1
|
Li X, Zhang J, Zhang X, Dong M. Puerarin suppresses MPP +/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol 2020; 144:111644. [PMID: 32763437 DOI: 10.1016/j.fct.2020.111644] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
In this study, we hypothesized that anti-parkinsonian effect of puerarin is attributable to its antioxidant properties via Nrf2-dependent glutathione (GSH) biosynthesis mechanism. Experimentally, we found that puerarin attenuated 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress through elevating biosynthetic capacity of GSH in PC12 cells. Mechanistically, puerarin suppressed Fyn phosphorylation by GSK-3β-dependent mechanism in MPP+-challenged PC12 cells. Furthermore, puerarin induced accumulation of Nrf2 in the nucleus via inhibiting its nuclear exclusion. In parallel, puerarin up-regulated antioxidant response element (ARE)-driven catalytic subunits from glutamate cysteine ligase (GCLc) expression at levels of transcription and translation. Most interestingly, pharmacological inhibitor of GSK-3β or Fyn shRNA blocked puerarin-induced Nrf2 activation in MPP+-challenged PC12 cells. Concomitantly, puerarin ameliorated motor deficits and inhibited oxidative stress in the ventral midbrain in MPTP-intoxicated wild-type (WT) mice, but failed to attenuate MPTP neurotoxicity and up-regulate GCLc gene in Nrf2-knockout (Nrf2-/-) mice, suggesting that anti-parkinsonian effect of puerarin was dependent on Nrf2. Additionally, puerarin regulated Fyn and GSK-3β phosphorylation in the ventral midbrain in MPTP-intoxicated WT mice. Collectively, the results of the study provide molecular insights into the potential therapeutic action of puerarin in Parkinson's disease, suggesting that puerarin may be a promising candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoming Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jing Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
2
|
Wei Q, Liang X, Peng Y, Yu D, Zhang R, Jin H, Fan J, Cai W, Ren C, Yu J. 17β-estradiol ameliorates oxidative stress and blue light-emitting diode-induced retinal degeneration by decreasing apoptosis and enhancing autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2715-2730. [PMID: 30233136 PMCID: PMC6129027 DOI: 10.2147/dddt.s176349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose This study aimed to assess the effects of 17β-estradiol (βE2) on blue light-emitting diode (LED)-induced retinal degeneration (RD) in rats and hydrogen peroxide (H2O2)-induced retinal pigment epithelium cell injury in humans and elucidate the protective mechanism of βE2 underlying these processes. Methods Female ovariectomized (OVX) rats were intravitreally injected with βE2 before blue LED exposure (3,000 lux, 2 hours). Retinal function and morphology were assayed via electroretinogram (ERG) and H&E, respectively. Cell viability was assayed using the Cell Counting Kit-8. Cell ROS were measured using dichlorofluorescein fluorescence. Apoptosis was evaluated by TUNEL and Annexin V/propidium iodide staining. Gene expression and protein expression were quantified using quantitative real-time RT-PCR, Western blotting, and immunohistochemistry. Autophagosomes were examined by electron microscopy. Results Female OVX rats were exposed to blue LED, inducing RD. βE2 significantly prevented the reduction in the a- and b-wave ERG amplitudes and the disruption of retinal structure, the loss of photoreceptor cells, and the decrease in the thickness of the outer nuclear layer caused by blue LED exposure. βE2 also decreased cell apoptosis in the retina in blue LED-induced RD. Additionally, βE2 reduced ROS levels and apoptosis in H2O2-treated human retinal pigment epithelial (ARPE-19) cells. Furthermore, βE2 increased the protein expression of p-Akt and Bcl-2 and decreased the protein expression of cleaved caspase-3 and Bax during blue LED-induced retinal damage and in H2O2-treated ARPE-19 cells. βE2 also increased the number of autopha-gosomes and upregulated the expression of LC3-II/LC3-I and Beclin 1 in these processes. Conclusion βE2 protects against blue LED-induced RD and H2O2-induced oxidative stress by acting as an antioxidant, and its protective mechanism might occur by reducing apoptosis and enhancing autophagy; βE2 may be a novel and effective therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Ye Peng
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jiaqi Fan
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, , .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
3
|
Zhu C, Wang S, Wang B, Du F, Hu C, Li H, Feng Y, Zhu R, Mo M, Cao Y, Li A, Yu X. 17β-Estradiol up-regulates Nrf2 via PI3K/AKT and estrogen receptor signaling pathways to suppress light-induced degeneration in rat retina. Neuroscience 2015. [PMID: 26211446 DOI: 10.1016/j.neuroscience.2015.07.