1
|
Groaz E, Modranka J, Ploschik D, Jabgunde A, Froeyen M, Jang MY, Wagenknecht HA, Herdewijn P. Impact of sulfur substitution on biotin binding affinity to streptavidin. Bioorg Chem 2024; 150:107600. [PMID: 38945086 DOI: 10.1016/j.bioorg.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Damian Ploschik
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Amit Jabgunde
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mi-Yeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Bana J, Warwar J, Bayer EA, Livnah O. Self-assembly of a dimeric avidin into unique higher-order oligomers. FEBS J 2023. [PMID: 36853192 DOI: 10.1111/febs.16764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The dimeric avidin family has been expanded in recent years to include many new members. All of them lack the intermonomeric Trp that plays a critical role in biotin-binding. Nevertheless, these new members of the avidins maintain the high affinity towards biotin. Additionally, all of the dimeric avidins share a very unique property: namely, the cylindrical oligomerization in the crystal structure. The newest member described here, agroavidin from the agrobacterium, Rhizobium sp. AAP43, shares their important structural features. However, the affinity of agroavidin towards biotin is lower than all other members of the avidin family, due to the presence of phenylalanine instead of a conserved tyrosine in the biotin-binding site. Mutating this phenylalanine into tyrosine regenerated the high affinity, which emphasizes the importance of this particular tyrosine residue. Another unique feature that distinguishes agroavidin from the other dimeric avidins is that it does not produce oligomers in its crystal structure. In order to understand the factors that promote oligomerization in dimeric avidins, we exchanged the C-terminal region of agroavidin with that of hoefavidin that produced octamers. This exchange resulted in a decamer rather than an octamer. This unusual outcome demonstrates the impact of the C-terminal region on the ability to produce oligomers. The decameric assembly of agroavidin expands the avidin-biotin toolbox even further and could well pave the path into new biotin-based technologies. Moreover, uncovering the factors that induce dimeric avidins into oligomeric assemblies may aid in better understanding the general molecular determinants that promote oligomerization.
Collapse
Affiliation(s)
- Juana Bana
- Department of Biological Chemistry, The Wolfson Centre for Applied Structural Biology, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel
| | - Jessica Warwar
- Department of Biological Chemistry, The Wolfson Centre for Applied Structural Biology, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Livnah
- Department of Biological Chemistry, The Wolfson Centre for Applied Structural Biology, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
3
|
Intensification of Inclusion Body Processing via Temperature-Based Refolding. Methods Mol Biol 2023; 2617:189-200. [PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
Collapse
|
4
|
Lemke C, Jílková A, Ferber D, Braune A, On A, Johe P, Zíková A, Schirmeister T, Mareš M, Horn M, Gütschow M. Two Tags in One Probe: Combining Fluorescence- and Biotin-based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chemistry 2022; 28:e202201636. [PMID: 35852812 PMCID: PMC9826439 DOI: 10.1002/chem.202201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 01/11/2023]
Abstract
Rhodesain is the major cysteine protease of the protozoan parasite Trypanosoma brucei and a therapeutic target for sleeping sickness, a fatal neglected tropical disease. We designed, synthesized and characterized a bimodal activity-based probe that binds to and inactivates rhodesain. This probe exhibited an irreversible mode of action and extraordinary potency for the target protease with a kinac /Ki value of 37,000 M-1 s-1 . Two reporter tags, a fluorescent coumarin moiety and a biotin affinity label, were incorporated into the probe and enabled highly sensitive detection of rhodesain in a complex proteome by in-gel fluorescence and on-blot chemiluminescence. Furthermore, the probe was employed for microseparation and quantification of rhodesain and for inhibitor screening using a competition assay. The developed bimodal rhodesain probe represents a new proteomic tool for studying Trypanosoma pathobiochemistry and antitrypanosomal drug discovery.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Adéla Jílková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Dominic Ferber
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Annett Braune
- Research Group Intestinal MicrobiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeArthur-Scheunert-Allee 114–11614558NuthetalGermany
| | - Anja On
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Alena Zíková
- Biology Centre CASInstitute of ParasitologyUniversity of South BohemiaFaculty of ScienceBranišovská 1160/3137005České BudějoviceCzech Republic
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Michael Mareš
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Martin Horn
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Michael Gütschow
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
5
|
Renner AM, Derichsweiler C, Ilyas S, Gessner I, Fries JWU, Mathur S. High efficiency capture of biomarker miRNA15a for noninvasive diagnosis of malignant kidney tumors. Biomater Sci 2022; 10:1113-1122. [PMID: 35048092 DOI: 10.1039/d1bm01737c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, there are no preoperative and quantitative dynamics in clinical practice that can reliably differentiate between a benign and malignant renal cell carcinoma (RCC). For monitoring different analytes in body fluids, more than 40 different molecular biomarkers have been identified, however, they are associated with limited clinical sensitivity and/or non-optimal specificity due to their leaky nature. Previous work on RCC demonstrated the miRNA15a to be reliable and novel biomarker with 98.1% specificity and 100% sensitivity. Despite the high potential of miRNA15a biomarker, its clinical application is considerably hampered by the insensitive nature of the detection methods and low concentration of biomarker in samples that is aggravated by the high level of contamination due to other solutes present in body fluids. In this work, a non-invasive quantitative approach is demonstrated to overcome such diagnostics issues through biotin-streptavidin binding and fluorescence active magnetic nanocarriers that ensured prompt isolation, enrichment and purification of the biomarker miRNA15a from urine. The study demonstrates that detectable low levels of these miRNAs through miRNA capturing nanocarriers can potentially function as advanced diagnostic markers for the non-invasive investigation and early detection of renal cancer.
