1
|
Amratia PS, Kerr-Jones LE, Chapman L, Marsden M, Clement M, Stanton RJ, Humphreys IR. Cytomegalovirus-induced peroxynitrite promotes virus entry and contributes to pathogenesis in a murine model of infection. mBio 2024; 15:e0315223. [PMID: 38953361 PMCID: PMC11323495 DOI: 10.1128/mbio.03152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
There are no licensed vaccines for human cytomegalovirus (HCMV), and current antiviral drugs that target viral proteins are toxic and prone to resistance. Targeting host pathways essential for virus replication provides an alternate strategy that may reduce opportunities for drug resistance to occur. Oxidative stress is triggered by numerous viruses including HCMV. Peroxynitrite is a reactive nitrogen species that is formed during oxidative stress. Herein, we identified that HCMV rapidly induces the generation of intracellular peroxynitrite upon infection in a manner partially dependent upon xanthine oxidase generation. Peroxynitrite promoted HCMV infection in both cell-free and cell-associated infection systems in multiple cell types. Inhibiting peroxynitrite within the first 24 hours of infection prevented HCMV replication and peroxynitrite promoted cell entry and pp65 translocation into the host cell nuclei. Furthermore, using the murine cytomegalovirus model, we demonstrated that antagonizing peroxynitrite significantly reduces cytomegalovirus replication and pathogenesis in vivo. Overall, our study highlights a proviral role for peroxynitrite in CMV infection and implies that RNS and/or the mechanisms that induce their production could be targeted as a novel strategy to inhibit HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) causes significant disease in individuals with impaired or immature immune systems, such as transplant patients and after congenital infection. Antiviral drugs that target the virus directly are toxic and are susceptible to antiviral drug resistance due to virus mutations. An alternate strategy is to target processes within host cells that are required by the virus for replication. Herein, we show that HCMV infection triggers a highly reactive molecule, peroxynitrite, during the initial stages of infection. Peroxynitrite was required for the initial entry of the virus into the cell and promotes virus replication in multiple cell types, suggesting a broad pro-viral function. Importantly, targeting peroxynitrite dramatically inhibited cytomegalovirus replication in cells in the laboratory and in mice, suggesting that therapeutic targeting of this molecule and/or the cellular functions it regulates could represent a novel strategy to inhibit HCMV infection.
Collapse
Affiliation(s)
- Pragati S. Amratia
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lucy Chapman
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian R. Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Liu S, Li W, Ding H, Tian B, Fang L, Zhao X, Zhao R, An B, Ding L, Zhong L, Yang P. Biomineralized RuO 2 Nanozyme with Multi-Enzyme Activity for Ultrasound-Triggered Peroxynitrite-Boosted Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303057. [PMID: 37434100 DOI: 10.1002/smll.202303057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Ferroptosis, as a non-apoptotic cell death pathway, has attracted increasing attention for cancer therapy. However, the clinical application of ferroptosis-participated modalities is severely limited by the low efficiency owing to the intrinsic intracellular regulation pathways. Herein, chlorin e6 (Ce6) and N-acetyl-l-cysteine-conjugated bovine serum albumin-ruthenium dioxide is elaborately designed and constructed for ultrasound-triggered peroxynitrite-mediated ferroptosis. Upon ultrasound stimulation, the sonosensitizers of Ce6 and RuO2 exhibit highly efficient singlet oxygen (1 O2 ) generation capacity, which is sequentially amplified by superoxide dismutase and catalase-mimicking activity of RuO2 with hypoxia relief. Meanwhile, the S-nitrosothiol group in BCNR breaks off to release nitric oxide (NO) on-demand, which then reacts with 1 O2 forming highly cytotoxic peroxynitrite (ONOO- ) spontaneously. Importantly, BCNR nanozyme with glutathione peroxidase-mimicking activity can consume glutathione (GSH), along with the generated ONOO- downregulates glutathione reductase, avoiding GSH regeneration. The two-parallel approach ensures complete depletion of GSH within the tumor, resulting in the boosted ferroptosis sensitization of cancer cells. Thus, this work presents a superior paradigm for designing peroxynitrite-boosted ferroptosis sensitization cancer therapeutic.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linyang Fang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Baichao An
- College of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lianfei Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
3
|
Kämpf S, Fenk S, Van Cromvoirt A, Bogdanov N, Hartnack S, Stirn M, Hofmann-Lehmann R, Reichler IM, Bogdanova A. Differences in selected blood parameters between brachycephalic and non-brachycephalic dogs. Front Vet Sci 2023; 10:1166032. [PMID: 37649563 PMCID: PMC10464621 DOI: 10.3389/fvets.2023.1166032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Cranial and upper-airway anatomy of short-nosed, flat-faced brachycephalic dogs predisposes them to brachycephalic obstructive airway syndrome (BOAS). Periodic apnoea increased inspiratory resistance, and an inability to thermoregulate effectively are characteristic of BOAS, but internationally accepted objective markers of BOAS severity are missing. The objective of this study was to compare the selected blood parameters between non-brachycephalic (NC) and brachycephalic (BC) dogs, exploring the possibility of developing a blood test for BOAS severity grading in the future. Methods We evaluated blood biochemistry, complete blood cell counts, red blood cell (RBC) indices, reticulocyte counts, a blood-born marker of intermittent hypoxia (glutathione, NO production), RBC hydration, deformability, and