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human age-related retinal diseases, such as age-related macular degeneration (AMD), are intimately associated with decreased tissue oxygenation and hypoxia. Different antioxidants have been investigated to reverse AMD. In the present study, we describe the antioxidant 17β-estradiol (βE2) and investigate its protective effects on retinal neurons. Fourteen days after ovariectomy, adult Sprague-Dawley rats were exposed to 8000-lux light for 12h to induce retinal degeneration. Reactive oxygen species (ROS) levels were assessed by confocal fluorescence microscopy using 2,7-dichlorofluorescein diacetate. Nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzyme mRNA expression were detected by real-time PCR. Western blotting was used to evaluate NRF2 activation. NRF2 translocation was determined by immunohistochemistry, with morphological changes monitored by hematoxylin and eosin staining. Following light exposure, βE2 significantly reduced ROS production. βE2 also up-regulated NRF2 mRNA and protein levels, with maximal expression at 4 and 12h post-exposure, respectively. Interestingly, following βE2 administration, NRF2 was translocated from the cytoplasm to the nucleus, primarily in the outer nuclear layer. βE2 also up-regulated NRF2, which triggered phase-2 antioxidant enzyme expression (superoxide dismutases 1 and 2, catalase, glutaredoxins 1 and 2, and thioredoxins 1 and 2), reduced ROS production, and ameliorated retinal damage. However, the beneficial effects of βE2 were markedly suppressed by pretreatment with LY294002 or ICI182780, specific inhibitors of the phosphatidylinositol 3-kinase-Akt (PI3K/AKT), and estrogen receptor (ER) signaling pathways, respectively. Taken together, these observations suggest that βE2 exerts antioxidative effects following light-induced retinal degeneration potentially via NRF2 activation. This protective mechanism may depend on two pathways: a rapid, non-genomic-type PI3K/AKT response, and a genomic-type ER-dependent response. Our data provide evidence that βE2 is a potentially effective in the treatment of retinal degeneration diseases.
Collapse
Affiliation(s)
- C Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology for Stomatology, Stomatological Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - S Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - B Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - F Du
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - C Hu
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - H Li
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Y Feng
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - R Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - M Mo
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Y Cao
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - A Li
- Department of Periodontology for Stomatology, Stomatological Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China; Research Center for Stomatology, Stomatological Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China.
| | - X Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
The bad, the good, and the ugly about oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:163913. [PMID: 22619696 PMCID: PMC3350994 DOI: 10.1155/2012/163913] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
Collapse
|
5
|
Kawasaki T, Suzuki T, Choudhry MA, Bland KI, Chaudry IH. Salutary effects of 17beta-estradiol on Peyer's patch T cell functions following trauma-hemorrhage. Cytokine 2010; 51:166-72. [PMID: 20400328 DOI: 10.1016/j.cyto.2010.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/30/2010] [Indexed: 01/16/2023]
Abstract
Although 17beta-estradiol (E2) administration following trauma-hemorrhage (T-H) improves immune functions in male rodents, it remains unclear whether E2 has salutary effects on Peyer's patch (PP) T cell functions. We hypothesized that T-H induces PP T cell dysfunction and E2 administration following T-H will improve PP T cell function. T-H was induced in male C3H/HeN mice (6-8weeks) by midline laparotomy and approximately 90min of hemorrhagic shock (blood pressure 35mmHg), followed by fluid resuscitation (4x the shed blood volume in the form of Ringer's lactate). Estrogen receptor (ER)-alpha agonist propyl pyrazole triol (PPT; 5microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5microg/kg), E2 (50microg/kg), or vehicle was injected subcutaneously at resuscitation onset. Two hours later, mice were sacrificed and PP T cells isolated. PP T cell capacity to produce cytokines in response to in vitro stimulation, PP T cell proliferation and MAPK (p38, ERK-1/2, JNK) activation were measured. Results indicate PP T cell proliferation, cytokine production and MAPK activation decreased significantly following T-H. E2, PPT or DPN administration normalized these parameters. Since PPT or DPN administration following T-H was effective in normalizing PP T cell functions, the salutary effects of E2 are mediated via ER-alpha and ER-beta.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, G094 Volker Hall, 1670 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
6
|
Buttarelli FR, Circella A, Pellicano C, Tiple D, Giovannelli M, Colosimo C, Pontieri FE. Dopamine transporter immunoreactivity in peripheral blood lymphocytes in multiple system atrophy. J Neural Transm (Vienna) 2008; 116:161-5. [PMID: 19089314 DOI: 10.1007/s00702-008-0170-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/30/2008] [Indexed: 12/12/2022]
Abstract
Previous studies showed the reduction of dopamine transporter immunoreactivity (DAT-IR) in peripheral blood lymphocytes (PBL) in Parkinson's disease. Here we report the reduction of DAT-IR in PBL in the extrapyramidal variant of multiple system atrophy. These results suggest the reduction of DAT-IR in PBL in a variety of neurodegenerative disorders, provided the presence of damage of the central dopaminergic systems. The reduction of DAT-IR in PBL in these disorders may represent a compensatory phenomenon aimed at reducing intracellular dopamine influx and, consequently, dopamine-mediated aggravation of oxidative stress in these cells.