Collapse
Affiliation(s)
- Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Christina Derichsweiler
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Jochen W U Fries
- Institute of Urology/Pathology, University Hospital of Cologne, Kerpenerstr. 62, 50924 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| |
Collapse
|
6
|
Monitoring protein conformational changes using fluorescent nanoantennas. Nat Methods 2022; 19:71-80. [PMID: 34969985 DOI: 10.1038/s41592-021-01355-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnology. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and molecular simulations, we detect and characterize five distinct conformational states of intestinal alkaline phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications.
Collapse
|
7
|
Avraham O, Bayer EA, Livnah O. Wilavidin* - a novel member of the avidin family that forms unique biotin-binding hexamers. FEBS J 2021; 289:1700-1714. [PMID: 34726340 DOI: 10.1111/febs.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Nature's optimization of protein functions is a highly intricate evolutionary process. In addition to optimal tertiary folding, the intramolecular recognition among the monomers that generate higher-order quaternary arrangements is driven by stabilizing interactions that have a pivotal role for ideal activity. Homotetrameric avidin and streptavidin are regularly utilized in many applications, whereby their ultra-high affinity toward biotin is dependent on their quaternary arrangements. In recent years, a new subfamily of avidins was discovered that comprises homodimers rather than tetramers, in which the high affinity toward biotin is maintained. Intriguingly, several of the respective dimers have been shown to assemble into higher-order cylindrical hexamers or octamers that dissociate into dimers upon biotin binding. Here, we present wilavidin, a newly discovered member of the dimeric subfamily, forming hexamers in the apo form, which are uniquely maintained upon biotin binding with six high-affinity binding sites. Removal of the short C-terminal segment of wilavidin resulted in the presence of the dimer only, thus emphasizing the role of this segment in stabilizing the hexamer. Utilization of a hexavalent biotin-binding form of avidin would be beneficial for expanding the biotechnological toolbox. Additionally, this unique family of dimeric avidins and their propensity to oligomerize to hexamers or octamers can serve as a basis for protein oligomerization and intermonomeric recognition as well as cumulative interactions that determine molecular assemblies.
Collapse
Affiliation(s)
- Orly Avraham
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.,Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
8
|
Leppiniemi J, Mutahir Z, Dulebo A, Mikkonen P, Nuopponen M, Turkki P, Hytönen VP. Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts. Biomacromolecules 2021; 22:4122-4137. [PMID: 34542997 DOI: 10.1021/acs.biomac.1c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The future success of physiologically relevant three-dimensional (3D) cell/tissue models is dependent on the development of functional biomaterials, which can provide a well-defined 3D environment instructing cellular behavior. To establish a platform to produce tailored hydrogels, we conjugated avidin (Avd) to anionic nanofibrillar cellulose (aNFC) and demonstrated the use of the resulting Avd-NFC hydrogel for 3D cell culture, where Avd-NFC allows easy functionalization via biotinylated molecules. Avidin was successfully conjugated to nanocellulose and remained functional, as demonstrated by electrophoresis and titration with fluorescent biotin. Rheological analysis indicated that Avd-NFC retained shear-thinning and gel-forming properties. Topological characterization using AFM revealed the preserved fiber structure and confirmed the binding of biotinylated vitronectin (B-VN) on the fiber surface. The 3D cell culture experiments with mouse embryonic fibroblasts demonstrated the performance of Avd-NFC hydrogels functionalized with biotinylated fibronectin (B-FN) and B-VN. Cells cultured in Avd-NFC hydrogels functionalized with B-FN or B-VN formed matured integrin-mediated adhesions, indicated by phosphorylated focal adhesion kinase. We observed significantly higher cell proliferation rates when biotinylated proteins were bound to the Avd-NFC hydrogel compared to cells cultured in Avd-NFC alone, indicating the importance of the presence of adhesive sites for fibroblasts. The versatile Avd-NFC allows the easy functionalization of hydrogels with virtually any biotinylated molecule and may become widely utilized in 3D cell/tissue culture applications.
Collapse
Affiliation(s)
- Jenni Leppiniemi
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland
| | - Zeeshan Mutahir
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,School of Biochemistry and Biotechnology, University of the Punjab, 54590 Lahore, Pakistan
| | - Alexander Dulebo
- JPK BioAFM Business, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Piia Mikkonen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Markus Nuopponen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| |
Collapse
|
9
|
Oberbichler E, Wiesauer M, Schlögl E, Stangl J, Faschinger F, Knör G, Gruber HJ, Hytönen VP. Competitive binding assay for biotin and biotin derivatives, based on avidin and biotin-4-fluorescein. Methods Enzymol 2021; 633:1-20. [PMID: 32046840 DOI: 10.1016/bs.mie.2019.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biotinylated molecules are extensively employed in bioanalytics and biotechnology. The currently available assays for quantification of biotin groups suffer from low sensitivity, low accuracy, or provide highly variable responses for different biotin derivatives. We developed a competitive binding assay in which avidin was pre-blocked to different extents by the biotinylated analyte and a constant amount of biotin-4-fluorescein (B4F) was added, resulting in strong quenching of the B4F. The assay was robust and the shape of the titration curve immediately revealed whether the data were reliable or perturbed by steric hindrance in case of large biotin derivatives. These advantages justified well the 10× higher sample consumption (~0.6nmol) compared to single point assays. The assay was applied to a representative set of small biotin derivatives and validated by cross-control with the well-established 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) binding assay. In comparison to the 2,6-ANS binding assay, the lower precision (±10%) was compensated by the 100-fold higher sensitivity and the deviations from the ANS assay were ≤5%. In comparison to the more sensitive biotin group assays, the new assay has the advantage of minimal bias for different biotin derivatives. In case of biotinylated DNA with 30 nucleotides, steric hindrance was found to reduce the accuracy of biotin group determination; this problem was overcome by partial digestion to n≤5 nucleotide residues with a 3'-exonuclease. The newly proposed biotin group assay offers a useful compromise in terms of sensitivity, precision, trueness, and robustness.
