Collapse
Affiliation(s)
- Tiffany A Averna
- Department of Biology, University of New Mexico School of Medicine and Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
32
|
Gonzales GF. Basal serum testosterone as an indicator of response to clomiphene treatment in human epididymis, seminal vesicles and prostate. Andrologia 2002. [DOI: 10.1111/j.1439-0272.2002.tb02946.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Gonzales GF. Basal serum testosterone as an indicator of response to clomiphene treatment in human epididymis, seminal vesicles and prostate. Andrologia 2002. [DOI: 10.1046/j.1439-0272.2002.00507.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Chaudhury K, Sharma U, Jagannathan NR, Guha SK. Effect of a new injectable male contraceptive on the seminal plasma amino acids studied by proton NMR spectroscopy. Contraception 2002; 66:199-204. [PMID: 12384210 DOI: 10.1016/s0010-7824(02)00343-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effect of RISUG, a newly developed male contraceptive, on various amino acids of seminal plasma ejaculates was studied by proton magnetic resonance spectroscopy at 400 MHz. Levels of amino acids were compared with the seminal plasma of obstructive azoospermia and controls. Glutamic acid, glutamine, and arginine were found to be high in concentration in human seminal plasma. The concentration of aromatic amino acids such as tyrosine, histidine, and phenylalanine in RISUG-injected subjects showed no significant difference compared to controls (p > 0.1); however, there was a statistically significant decrease in the concentration of these amino acids in obstructive azoospermia. The concentration of some prominent amino acids that showed overlapping resonances, such as isoleucine+leucine+valine (p < 0.01), alanine+isoleucine+lysine (p < 0.01), arginine+lysine+leucine (p < 0.01), and glutamic acid+glutamine (p < 0.01), showed a statistically significant decrease in RISUG-injected subjects compared to controls. Overlap of these amino acid resonances were noticed even at 600 MHz. In general, the total amino acids concentration in RISUG-injected subjects was found to be higher than in azoospermic subjects, confirming the occurrence of 'partial' obstructive azoospermia in subjects injected with this contraceptive.
Collapse
Affiliation(s)
- Koel Chaudhury
- Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | | | | | | |
Collapse
|
35
|
Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002; 1:153-61. [PMID: 12120097 DOI: 10.1038/nrd728] [Citation(s) in RCA: 1346] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Biological Chemistry Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
36
|
Griffin JL, Troke J, Walker LA, Shore RF, Lindon JC, Nicholson JK. The biochemical profile of rat testicular tissue as measured by magic angle spinning 1H NMR spectroscopy. FEBS Lett 2000; 486:225-9. [PMID: 11119708 DOI: 10.1016/s0014-5793(00)02307-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The testis is the principal organ of male fertility, responsible for the production of spermatozoa and their maturation into sperm. However, the underlying biochemistry of the testis is relatively understudied. The fluidic and homogeneous nature of the testis makes it an ideal organ for high resolution magic angle spinning (MAS) 1H NMR spectroscopy. In this study we have catalogued the low molecular weight metabolites. The testis contains large amounts of creatine, of which a substantial proportion was shown to be extracellular using bipolar gradients to measure apparent diffusion coefficients. The tissue also contained relatively high amounts of uridine.
Collapse
Affiliation(s)
- J L Griffin
- Biological Chemistry, Biomedical Sciences Division, Imperial College of Science, Technology and Medicine, South Kensington, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Costello LC, Franklin RB. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 2000; 59:269-82. [PMID: 11096338 PMCID: PMC4472372 DOI: 10.1159/000012183] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review emphasizes the importance and role of altered intermediary metabolism of prostate cells in the pathogenesis of prostate adenocarcinoma (PCa) and the progression of malignancy. The focus of the presentation is a summary of the overwhelming evidence which implicates the metabolic transformation of citrate-producing sane cells to citrate-oxidizing malignant cells in the process of malignancy. The evidence now demonstrates that altered zinc accumulation is an important factor in this transformation. These metabolic relationships are uniquely different from the metabolic alterations associated with tumorigenesis of other mammalian cells. The metabolic transformation of zinc-accumulating citrate-producing normal prostate epithelial cells to citrate-oxidizing malignant cells has important implications on cellular bioenergetics, cell growth and apoptosis, lipogenesis, angiogenesis. Based on the metabolic considerations new concepts concerning the pathogenesis, diagnosis and treatment of prostate malignancy are presented. Unfortunately the metabolism of the prostate has been a seriously neglected and largely ignored area of prostate research. The importance of expanded research into the intermediary metabolism of normal and neoplastic prostate is essential to future significant advances in understanding and dealing with PCa.
Collapse
Affiliation(s)
- L C Costello
- Cellular and Molecular Biology Section, OCBS/Dental School, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
38
|
Schiller J, Arnhold J, Glander HJ, Arnold K. Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy - effects of freezing and thawing. Chem Phys Lipids 2000; 106:145-56. [PMID: 10930566 DOI: 10.1016/s0009-3084(00)00148-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, the applicability of proton NMR spectroscopy and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to the analysis of the lipid composition of human spermatozoa and seminal fluids as well as changes after cryopreservation of human spermatozoa was investigated. Whereas NMR spectra primarily indicated a high content of double bonds within the spermatozoa but no marked differences upon cryopreservation, MS detected intense peaks which could be assigned to phosphatidylcholines containing one docosahexaenoic and one palmitic or stearic acid residue (m/z=806 and 834). In contrast, the seminal plasma contained more saturated fatty acids and especially more sphingomyelin (SM). A freezing/thawing cycle markedly influences the lipid composition of spermatozoa. There was a diminution of phosphatidylcholines (16:0, 22:6 and 18:0, 22:6) and SM (16:0) and the appearance of lysophosphatidylcholines (16:0 and 18:0) and ceramide (16:0). These data demonstrate the release or activation of both phospholipase A(2) and sphingomyelinase in human spermatozoa due to the freezing/thawing cycle. These results were finally confirmed by experiments on the action of phospholipases on lipids containing docosahexaenoic acid.
Collapse
Affiliation(s)
- J Schiller
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstr. 27, 04103, Leipzig, Germany.
| | | | | | | |
Collapse
|
39
|
Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1099-0534(2000)12:5<289::aid-cmr3>3.0.co;2-w] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Connolly GP, Duley JA. Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol Sci 1999; 20:218-25. [PMID: 10354618 DOI: 10.1016/s0165-6147(99)01298-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There are many disorders of pyrimidine metabolism and those that involve an alteration in uridine metabolism have neurological and systemic effects, which provide insights into the biological activity of uridine and its analogues. Studies of the metabolism and actions of pyrimidines have uncovered a wealth of information on how these endogenous metabolites modulate cell physiology. In this article, the roles for the pyrimidine nucleoside uridine and its nucleotide derivatives in the regulation of a number of biological systems are examined and benefits of further studies are outlined. An understanding of how uridine and its nucleotides modulate such vastly complicated biological systems should ultimately lead to the development of new ways for modulating human physiology in both normal and diseased states. Likely targets for therapy include the respiratory, circulatory, reproductive, and nervous systems, and the treatment of cancer and HIV infection.
Collapse
Affiliation(s)
- G P Connolly
- Purine Neuroscience Laboratory, Department of Chemical Pathology, Guy's King's, Thomas' Medical, Dental and Biomedical Sciences, 5th Floor Guy's Tower, Guy's Hospital, Weston Street, London, UK SE1 9RT
| | | |
Collapse
|