Collapse
|
7
|
Buttarelli FR, Capriotti G, Pellicano C, Prosperi D, Circella A, Festa A, Giovannelli M, Tofani A, Pontieri FE, Scopinaro F. Central and peripheral dopamine transporter reduction in Parkinson's disease. Neurol Res 2008; 31:687-91. [PMID: 19061540 DOI: 10.1179/174313209x383259] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Previous reports showed the reduction of dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson's disease. In this work, we sought to investigate the possible correlation between central and peripheral dopamine transporter immunoreactivity values in a group of 11 drug-naive patients with Parkinson's disease. METHODS Densitometric measurements of dopamine transporter immunoreactivity in peripheral blood lymphocytes was accomplished as described recently, using a monoclonal antidopamine transporter antibody. Dopamine transporter binding in the caudate and putamen nuclei was measured by means of (123)I-fluopane single-photon emission computed tomography in the same patients. RESULTS The results failed to show any significant correlation between dopamine transporter immunoreactivity in peripheral blood lymphocytes and the caudate or putamen dopamine transporter binding. Moreover, dopamine transporter immunoreactivity in peripheral blood lymphocytes was reduced also in the single patient with normal striatal dopamine transporter binding. DISCUSSION These results indicate the lack of correlation between central and peripheral dopamine transporter reduction in Parkinson's disease, using the methodologies applied herein. They therefore suggest that the two phenomena are unlikely to share a common pathogenetic mechanism.
Collapse
|
8
|
Jiang JL, Peng YP, Qiu YH, Wang JJ. Effect of endogenous catecholamines on apoptosis of Con A-activated lymphocytes of rats. J Neuroimmunol 2007; 192:79-88. [DOI: 10.1016/j.jneuroim.2007.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 12/24/2022]
|
9
|
Pi SH, Kim SC, Kim HT, Lee HJ, Lee SK, Kim EC. Defense mechanism of heme oxygenase-1 against cytotoxic and receptor activator of nuclear factor-kappaB ligand inducing effects of hydrogen peroxide in human periodontal ligament cells. J Periodontal Res 2007; 42:331-9. [PMID: 17559630 DOI: 10.1111/j.1600-0765.2006.00953.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Although induction of heme oxygenase-1 by H2O2 has been reported, the protective role of heme oxygenase-1 against the cytotoxic and osteoclastogenic effects of H2O2 have not been elucidated in human periodontal ligament cells. The aim of this work was to investigate the defense mechanism of heme oxygenase-1 on H2O2-induced cytotoxicity and to analyze the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin as markers for osteoclast differentiation in periodontal ligament cells. MATERIAL AND METHODS Using human periodontal ligament cells, cytotoxicity was measured by the 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay, and expression of heme oxygenase-1, RANKL, and osteoprotegerin mRNA was determined by reverse transcription-polymerase chain reaction. RESULTS H2O2 produced a cytotoxic effect by reducing the cell viability and enhancing the expression of heme oxygenase-1 and RANKL mRNAs in a concentration- and time-dependent manner. Additional experiments revealed that heme oxygenase-1 inducer (hemin), a membrane-permeable cGMP analog (8-bromo-cGMP), carbon monoxide, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase inhibitor, protein kinase inhibitor (KT5823), and nuclear factor-kappaB inhibitor (pyrrolidine dithiocarbamate) also blocked the effects of H2O2 on cell viability and RANKL mRNA expression in periodontal ligament cells. CONCLUSION These data suggest that heme oxygenase-1 induction plays a protective role in periodontal ligament cells against the cytotoxic and RANKL-inducing effects of H2O2, through multiple signaling pathways.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Kawasaki T, Choudhry MA, Suzuki T, Schwacha MG, Bland KI, Chaudry IH. 17beta-Estradiol's salutary effects on splenic dendritic cell functions following trauma-hemorrhage are mediated via estrogen receptor-alpha. Mol Immunol 2007; 45:376-85. [PMID: 17673296 PMCID: PMC2718785 DOI: 10.1016/j.molimm.2007.06.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/22/2007] [Accepted: 06/08/2007] [Indexed: 01/08/2023]