Collapse
Affiliation(s)
- Elke Oberbichler
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Maria Wiesauer
- Institute of Inorganic Chemistry, Johannes Kepler University, Linz, Austria
| | - Eva Schlögl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Jessica Stangl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Felix Faschinger
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University, Linz, Austria
| | - Hermann J Gruber
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
10
|
Tsai R, Interlandi G. Oxidation shuts down an auto-inhibitory mechanism of von Willebrand factor. Proteins 2021; 89:731-741. [PMID: 33550613 DOI: 10.1002/prot.26055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/24/2020] [Accepted: 01/31/2021] [Indexed: 01/13/2023]
Abstract
The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.
Collapse
Affiliation(s)
- Rachel Tsai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Berg Luecke L, Gundry RL. Assessment of Streptavidin Bead Binding Capacity to Improve Quality of Streptavidin-based Enrichment Studies. J Proteome Res 2020; 20:1153-1164. [PMID: 33270449 DOI: 10.1021/acs.jproteome.0c00772] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The streptavidin-based enrichment of biotin-tagged molecules is a common methodology that is routinely used across multiple disciplines in biomedical research. Numerous and varied formats of immobilized streptavidin and related proteins are available, but predicting which product is most apt for a given application is complicated by the fact that there are numerous technical considerations and no universal reporting standards for describing the binding capacity of the beads. Here, we define criteria that should be considered when performing a fit-for-purpose evaluation of streptavidin beads. We also describe a colorimetric competitive displacement assay, the streptAVIdin binDing capacITY (AVIDITY) assay, a fast, easy, and inexpensive absorbance-based method to measure the binding capacity of streptavidin beads, which can be used to compare different products and evaluate variation among many of the same product. We expect that the fit-for-purpose criteria and the AVIDITY assay will benefit users across disciplines to make informed decisions regarding the most apt streptavidin bead products for their own experiments.
Collapse
Affiliation(s)
- Linda Berg Luecke
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
12
|
Sreenivasan VKA, Graus MS, Pillai RR, Yang Z, Goyette J, Gaus K. Influence of FRET and fluorescent protein maturation on the quantification of binding affinity with dual-channel fluorescence cross-correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6137-6153. [PMID: 33282480 PMCID: PMC7687962 DOI: 10.1364/boe.401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Protein-protein interactions at the plasma membrane mediate transmembrane signaling. Dual-channel fluorescence cross-correlation spectroscopy (dc-FCCS) is a method with which these interactions can be quantified in a cellular context. However, factors such as incomplete maturation of fluorescent proteins, spectral crosstalk, and fluorescence resonance energy transfer (FRET) affect quantification. Some of these can be corrected or accounted for during data analysis and/or interpretation. Here, we experimentally and analytically demonstrate that it is difficult to correct the error caused due to FRET when applying dc-FCCS to measure binding affinity or bound molecular concentrations. Additionally, the presence of dark fluorescent proteins due to incomplete maturation introduces further errors, which too cannot be corrected in the presence of FRET. Based on simulations, we find that modalities such as pulse-interleaved excitation FCCS do not eliminate FRET-induced errors. Finally, we demonstrate that the detrimental effect of FRET can be eliminated with careful experimental design when applying dc-FCCS to quantify protein-protein interactions at the plasma membrane of living cells.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Matthew S Graus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Rashmi R Pillai
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Zhengmin Yang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
13
|
Engineering a disulfide-gated switch in streptavidin enables reversible binding without sacrificing binding affinity. Sci Rep 2020; 10:12483. [PMID: 32719366 PMCID: PMC7385176 DOI: 10.1038/s41598-020-69357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Although high affinity binding between streptavidin and biotin is widely exploited, the accompanying low rate of dissociation prevents its use in many applications where rapid ligand release is also required. To combine extremely tight and reversible binding, we have introduced disulfide bonds into opposite sides of a flexible loop critical for biotin binding, creating streptavidin muteins (M88 and M112) with novel disulfide-switchable binding properties. Crystal structures reveal how each disulfide exerts opposing effects on structure and function. Whereas the disulfide in M112 disrupts the closed conformation to increase koff, the disulfide in M88 stabilizes the closed conformation, decreasing koff 260-fold relative to streptavidin. The simple and efficient reduction of this disulfide increases koff 19,000-fold, thus creating a reversible redox-dependent switch with 70-fold faster dissociation kinetics than streptavidin. The facile control of disulfide formation in M88 will enable the development of many new applications requiring high affinity and reversible binding.
Collapse
|
14
|
Biotin oligonucleotide labeling reactions: A method to assess their effectiveness and reproducibility. Anal Biochem 2020; 593:113590. [PMID: 31962102 DOI: 10.1016/j.ab.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
The strong molecular interaction between biotin and streptavidin is widely used in the growing field of nucleic acid nanotechnology. Several biotin labeled oligonucleotide tools have been developed for the detection of biological molecules as well as for protein purification. For these reasons, biotinylation can be considered one of the main chemical reactions for nucleic acid labeling. However, despite its widespread application and the presence on the market of many reagents for the conjugation of biotin to oligonucleotides, it is not yet available a cheap, easy and sensitive system able to assess the effectiveness and reproducibility of this reaction. Here, we present an accurate and reliable method to achieve a qualitative and quantitative analysis of oligonucleotide biotinylation. The protocol employs basic laboratory instruments and standard software for molecular biology applications and does not require advanced expertise for its execution. Most importantly, our method is independent from complex kinetic equilibrium parameters and shows a limit of detection more than one order of magnitude lower than the current fluorometric gold standard assay. Therefore, this method could become a standard, inexpensive and routinely used quality test for post-synthesis evaluation of biotin conjugation reactions.