blood markers of metabolic changes and stress between BC (n = 18) and NC (meso- and dolichocephalic, n = 22) dogs. Results Reticulocyte counts and the abundance of middle-fluorescence immature reticulocytes were significantly (p < 0.05) higher in BC dogs compared to NC dogs. BC dogs had significantly more NO-derived NO2 - /NO3 - in plasma than NC dogs. RBCs of BC dogs were shedding significantly more membrane, as follows from the intensity of eosin maleimide staining, and had a significantly higher mean corpuscular hemoglobin concentration than NC dogs. Intracellular reduced glutathione content in RBCs of BC dogs was significantly lower, while plasma lactate was significantly higher in BC dogs compared to NC dogs. Plasma cholesterol and triglycerides were significantly lower, and cortisol was significantly higher in BC dogs compared to NC dogs. Eosinophil counts were significantly lower and the neutrophil-to-lymphocyte ratio was higher in BC dogs compared to NC dogs. Discussion Taken together, our findings suggest that the brachycephalic phenotype in dogs is associated with alterations at the level of blood cells and, systemically, with oxidation and metabolic changes. The parameters identified within this study should be further investigated for their potential as objective indicators for BOAS.
Collapse
Affiliation(s)
- Sandra Kämpf
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Ankie Van Cromvoirt
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Nikolay Bogdanov
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Martina Stirn
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Regina Hofmann-Lehmann
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Iris Margaret Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Faculty of Vetsuisse, University of Zurich, Zürich, Switzerland
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Liu S, Li W, Chen H, Zhou J, Dong S, Zang P, Tian B, Ding H, Gai S, Yang P, Zhao Y. On-Demand Generation of Peroxynitrite from an Integrated Two-Dimensional System for Enhanced Tumor Therapy. ACS NANO 2022; 16:8939-8953. [PMID: 35666853 DOI: 10.1021/acsnano.1c11422] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanosystem-mediated tumor radiosensitization strategy combining the features of X-ray with infinite penetration depth and high atomic number elements shows considerable application potential in clinical cancer therapy. However, it is difficult to achieve satisfactory anticancer efficacy using clinical radiotherapy for the majority of solid tumors due to the restrictions brought about by the tumor hypoxia, insufficient DNA damage, and rapid DNA repair during and after treatment. Inspired by the complementary advantages of nitric oxide (NO) and X-ray-induced photodynamic therapy, we herein report a two-dimensional nanoplatform by the integration of the NO donor-modified LiYF4:Ce scintillator and graphitic carbon nitride nanosheets for on-demand generation of highly cytotoxic peroxynitrite (ONOO-). By simply adjusting the Ce3+ doping content, the obtained nanoscintillator can realize high radioluminescence, activating photosensitive materials to simultaneously generate NO and superoxide radical for the formation of ONOO- in the tumor. Obtained ONOO- effectively amplifies therapeutic efficacy of radiotherapy by directly inducing mitochondrial and DNA damage, overcoming hypoxia-associated radiation resistance. The level of glutamine synthetase (GS) is downregulated by ONOO-, and the inhibition of GS delays DNA damage repair, further enhancing radiosensitivity. This work establishes a combinatorial strategy of ONOO- to overcome the major limitations of radiotherapy and provides insightful guidance to clinical radiotherapy.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong, P. R. China
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
5
|
Methoxy-Monobenzoylmethane Protects Human Skin against UV-Induced Damage by Conversion to Avobenzone and Radical Scavenging. Molecules 2021; 26:molecules26206141. [PMID: 34684722 PMCID: PMC8537076 DOI: 10.3390/molecules26206141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Avobenzone, one of the most commonly used UV filters in topical sunscreens, is susceptible to photodegradation with a consequential reduction of its UV absorbing properties. This loss of function may lead to skin irritation, photodermatosis, and photoallergic reactions caused by photodegradation byproducts. In this work, we aim to address this issue with a substance named methoxy-monobenzoylmethane (MeO-MBM), which is neither a UVB nor a UVA filter, but which converts to avobenzone, a known and approved UVA filter, under mainly UVB light irradiation. The antioxidant and intracellular radical formation properties of MeO-MBM were compared to the ones of avobenzone. The UV irradiation of MeO-MBM led to an increase in UV absorption primarily in the UVA range after conversion, both in vitro and in vivo. HPTLC and UHPLC studies illustrate the conversion of MeO-MBM to avobenzone in vitro after irradiation at 250 kJ/m2, reaching a conversion rate of 48.8%. A stable molecular antioxidant activity was observed, since 100-µM MeO-MBM was measured to be 11.2% in the DPPH assay, with a decrease to 9.7% after irradiation. In comparison, the molecular antioxidant activity of 100-µM avobenzone was determined to be 0.8%. In keratinocytes, MeO-MBM reduces the intracellular ROS by 90% and avobenzone by 75% with tBHP as the inducer and by 53% and 57%, respectively, when induced by pyocyanin, indicating the redox scavenging capacity of both these molecules. These results indicate that MeO-MBM functions initially as an antioxidant material and as a photoantioxidant during its conversion process to avobenzone. This research provides insight into the development of active ingredients for topical applications with dynamic functionalities. Using this approach, we demonstrate the possibility to extend the UV protection offered to skin cells while combating cellular stress in parallel.