Abstract
Although 17beta-estradiol administration following trauma-hemorrhage attenuates Kupffer cell, splenic and peritoneal macrophage functions, it remains unknown whether 17beta-estradiol has any salutary effects on splenic dendritic cell (DC) functions and if so, whether such effects are mediated via the estrogen receptors (ER). We hypothesized that 17beta-estradiol administration following trauma-hemorrhage has salutary effects on splenic DC functions. Male C3H/HeN (6-8 weeks) mice were randomly assigned to sham operation or trauma-hemorrhage. Trauma-hemorrhage was induced by midline laparotomy and approximately 90 min of hemorrhagic shock (blood pressure [BP] 35 mmHg), followed by fluid resuscitation (4x the shed blood volume in the form of Ringer's lactate). Estrogen receptor (ER)-alpha agonist propyl pyrazole triol (PPT; 5microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5microg/kg), 17beta-estradiol (50microg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Two hours later, the mice were sacrificed, splenic DCs were isolated and the changes in their apoptosis, co-stimulating factors and MHC class II expression, ability to produce cytokines, and antigen presentation capacity were measured. Apoptosis of splenic DC increased following trauma-hemorrhage; however, 17beta-estradiol administration after trauma-hemorrhage normalized the rate of apoptosis. Moreover, splenic DC cytokines production, co-stimulating factors and MHC class II expression, and antigen presentation capacity were significantly decreased following trauma-hemorrhage; however, 17beta-estradiol as well as PPT also prevented these depressions. In contrast, DPN did not attenuate splenic DC functions following trauma-hemorrhage. Since PPT administration following trauma-hemorrhage was more effective in normalizing splenic DC functions than DPN, the salutary effects of 17beta-estradiol on splenic DC functions are mediated predominantly via ER-alpha.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | | | | | | | |
Collapse
|
11
|
Jimenez Del Rio M, Velez-Pardo C. Insulin-like growth factor-1 prevents Abeta[25-35]/(H2O2)- induced apoptosis in lymphocytes by reciprocal NF-kappaB activation and p53 inhibition via PI3K-dependent pathway. Growth Factors 2006; 24:67-78. [PMID: 16393695 DOI: 10.1080/08977190500361788] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The role of insulin-like growth factor (IGF-1) as neural survival factor for the treatment of Alzheimer's disease has recently gained attention. The present study shows that IGF-1 protects lymphocytes from (10, 30 microM) Abeta[(25-35)] and (25, 50, 100 microM) H(2)O(2)-induced apoptosis through NF-kappaB activation and p53 down regulation involving the phosphoinositide 3-kinase (PI-3K)-dependent pathway as demonstrated by using either (25 microM) LY294002 (PI-3K inhibitor), (10 nM) ammonium pyrrolidinedithiocarbamate (PDTC; NF-kappaB inhibitor), 50 nM pifithrin-alpha (PFT; p53 inhibitor) or by using immunocytochemistry detection of NF-kappaB and p53 transcription factors activation. Importantly, IGF-1, PDTC and PFT were able to protect and rescue lymphocytes pre-exposed to 10 muM Abeta[(25-35)], even when the three compounds were added up-to 12 h post- Abeta[(25-35)] exposure. Altogether these results suggest that survival/rescue of lymphocytes from Abeta[(25-35)] toxicity is determined by p53 inactivation via IGF-1/ PI-3K pathway.