Collapse
|
15
|
Denham EM, Barton MI, Black SM, Bridge MJ, de Wet B, Paterson RL, van der Merwe PA, Goyette J. A generic cell surface ligand system for studying cell-cell recognition. PLoS Biol 2019; 17:e3000549. [PMID: 31815943 PMCID: PMC6922461 DOI: 10.1371/journal.pbio.3000549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023] Open
Abstract
Dose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell–cell interface. Here, we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. These densities are robustly quantifiable, a major advance over previous studies. We validate the system for a range of immunoreceptors, including the T-cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. We also extend our work to the activation of chimeric antigen receptors. This novel system allows the effect of varying the surface density, valency, dimensions, and affinity of the ligand to be investigated. It can be readily broadened to other receptor–cell surface ligand interactions and will facilitate investigation into the activation of, and signal integration between, cell surface receptors. This study describes a generic cell-surface ligand system that allows precise manipulation of ligand densities, valency, dimensions, and affinity. The system is validated for a range of immunoreceptors, including the T-cell receptor, and can be readily broadened to other cell-surface receptor-ligand interactions.
Collapse
Affiliation(s)
- Eleanor M. Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Michael I. Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Susannah M. Black
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Marcus J. Bridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ben de Wet
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Rachel L. Paterson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - P. Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail: (JG); (PAvdM)
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JG); (PAvdM)
| |
Collapse
|
16
|
Wu S, Zhou Y, Rebelein JG, Kuhn M, Mallin H, Zhao J, Igareta NV, Ward TR. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. J Am Chem Soc 2019; 141:15869-15878. [PMID: 31509711 PMCID: PMC6805045 DOI: 10.1021/jacs.9b06923] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The biotin–streptavidin technology
has been extensively
exploited to engineer artificial metalloenzymes (ArMs) that catalyze
a dozen different reactions. Despite its versatility, the homotetrameric
nature of streptavidin (Sav) and the noncooperative binding of biotinylated
cofactors impose two limitations on the genetic optimization of ArMs:
(i) point mutations are reflected in all four subunits of Sav, and
(ii) the noncooperative binding of biotinylated cofactors to Sav may
lead to an erosion in the catalytic performance, depending on the
cofactor:biotin-binding site ratio. To address these challenges, we
report on our efforts to engineer a (monovalent) single-chain dimeric
streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility
of scdSav as host protein is highlighted for the asymmetric transfer
hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning
of the biotin-binding vestibule, unrivaled levels of activity and
selectivity were achieved for the reduction of challenging prochiral
imines. Comparison of the saturation kinetic data and X-ray structures
of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally
related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav
highlights the advantages of the presence of a single biotinylated
cofactor precisely localized within the biotin-binding vestibule of
the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated
for the reduction of the salsolidine precursor (500 mM) to afford
(R)-salsolidine in 90% ee and >17 000 TONs.
Monovalent scdSav thus provides a versatile scaffold to evolve more
efficient ArMs for in vivo catalysis and large-scale applications.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Yi Zhou
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Miriam Kuhn
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Jingming Zhao
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Nico V Igareta
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| |
Collapse
|
17
|
On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun Chem 2018. [DOI: 10.1038/s42004-018-0087-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Avraham O, Bayer EA, Livnah O. Crystal structure of afifavidin reveals common features of molecular assemblage in the bacterial dimeric avidins. FEBS J 2018; 285:4617-4630. [DOI: 10.1111/febs.14685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Orly Avraham
- Department of Biological Chemistry The Alexander Silverman Institute of Life Sciences The Wolfson Centre for Applied Structural Biology The Hebrew University of Jerusalem Israel
| | - Edward A. Bayer
- Department of Biological Chemistry The Weizmann Institute of Science Rehovot Israel
| | - Oded Livnah
- Department of Biological Chemistry The Alexander Silverman Institute of Life Sciences The Wolfson Centre for Applied Structural Biology The Hebrew University of Jerusalem Israel
| |
Collapse
|
19
|
Heyduk E, Hickey R, Pozzi N, Heyduk T. Peptide ligand-based ELISA reagents for antibody detection. Anal Biochem 2018; 559:55-61. [PMID: 30130491 DOI: 10.1016/j.ab.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
Detection of specific antibodies has numerous research, therapeutic and diagnostic applications. Short peptide ligands that bind specifically to antibodies with continuous epitopes can be derived from epitope mapping experiments. Short peptide ligands (mimotopes) specific to antibodies with discontinuous epitopes can be identified by screening complex peptide libraries. In an effort to enhance practical utility of such peptide ligands, we describe here a simple approach to turn such target antibody-specific peptide ligands into specific ELISA detection reagents. We show that a simple addition of biotinylated peptide ligands to commonly available horseradish peroxidase (HRP)-labeled streptavidin (or HRP-anti-biotin antibody), or digoxigenin-labeled peptides to HRP-anti-digoxigenin antibody detection reagents transformed these generic detection reagents into sensitive target antibody-specific reagents. ELISA assays performed using these reagents exhibited excellent analytical properties indicating their practical utility for antibody detection. One generic detection reagent can be readily transformed into many different specific ELISA reagents by a simple mix and match design using an appropriate target-specific peptide ligand. Simplicity of preparation of these ELISA reagents for detecting antibodies should facilitate their practical applications.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Rachel Hickey
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
20
|
Miyagawa A, Inoue Y, Harada M, Okada T. Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles. ANAL SCI 2018; 33:939-944. [PMID: 28794331 DOI: 10.2116/analsci.33.939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we propose a concept for sensing based on density changes of microparticles (MPs) caused by a biochemical reaction. The MPs are levitated by a combined acoustic-gravitational force at a position determined by the density and compressibility. Importantly, the levitation is independent of the MPs sizes. When gold nanoparticles (AuNPs) are bound on the surface of polymer MPs through a reaction, the density of the MPs dramatically increases, and their levitation position in the acoustic-gravitational field is lowered. Because the shift of the levitation position is proportional to the number of AuNPs bound on one MP, we can determine the number of molecules involved in the reaction. The avidin-biotin reaction is used to demonstrate the effectiveness of this concept. The number of molecules involved in the reaction is very small because the reaction space is small for an MP; thus, the method has potential for highly sensitive detection.
Collapse
Affiliation(s)
| | - Yoshinori Inoue
- Department of Chemistry, Tokyo Institute of Technology.,Department of Applied Chemistry, Aichi Institute of Technology
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology
| |
Collapse
|
21
|
Shi D, Sheng F, Zhang X, Wang G. Gold nanoparticle aggregation: Colorimetric detection of the interactions between avidin and biotin. Talanta 2018; 185:106-112. [DOI: 10.1016/j.talanta.2018.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
|
22
|
Abstract
In order to develop a streptavidin-biotin system with optimal performance in fluorescent labeling, in this issue of Cell Chemical Biology, Jacobsen et al. (2017) focused on changing the surface density of amino groups present on streptavidin via lysine mutagenesis. The streptavidin mutant containing only one free amino group was found superior to other streptavidin variants and was named Flavidin for fluorophore-friendly streptavidin.
Collapse
Affiliation(s)
- Vesa P Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland.
| |
Collapse
|
23
|
van der Wel C, Bossert N, Mank QJ, Winter MGT, Heinrich D, Kraft DJ. Surfactant-free Colloidal Particles with Specific Binding Affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9803-9810. [PMID: 28847149 PMCID: PMC5618147 DOI: 10.1021/acs.langmuir.7b02065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles.
Collapse
Affiliation(s)
- Casper van der Wel
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Nelli Bossert
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Quinten J. Mank
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Marcel G. T. Winter
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
| | - Doris Heinrich
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
- Fraunhofer
Institute for Silicate Research, Neunerplatz 2, 97082 Würzburg, Germany
| | - Daniela J. Kraft
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O.
Box 9504, 2300 RA Leiden, The Netherlands
- E-mail:
| |
Collapse
|
24
|
Interlandi G, Yakovenko O, Tu AY, Harris J, Le J, Chen J, López JA, Thomas WE. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets. J Biol Chem 2017; 292:18608-18617. [PMID: 28924049 DOI: 10.1074/jbc.m117.797456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/25/2017] [Indexed: 01/20/2023] Open
Abstract
The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker.
Collapse
Affiliation(s)
- Gianluca Interlandi
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195,
| | - Olga Yakovenko
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - An-Yue Tu
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Jeff Harris
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - Jennie Le
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - Junmei Chen
- the Bloodworks Research Institute, Seattle, Washington 98102, and
| | - José A López
- the Bloodworks Research Institute, Seattle, Washington 98102, and.,the Departments of Medicine, Biochemistry, and Mechanical Engineering, University of Washington, Seattle, Washington 98195
| | - Wendy E Thomas
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
25
|
Ohtsu T, Shigenari S, Yoshimoto M, Umakoshi H. Reactive bienzyme systems fabricated through immobilization of biotinylated glucose oxidase and peroxidase molecules onto neutralized avidin-conjugated liposomes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Jacobsen MT, Fairhead M, Fogelstrand P, Howarth M. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction. Cell Chem Biol 2017; 24:1040-1047.e4. [PMID: 28757182 PMCID: PMC5563079 DOI: 10.1016/j.chembiol.2017.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Chemical modification of proteins provides great opportunities to control and visualize living systems. The most common way to modify proteins is reaction of their abundant amines with N-hydroxysuccinimide (NHS) esters. Here we explore the impact of amine number and positioning on protein-conjugate behavior using streptavidin-biotin, a central research tool. Dye-NHS modification of streptavidin severely damaged ligand binding, necessitating development of a new streptavidin-retaining ultrastable binding after labeling. Exploring the ideal level of dye modification, we engineered a panel bearing 1–6 amines per subunit: “amine landscaping.” Surprisingly, brightness increased as amine number decreased, revealing extensive quenching following conventional labeling. We ultimately selected Flavidin (fluorophore-friendly streptavidin), combining ultrastable ligand binding with increased brightness after conjugation. Flavidin enhanced fluorescent imaging, allowing more sensitive and specific cell labeling in tissues. Flavidin should have wide application in molecular detection, providing a general insight into how to optimize simultaneously the behavior of the biomolecule and the chemical probe. Labeling of streptavidin with small-molecule dyes impairs ligand binding K121R mutation rescues ligand stability after dye labeling Landscaping of protein amines optimizes brightness Fluorophore-friendly streptavidin improves imaging specificity and sensitivity
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Per Fogelstrand
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
27
|
Muraki M, Hirota K. Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene - methyltetrazine reactions. BMC Biotechnol 2017; 17:56. [PMID: 28673349 PMCID: PMC5496246 DOI: 10.1186/s12896-017-0381-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. Results A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab’ domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. Conclusions The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0381-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michiro Muraki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kiyonori Hirota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
28
|
Chakraborty I, Meester V, van der Wel C, Kraft DJ. Colloidal joints with designed motion range and tunable joint flexibility. NANOSCALE 2017; 9:7814-7821. [PMID: 28470266 DOI: 10.1039/c6nr08069c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The miniaturization of machines towards the micron and nanoscale requires the development of joint-like elements that enable and constrain motion. We present a facile method to create colloidal joints, that is, anisotropic colloidal particles functionalized with surface mobile DNA linkers that control the motion range of bonded particles. We demonstrate quantitatively that we can control the flexibility of these colloidal joints by tuning the DNA linker concentration in the bond area. We show that the shape of the colloidal joint controls the range of motion of bonded particles through a maximisation of the bond area. Using spheres, cubes, and dumbbells, we experimentally realize spherical joints, planar sliders, and hinges, respectively. Finally we demonstrate the potential of the colloidal joints for programmable bottom-up self-assembly by creating flexible colloidal molecules and colloidal polymers. The reconfigurability and motion constraint offered by our colloidal joints make them promising building blocks for the development of switchable materials and nanorobots.