Collapse
Affiliation(s)
- Marlene Jimenez Del Rio
- Internal Medicine, Neuroscience Research Program, School of Medicine, University of Antioquia, UdeA, Medellin, Colombia.
| | | |
Collapse
|
12
|
Biewenga E, Cabell L, Audesirk T. Estradiol and raloxifene protect cultured SN4741 neurons against oxidative stress. Neurosci Lett 2004; 373:179-83. [PMID: 15619539 DOI: 10.1016/j.neulet.2004.09.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/24/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022]
Abstract
A large body of research has documented neuroprotective effects of estrogen against oxidative stress. Some neurodegenerative diseases such as Parkinson's disease, in which oxidative stress has been implicated as a contributing factor, affect more males than females, suggesting a possible protective effect of estrogen. We used the clonal substantia nigra cell line SN4741 to compare the neuroprotective properties of estrogen and raloxifene against oxidative stress, and to determine whether raloxifene acted as an estrogen agonist or antagonist in this system. We pretreated SN4741 cultures with alpha-estradiol, beta-estradiol, and raloxifene, and exposed them to hydrogen peroxide. Low nanomolar levels of raloxifene, beta-estradiol, and alpha-estradiol all significantly reduced cell death caused by oxidative stress. The estrogen receptor (ER) antagonist ICI 182,780 failed to reverse the neuroprotection by beta-estradiol, suggesting that the effect is not mediated by a classical ER. Western blotting using an antibody to the C-terminus region of ER-alpha revealed two bands, one at approximately 67 kDa (corresponding to ER-alpha) and a more prominent band at approximately 55-56 kDa. These results suggest that, in this cell line, both raloxifene and estrogen may be acting via a non-classical estrogen receptor.
Collapse
Affiliation(s)
- Eric Biewenga
- Biology Department, University of Colorado at Denver, P.O. Box 173364, Denver, CO 80217-3364, USA
| | | | | |
Collapse
|
13
|
Thibodeau PA, Pasquier C, Gougerot-Pocidalo MA. Measurement of copper(I) formation as a test for the stability of catecholestrogens and methoxyestrogens in solution. Steroids 2004; 69:419-23. [PMID: 15219791 DOI: 10.1016/j.steroids.2004.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/19/2004] [Accepted: 03/25/2004] [Indexed: 11/21/2022]
Abstract
The biological effects of estrogens seem to be divided into three mechanisms of action: (1) the transcriptional action by the estrogen-estrogen receptor (ER) complex, (2) the non-genomic mechanism through ERs in cell membranes, and (3) the ER-independent mechanism. The latter mechanism has been attributed to be mediated by the basic chemical properties of estradiol (E2) metabolites, which seems to include their pro- and anti-oxidant properties. Therefore, in order to study the ER-independent actions of the E2 metabolites, their redox properties must be conserved. In this study, we have developed a test to measure the electron-donating properties of E2 and its metabolites based on the reduction of Cu(II) ion into Cu(I). Our results show that the catechol- and methoxy-metabolites of E2 lose their capability to reduce Cu(II) into Cu(I) after 3 months of storage at -20 degrees C. Thus, we propose this inexpensive and reliable test to verify the electron-donating properties of E2 metabolites in order to study their ER-independent biological effects in vitro.
Collapse
Affiliation(s)
- Paul A Thibodeau
- INSERM U479 Phagocytes et Réponses Inflammatoires, Faculté de Médecine, Université Paris VII Denis Diderot, 16, rue Henri Huchard, Paris 75018, France.
| | | | | |
Collapse
|
14
|
Cosentino M, Rasini E, Colombo C, Marino F, Blandini F, Ferrari M, Samuele A, Lecchini S, Nappi G, Frigo G. Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect. Free Radic Biol Med 2004; 36:1233-40. [PMID: 15110388 DOI: 10.1016/j.freeradbiomed.2004.02.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/02/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Dopamine (DA) is a neurotransmitter in the central and peripheral nervous system, which can be either cytotoxic or cytoprotective under selected conditions. Such effects involve oxidative mechanisms and are likely to play a role in neurodegenerative disorders. Because increasing evidence points to peripheral blood lymphocytes (PBL) as a feasible model for studying DA-related mechanisms of cell death and survival, we have explored in these cells the effects of DA on oxidative metabolism and apoptosis. Our results show that, whereas DA 100-500 microM resulted in increased intracellular reactive oxygen species (ROS) levels and apoptotic cell death through oxidative stress, DA 0.1-5 microM decreased ROS levels and apoptosis. DA (both 1 and 500 microM) partially counteracted the decrease in Cu/Zn superoxide dismutase levels observed in untreated PBL. However, whereas the effect of the low dose lasted for the whole incubation period (24 h), the effect of DA 500 microM was transient. DA-dependent reduction of ROS levels and apoptosis was prevented by D1-like (but not D2-like) receptor antagonism. The present findings add knowledge about the sensitivity of PBL to DA and strengthen the rationale for exploiting these cells as an easily accessible peripheral model for the ex vivo investigation of oxidative stress-related dopaminergic mechanisms underlying human neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Clinical and Applied Pharmacology, University of Insubria and University of Pavia, 21100 Varese, VA, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rauen U, Petrat F, Sustmann R, de Groot H. Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol 2004; 40:607-15. [PMID: 15030976 DOI: 10.1016/j.jhep.2003.12.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 12/10/2003] [Accepted: 12/29/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS We previously described that the cold-induced apoptosis of cultured hepatocytes and liver endothelial cells is mediated by an increase in the cellular chelatable iron pool-in the absence of any increase in O(2)(.-)/H(2)O(2) formation. As this is an unusual mechanism, we here set out to assess whether an increase in cellular chelatable iron per se is sufficient to trigger cell injury/apoptosis. METHODS Cultured rat hepatocytes were acutely loaded with iron using the membrane-permeable complex Fe(III)/8-hydroxyquinoline and incubated under otherwise 'physiological' conditions. RESULTS Incubation with Fe(III)/8-hydroxyquinoline (15 microM/30 microM) increased the cellular chelatable iron and induced strong hepatocellular injury with morphological features of apoptosis, but also of necrosis. The iron-induced cell injury was oxygen-dependent, and although it was not inhibitable by extracellular catalase, it was strongly inhibited by the novel membrane-permeable catalase mimic TAA-1/Fe. The experimentally induced increase in cellular chelatable iron triggered a mitochondrial permeability transition (MPT) as assessed using double-staining with calcein and tetramethylrhodamine methyl ester. The MPT inhibitor cyclosporine A partially and the well-known inhibitor combination trifluoperazine+fructose completely inhibited the iron-induced cell injury/apoptosis. CONCLUSIONS These results show that iron per se can induce cell injury/apoptosis and that this injury is mediated via an MPT.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstr. 55, D-45122 Essen, Germany.
| | | | | | | |
Collapse
|
16
|
Jimenez Del Rio M, Moreno S, Garcia-Ospina G, Buritica O, Uribe CS, Lopera F, Velez-Pardo C. Autosomal recessive juvenile parkinsonism Cys212Tyr
mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov Disord 2003; 19:324-30. [PMID: 15022188 DOI: 10.1002/mds.10670] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in parkin are implicated in the pathogenesis of autosomal recessive juvenile parkinsonism (AR-JP) disease. We show that homozygote Cys212Tyr parkin mutation in AR-JP patients renders lymphocytes sensitive to dopamine, iron and hydrogen peroxide stimuli. Indeed, dopamine-induced apoptosis by four alternative mechanisms converging on caspase-3 activation and apoptotic morphology: (1) NF-kappaB-dependent pathway; mitochondrial dysfunction either by (2) H(2)O(2) or (3) hydroxyl exposure and (4) increase of unfolded-protein stress. We also demonstrate that 17beta-estradiol and testosterone prevent homozygote lymphocytes from oxidative stressors-evoked apoptosis. These results may contribute to understanding the relationship between genetic and environmental factors and iron in AR-JP.
Collapse
Affiliation(s)
- Marlene Jimenez Del Rio
- School of Medicine, Department of Internal Medicine, Neurology Service, Neuroscience Research Programme, University of Antioquia, Medellin, Colombia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Azzarolo AM, Eihausen H, Schechter J. Estrogen prevention of lacrimal gland cell death and lymphocytic infiltration. Exp Eye Res 2003; 77:347-54. [PMID: 12907167 DOI: 10.1016/s0014-4835(03)00120-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that ovariectomy causes necrosis of lacrimal acinar cells, apoptosis of plasma cells and gland lymphocytic infiltration. Both, lacrimal gland cell death and lymphocytic infiltration were prevented by androgen treatment. Since estrogens are removed by ovariectomy, and the synthetic estrogen diethylstilbestrol has been shown to affect some biochemical correlates of lacrimal secretion, the purpose of this study was to determine the effect of 17-beta-estradiol treatment on ovariectomy-induced cell death and lymphocytic infiltration. Sexually mature female New Zealand white rabbits (4-4.5 kg) were ovariectomized and divided into two groups. One group was treated with 0.5 mg kg(-1) per day 17-beta-estradiol, and the other group with vehicle alone. A third group of sham operated rabbits was used as controls and they also were treated with vehicle alone. Six days after surgery, the animals were euthanized, the lacrimal glands removed and processed for analysis of apoptosis as assessed by DNA fragmentation, and for morphological examination. DNA fragmentation was determined using the TUNEL assay and agarose gel electrophoresis. Sections were also stained for rabbit thymic lymphocyte antigen (RTLA), and rabbit CD18. Labelled nuclei and stained areas were quantified by automated densitometry. Ovariectomized rabbits showed a significant increase in the values for degraded DNA as a percent of total nuclear area (2.90+/-0.40%) compared to sham operated rabbits (0.73+/-0.22%). 