Collapse
Affiliation(s)
- Indrani Chakraborty
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
29
|
Jeschek M, Bahls MO, Schneider V, Marlière P, Ward TR, Panke S. Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metab Eng 2017; 40:33-40. [DOI: 10.1016/j.ymben.2016.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
|
30
|
Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 2016; 537:661-665. [PMID: 27571282 DOI: 10.1038/nature19114] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the 'metathase' because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in different directions by adjusting the workflow. Our results represent the systematic implementation and evolution of an artificial metalloenzyme that catalyses an abiotic reaction in vivo, with potential applications in, for example, non-natural metabolism.
Collapse
|
31
|
Andreoni A, Nardo L, Rigler R. Time-resolved homo-FRET studies of biotin-streptavidin complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:656-662. [PMID: 27494295 DOI: 10.1016/j.jphotobiol.2016.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components.
Collapse
Affiliation(s)
- Alessandra Andreoni
- Department of Science and High Technology, University of Insubria, Como 22100, Italy.
| | - Luca Nardo
- Department of Science and High Technology, University of Insubria, Como 22100, Italy.
| | - Rudolf Rigler
- Department of Medical Biophysics, Karolinska Institutet, 17 177 Stockholm, Sweden; Laboratory of Biomedical Optics, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Macchia E, Alberga D, Manoli K, Mangiatordi GF, Magliulo M, Palazzo G, Giordano F, Lattanzi G, Torsi L. Organic bioelectronics probing conformational changes in surface confined proteins. Sci Rep 2016; 6:28085. [PMID: 27312768 PMCID: PMC4911579 DOI: 10.1038/srep28085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica "M. Merlin" dell'Università e del Politecnico di Bari - Bari (Italy)
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| | - Giuseppe F Mangiatordi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| | - Maria Magliulo
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| | - Francesco Giordano
- Dipartimento Interateneo di Fisica "M. Merlin" dell'Università e del Politecnico di Bari - Bari (Italy)
| | - Gianluca Lattanzi
- Dipartimento di Medicina Clinica e Sperimentale -Università degli Studi di Foggia - Foggia (Italy)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro - Bari (Italy)
| |
Collapse
|
33
|
Wang Q, Huang X, Fu X, Deng H, Ma M, Cai Z. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 162:75-80. [PMID: 26978788 DOI: 10.1016/j.saa.2016.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Avidin is a glycoprotein with antinutritional property, which should be limited in daily food. We developed an affinity biosensor system based on resonance Rayleigh scattering (RRS) and using affinity biotin labeling Au nanoparticles (AuNPs). This method was selective and sensitive for quick avidin detection due to the avidin-biotin affinitive interaction. Under optimal conditions, RRS intensity of biotin-AuNPs increase linearly with an increasing concentration of avidin from 5 to 160 ng/mL. The lower limit of detection was 0.59 ng/mL. This rapid and selective avidin detection method was used in synthetic samples and egg products with recoveries of between 102.97 and 107.92%, thereby demonstrating the feasible and practical application of this assay.
Collapse
Affiliation(s)
- Qi Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Huan Deng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
34
|
Müller JM, Bruhn S, Flaschel E, Friehs K, Risse JM. GAP promoter-based fed-batch production of highly bioactive core streptavidin byPichia pastoris. Biotechnol Prog 2016; 32:855-64. [DOI: 10.1002/btpr.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jakob Michael Müller
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Simon Bruhn
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Erwin Flaschel
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Karl Friehs
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Joe Max Risse
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| |
Collapse
|
35
|
Wetzel D, Müller JM, Flaschel E, Friehs K, Risse JM. Fed-batch production and secretion of streptavidin by Hansenula polymorpha: Evaluation of genetic factors and bioprocess development. J Biotechnol 2016; 225:3-9. [DOI: 10.1016/j.jbiotec.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
|
36
|
Pellizzoni M, Facchetti G, Gandolfi R, Fusè M, Contini A, Rimoldi I. Evaluation of Chemical Diversity of Biotinylated Chiral 1,3-Diamines as a Catalytic Moiety in Artificial Imine Reductase. ChemCatChem 2016. [DOI: 10.1002/cctc.201600116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michela Pellizzoni
- Department of Chemistry; University of Basel; Spitalstrasse 51 4056 Basel Switzerland
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Marco Fusè
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| |
Collapse
|
37
|
Quevedo PD, Behnke T, Resch-Genger U. Streptavidin conjugation and quantification-a method evaluation for nanoparticles. Anal Bioanal Chem 2016; 408:4133-49. [PMID: 27038055 DOI: 10.1007/s00216-016-9510-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Aiming at the development of validated protocols for protein conjugation of nanomaterials and the determination of protein labeling densities, we systematically assessed the conjugation of the model protein streptavidin (SAv) to 100-, 500-, and 1000-nm-sized polystyrene and silica nanoparticles and dye-encoded polymer particles with two established conjugation chemistries, based upon achievable coupling efficiencies and labeling densities. Bioconjugation reactions compared included EDC/sulfo NHS ester chemistry for direct binding of the SAv to carboxyl groups at the particle surface and maleimide-thiol chemistry in conjunction with heterobifunctional PEG linkers and aminated nanoparticles (NPs). Quantification of the total and functional amounts of SAv on these nanomaterials and unreacted SAv in solution was performed with the BCA assay and the biotin-FITC (BF) titration, relying on different signal generation principles, which are thus prone to different interferences. Our results revealed a clear influence of the conjugation chemistry on the amount of NP crosslinking, yet under optimized reaction conditions, EDC/sulfo NHS ester chemistry and the attachment via heterobifunctional PEG linkers led to comparably efficient SAv coupling and good labeling densities. Particle size can obviously affect protein labeling densities and particularly protein functionality, especially for larger particles. For unstained nanoparticles, direct bioconjugation seems to be the most efficient strategy, whereas for dye-encoded nanoparticles, PEG linkers are to be favored for the prevention of dye-protein interactions which can affect protein functionality specifically in the case of direct SAv binding. Moreover, an influence of particle size on achievable protein labeling densities and protein functionality could be demonstrated.
Collapse
Affiliation(s)
- Pablo Darío Quevedo
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany
| | - Thomas Behnke
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Department 1, Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstaetter Strasse 11, 12489, Berlin, Germany.
| |
Collapse
|
38
|
Quantification of the degree of biotinylation of proteins using proteinase K digestion and competition ELISA. J Immunol Methods 2016; 430:61-3. [DOI: 10.1016/j.jim.2016.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 11/21/2022]
|
39
|
Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli ‘leaky mutant’. J Biotechnol 2016; 221:91-100. [DOI: 10.1016/j.jbiotec.2016.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
|
40
|
Lippert LG, Hallock JT, Dadosh T, Diroll BT, Murray CB, Goldman YE. NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching. Bioconjug Chem 2016; 27:562-8. [PMID: 26722835 DOI: 10.1021/acs.bioconjchem.5b00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed methods to solubilize, coat, and functionalize with NeutrAvidin elongated semiconductor nanocrystals (quantum nanorods, QRs) for use in single molecule polarized fluorescence microscopy. Three different ligands were compared with regard to efficacy for attaching NeutrAvidin using the "zero-length cross-linker" 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Biotin-4-fluorescene (B4F), a fluorophore that is quenched when bound to avidin proteins, was used to quantify biotin binding activity of the NeutrAvidin coated QRs and biotin binding activity of commercially available streptavidin coated quantum dots (QDs). All three coating methods produced QRs with NeutrAvidin coating density comparable to the streptavidin coating density of the commercially available quantum dots (QDs) in the B4F assay. One type of QD available from the supplier (ITK QDs) exhibited ∼5-fold higher streptavidin surface density compared to our QRs, whereas the other type of QD (PEG QDs) had 5-fold lower density. The number of streptavidins per QD increased from ∼7 streptavidin tetramers for the smallest QDs emitting fluorescence at 525 nm (QD525) to ∼20 tetramers for larger, longer wavelength QDs (QD655, QD705, and QD800). QRs coated with NeutrAvidin using mercaptoundecanoicacid (MUA) and QDs coated with streptavidin bound to biotinylated cytoplasmic dynein in single molecule TIRF microscopy assays, whereas Poly(maleic anhydride-alt-1-ocatdecene) (PMAOD) or glutathione (GSH) QRs did not bind cytoplasmic dynein. The coating methods require optimization of conditions and concentrations to balance between substantial NeutrAvidin binding vs tendency of QRs to aggregate and degrade over time.
Collapse
Affiliation(s)
| | | | - Tali Dadosh
- Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 7610001, Israel
| | | | | | | |
Collapse
|
41
|
Lo KKW. Luminescent Iridium(III) and Rhenium(I) Complexes as Biomolecular Probes and Imaging Reagents. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Lentiavidins: Novel avidin-like proteins with low isoelectric points from shiitake mushroom (Lentinula edodes). J Biosci Bioeng 2015; 121:420-3. [PMID: 26467695 DOI: 10.1016/j.jbiosc.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/07/2015] [Accepted: 09/05/2015] [Indexed: 11/21/2022]
Abstract
A biotin-binding protein with a low isoelectric point (pI), which minimizes electrostatic non-specific binding to substances other than biotin, is potentially valuable. To obtain such a protein, we screened hundreds of mushrooms, and detected strong biotin-binding activity in the fruit bodies of Lentinula edodes, shiitake mushroom. Two cDNAs, each encoding a protein of 152 amino acids, termed lentiavidin 1 and lentiavidin 2 were cloned from L. edodes. The proteins shared sequence identities of 27%-49% with other biotin-binding proteins, and many residues that directly associate with biotin in streptavidin were conserved in lentiavidins. The pI values of lentiavidin 1 and lentiavidin 2 were 3.9 and 4.4, respectively; the former is the lowest pI of the known biotin-binding proteins. Lentiavidin 1 was expressed as a tetrameric protein with a molecular mass of 60 kDa in an insect cell-free expression system and showed biotin-binding activity. Lentiavidin 1, with its pI of 3.9, has a potential for broad applications as a novel biotin-binding protein.