17-beta-estradiol treatment in ovariectomized rabbits prevented the increase in DNA degradation. Examination of TUNEL assay at higher magnification (40x) confirmed previous studies showing that ovariectomy caused apoptosis of interstitial cells. Significant numbers of bulging cells of very pale appearance under light microscopy, also confirm previously identified necrotic cells in acinar regions. Treatment with 17-beta-estradiol prevented this necrosis. Increased numbers of RTLA(+) and CD18(+) interstitial cells were also evident after ovariectomy. 17-beta-estradiol treatment prevented the increase in the number of lymphoid cells. We confirmed previous observations that suggest that glandular atrophy observed after ovariectomy is likely to proceed by necrosis of acinar cells rather than apoptosis, and that ovariectomy triggers an inflammatory response in the gland. These results suggest that in addition to androgens, estrogens also seem to play a role to maintain lacrimal gland structure and function. A decrease in available estrogen levels could trigger both lacrimal gland apoptosis and necrosis, as well as lymphocytic infiltration. Although, the effect of estrogens in these experiments seems to be direct and not through androgens, the possibility of the role of an autocrine and/or paracrine factors, promoted by estrogen on lacrimal gland cells still needs to be investigated.
Collapse
Affiliation(s)
- Ana Maria Azzarolo
- Department of Biomedical Science, Charles E. Schmidt College of Science Center, Florida Atlantic University, Bldg 71, Room 145, 777 Glades Rd., P.O. Box 3091, Boca Raton, FL 33431-0991, USA.
| | | | | |
Collapse
|
18
|
Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 2002; 133:233-40. [PMID: 12446028 DOI: 10.1016/s0165-5728(02)00372-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathoadrenergic mechanisms may play a role in multiple sclerosis (MS). We examined catecholamine (CA) levels and production and tyrosine hydroxylase (TH) expression in peripheral blood mononuclear cells (PBMCs) from MS patients, and the correlation between CA production and apoptosis in PBMCs. PBMCs from MS patients had increased norepinephrine (NE) levels. However, phytohaemagglutinin (PHA)-stimulated PBMCs from MS patients with active disease synthesized less dopamine (DA) than cells from both healthy controls and patients with inactive disease. PBMCs from patients with inactive disease showed lower expression of TH. Pharmacological inhibition of TH in cultured PBMCs stimulated with PHA reduced the percentage of apoptotic cells. Since a failure of activation-induced apoptosis in immune cells may be involved in MS, it is suggested that altered CA production by PBMCs may be implicated in such dysregulation.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Clinical and Applied Pharmacology, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Velez-Pardo C, Ospina GG, Jimenez del Rio M. Abeta[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NF-kappaB, p53 and c-Jun. Neurotoxicology 2002; 23:351-65. [PMID: 12387362 DOI: 10.1016/s0161-813x(02)00081-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Abeta deposition in the neuritic plaques is one of the major neuropathological hallmarks of the Alzheimer disease (AD). Studies in vitro have demonstrated that the Abeta[25-35] fragment, which contains the cytotoxic functional sequence of the amyloid peptide, induces neurotoxicity and cell death by apoptosis. Despite intense investigations, a complete picture of the precise molecular cascade leading to cell death in a single cellular model is still lacking. In this study, we provide evidence that Abeta[25-35] induce apoptosis either alone or in presence of iron in peripheral blood lymphocytes cells (PBL) in a concentration-dependent fashion by an oxidative stress mechanism involving: (1) the production of hydrogen peroxide (H2O2), reflected by rhodamine-positive fluorescent cells, (2) activation and/or translocation of NF-kappaB, p53 and c-Jun transcription factors showed by immunocytochemical diaminobenzidine positive nuclei, (3) activation of NF-kappaB complex by electrophoretic mobility shift assay/immuno-blotting/and ammonium pyrrolidinedithiocarbamate (PDTC) inhibition, (4) caspase-3 activation, reflected by caspase Ac-DEVD-cho inhibition, (5) mRNA synthesis de novo according to actinomycin D cell death inhibition. These results are consistent with the notion that the Abeta[25-35]/H2O2 generation precede the apoptotic process and that once H2O2 is generated, it is able to trigger a specific cell death signalisation. Thus, taken together these results, we present a well-ordered cascade of the major molecular events leading PBL to apoptosis. These results may contribute to explain the importance of Abeta alone or in the presence of redox-available iron in association with Abeta plaques (and neurofibrillary tangles) in AD brains and the significant role played by H2O2 as a second messenger of death signal in some degenerative diseases linked to oxidative stress stimuli.