Collapse
|
43
|
Avraham O, Meir A, Fish A, Bayer EA, Livnah O. Hoefavidin: A dimeric bacterial avidin with a C-terminal binding tail. J Struct Biol 2015; 191:139-48. [DOI: 10.1016/j.jsb.2015.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 11/30/2022]
|
44
|
Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles. Bioprocess Biosyst Eng 2015. [DOI: 10.1007/s00449-015-1443-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Müller JM, Risse JM, Friehs K, Flaschel E. Model-based development of an assay for the rapid detection of biotin-blocked binding sites of streptavidin. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jakob M. Müller
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Joe M. Risse
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Erwin Flaschel
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
46
|
Antonenko YN, Nechaeva NL, Baksheeva VE, Rokitskaya TI, Plotnikov EY, Kotova EA, Zorov DB. Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1277-84. [PMID: 25753112 DOI: 10.1016/j.bbamem.2015.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
Conjugation to penetrating cations is a general approach for intramitochondrial delivery of physiologically active compounds, supported by a high membrane potential of mitochondria having negative sign on the matrix side. By using fluorescence correlation spectroscopy, we found here that Atto520-biotin, a conjugate of a fluorescent cationic rhodamine-based dye with the membrane-impermeable vitamin biotin, accumulated in energized mitochondria in contrast to biotin-rhodamine 110. The energy-dependent uptake of Atto520-biotin by mitochondria, being slower than that of the conventional mitochondrial dye tetramethyl-rhodamine ethyl ester, was enhanced by the hydrophobic anion tetraphenylborate (TPB). Atto520-biotin also exhibited accumulation in liposomes driven by membrane potential resulting from potassium ion gradient in the presence valinomycin. The induction of electrical current across planar bilayer lipid membrane by Atto520-biotin proved the ability of the compound to permeate through lipid membrane in a cationic form. Atto520-biotin stained mitochondria in a culture of L929 cells, and the staining was enhanced in the presence of TPB. Therefore, the fluorescent Atto520 moiety can serve as a vehicle for intramitochondrial delivery of hydrophilic drugs. Of importance for biotin-streptavidin technology, binding of Atto520-biotin to streptavidin was found to cause quenching of its fluorescence similar to the case of fluorescein-4-biotin.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Natalya L Nechaeva
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Victoria E Baksheeva
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
47
|
Fairhead M, Shen D, Chan LKM, Lowe ED, Donohoe TJ, Howarth M. Love-Hate ligands for high resolution analysis of strain in ultra-stable protein/small molecule interaction. Bioorg Med Chem 2014; 22:5476-86. [PMID: 25128469 DOI: 10.1016/j.bmc.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin-biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: 'Love-Hate ligands'. The Love-Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1-1.6Å resolution crystal structures of streptavidin bound to Love-Hate ligands. Striking distortion of streptavidin's binding contacts was found for these complexes. Hydrogen bonds to biotin's ureido and thiophene rings were preserved for all the ligands, but biotin's valeryl tail was distorted from the classic conformation. Streptavidin's L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love-Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity.
Collapse
Affiliation(s)
- Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Di Shen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Louis K M Chan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ed D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
48
|
Sun Q, Qian J, Tian H, Duan L, Zhang W. Rational design of biotinylated probes: fluorescent turn-on detection of (strept)avidin and bioimaging in cancer cells. Chem Commun (Camb) 2014; 50:8518-21. [DOI: 10.1039/c4cc03315a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Fairhead M, Krndija D, Lowe ED, Howarth M. Plug-and-play pairing via defined divalent streptavidins. J Mol Biol 2014; 426:199-214. [PMID: 24056174 PMCID: PMC4047826 DOI: 10.1016/j.jmb.2013.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
Abstract
Streptavidin is one of the most important hubs for molecular biology, either multimerizing biomolecules, bridging one molecule to another, or anchoring to a biotinylated surface/nanoparticle. Streptavidin has the advantage of rapid ultra-stable binding to biotin. However, the ability of streptavidin to bind four biotinylated molecules in a heterogeneous manner is often limiting. Here, we present an efficient approach to isolate streptavidin tetramers with two biotin-binding sites in a precise arrangement, cis or trans. We genetically modified specific subunits with negatively charged tags, refolded a mixture of monomers, and used ion-exchange chromatography to resolve tetramers according to the number and orientation of tags. We solved the crystal structures of cis-divalent streptavidin to 1.4Å resolution and trans-divalent streptavidin to 1.6Å resolution, validating the isolation strategy and explaining the behavior of the Dead streptavidin variant. cis- and trans-divalent streptavidins retained tetravalent streptavidin's high thermostability and low off-rate. These defined divalent streptavidins enabled us to uncover how streptavidin binding depends on the nature of the biotin ligand. Biotinylated DNA showed strong negative cooperativity of binding to cis-divalent but not trans-divalent streptavidin. A small biotinylated protein bound readily to cis and trans binding sites. We also solved the structure of trans-divalent streptavidin bound to biotin-4-fluorescein, showing how one ligand obstructs binding to an adjacent biotin-binding site. Using a hexaglutamate tag proved a more powerful way to isolate monovalent streptavidin, for ultra-stable labeling without undesired clustering. These forms of streptavidin allow this key hub to be used with a new level of precision, for homogeneous molecular assembly.
Collapse
Affiliation(s)
- Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Denis Krndija
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ed D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
50
|
Nogueira ES, Schleier T, Dürrenberger M, Ballmer-Hofer K, Ward TR, Jaussi R. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expr Purif 2013; 93:54-62. [PMID: 24184946 DOI: 10.1016/j.pep.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/22/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
Abstract
Artificial metalloenzymes result from the incorporation of a catalytically competent biotinylated organometallic moiety into full-length (i.e. mature) streptavidin. With large-scale industrial biotechnology applications in mind, large quantities of recombinant streptavidin are required. Herein we report our efforts to produce wild-type mature and biotin-free streptavidin using the yeast Pichia pastoris expression system. The streptavidin gene was inserted into the expression vector pPICZαA in frame with the Saccharomyces cerevisiae α-mating factor secretion signal. In a fed-batch fermentation using a minimal medium supplemented with trace amounts of biotin, functional streptavidin was secreted at approximately 650mg/L of culture supernatant. This yield is approximately threefold higher than that from Escherichia coli, and although the overall expression process takes longer (ten days vs. two days), the downstream processing is simplified by eliminating denaturing/refolding steps. The purified streptavidin bound ∼3.2molecules of biotin per tetramer. Upon incorporation of a biotinylated piano-stool catalyst, the secreted streptavidin displayed identical properties to streptavidin produced in E. coli by showing activity as artificial imine reductase.
Collapse
Affiliation(s)
- Elisa S Nogueira
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|