Collapse
Affiliation(s)
- Carlos Velez-Pardo
- Department of Internal Medicine, School of Medicine, University of Antioquia, Medellin, Colombia.
| | | | | |
Collapse
|
20
|
Abstract
The formation of intracellular reactive oxygen and nitrogen species (ROS and RNS) has been implicated in the pathogenesis of a variety of diseases. In excess, ROS and their byproducts may cause oxidative damage and be cytotoxic to cells. Recently, it has been established that these oxidants can also act as subcellular messengers in gene regulatory and signal transduction pathways. Estrogen, on the other hand, is known to offer protection from coronary artery diseases in post-menopausal women and to be involved in various ROS-related diseases, such as Alzheimer's and Parkinson's diseases, diabetes and aging. The existence of estrogen receptors in these tissues lead us to investigate whether ROS can regulate their expression. We demonstrated here, for the first time, that oxidative stress induced by hydrogen peroxide (H(2)O(2)), Fe(2+), 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and activated macrophages, affect the expression of estrogen receptors alpha and beta (ERalpha and ERbeta) differently, demonstrating cell-specific response which can be blocked by antioxidants. This data suggest that oxidative stress and the production of ROS/RNS function as physiological regulators of ERalpha and ERbeta expression. This may provide a new insight into the ERbeta-dependent protective action of estrogen and phytoestrogens in inflammation involving diseases, and may contribute to the development of novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Snait Tamir
- Laboratory of Natural Medicinal Compounds, Migal-Galilee Technological Center, Kiryat Shmona 10200, Israel
| | | | | |
Collapse
|
21
|
Del Rio MJ, Velez-Pardo C. Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H(2)O(2)), caspase-3, and nuclear factor kappa-B (NF-kappaB), p53, c-Jun transcription factors. Biochem Pharmacol 2002; 63:677-88. [PMID: 11992635 DOI: 10.1016/s0006-2952(01)00907-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The destruction of dopaminergic and serotonergic nerve cells by selective 6-hydroxydopamine (6-OHDA), 5,6-dihydroxytryptamine (5,6-DHT) and 5,7-dihydroxytryptamine (5,7-DHT), respectively, is a commonly used tool to investigate the mapping of neuronal pathways, elucidation of function and to mimic human neurodegenerative disease such as Parkinson's and Alzheimer's diseases. Despite intense investigations, a complete picture of the precise molecular cascade leading to cell death in a single cellular model is still lacking. In this study, we provide evidence that 6-OHDA, 5,6- and 5,7-DHT toxins-induced apoptosis in peripheral blood lymphocytes cells in a concentration-dependent fashion by a common oxidative mechanism involving: (1) the oxidation of toxins into quinones and production of the by-product hydrogen peroxide, reflected by desipramine-a monoamine uptake blocker-and antioxidants inhibition, (2) activation and/or translocation of nuclear factor-kappaB, p53 and c-Jun transcription factors, showed by immunocytochemical diaminobenzidine-positive stained nuclei, (3) caspase-3 activation, reflected by caspase Ac-DEVD-CHO inhibition, (4) mRNA and protein synthesis de novo according to cycloheximide and actinomycin D cell death inhibition. These results are consistent with the notion that uptake and intracellular autoxidation of those toxins precede the apoptotic process and that once H(2)O(2) is generated, it is able to trigger a specific cell death signalisation. Thus, taken together these results, we present an ordered cascade of the major molecular events leading peripheral blood lymphocytes to apoptosis. These results may contribute to explain the importance of H(2)O(2) as a second messenger of death signal in some degenerative diseases linked to oxidative stress stimuli.
Collapse
Affiliation(s)
- Marlene Jimenez Del Rio
- Department of Internal Medicine, School of Medicine, University of Antioquia, Calle 62 no. 52-72, P.O. Box 1226, Medellin, Colombia.
| | | |
Collapse
|