Collapse
|
6
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
7
|
Tarabová B, Lukeš P, Hammer MU, Jablonowski H, von Woedtke T, Reuter S, Machala Z. Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions. Phys Chem Chem Phys 2019; 21:8883-8896. [PMID: 30982833 DOI: 10.1039/c9cp00871c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Qualitative detection of peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) as one of the key bactericidal agents produced in cold air plasma activated aqueous solutions is presented. We examined the use of the 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent dye to detect ONOO-/ONOOH in plasma activated non-buffered water (PAW) or buffered solution (PAPB) generated by DC-driven self-pulsed transient spark discharge at atmospheric pressure in ambient air. The diagnostic selectivity of H2DCFDA to reactive oxygen and nitrogen species (RONS) typical of plasma activated aqueous solutions was examined by using various scavengers of RONS. This cross-reactivity study showed the highest sensitivity of the H2DCFDA dye to ONOO-/ONOOH. However, besides ONOO-/ONOOH, H2DCFDA also exhibited sensitivity to hypochlorite anions/hypochlorous acid (OCl-/HOCl), showing that for a selective study it is important to have an idea about the possible constituents in the studied solutions. The sensitivity of H2DCFDA to other RONS even in much higher concentrations was negligible. The presence of nitrites (NO2-) and hydrogen peroxide (H2O2) in PAW led predominantly to the production of peroxynitrous acid with a strong fluorescence response of H2DCFDA in PAW. Plasma treatment of buffered solutions led to the weak response of H2DCFDA. The fluorescence induced in PAW decreased after scavenging individual reactants, namely NO2- and H2O2, as well as by scavenging the product of the peroxynitrite forming reaction, proving that the fluorescence response of H2DCFDA is primarily due to the formation of ONOO-/ONOOH. A chemical kinetics analysis of post-discharge processes and the pseudo-second order reaction between H2O2 and NO2- confirms formation of peroxynitrous acid in PAW with a rate in the order of tens of nM per second. The post-discharge evolution of the ONOOH formation rate was clearly correlated with the parallel detection of ONOO-/ONOOH by fluorescence spectroscopy using the H2DCFDA dye.
Collapse
Affiliation(s)
- Barbora Tarabová
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abdulmahdi W, Rabadi MM, Jules E, Marghani Y, Marji N, Leung J, Zhang F, Siani A, Siskind T, Vedovino K, Chowdhury N, Sekulic M, Ratliff BB. Kidney dysfunction in the low-birth weight murine adult: implications of oxidative stress. Am J Physiol Renal Physiol 2018; 315:F583-F594. [DOI: 10.1152/ajprenal.00164.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Maternal undernutrition (MUN) during pregnancy leads to low-birth weight (LBW) neonates that have a reduced kidney nephron endowment and higher morbidity as adults. Using a severe combined caloric and protein-restricted mouse model of MUN to generate LBW mice, we examined the progression of renal insufficiency in LBW adults. Through 6 mo of age, LBW males experienced greater albuminuria (ELISA analysis), a more rapid onset of glomerular hypertrophy, and a worse survival rate than LBW females. In contrast, both sexes experienced a comparable progressive decline in renal vascular density (immunofluorescence analysis), renal blood flow (Laser-Doppler flowmetry analysis), glomerular filtration rate (FITC-sinistrin clearance analysis), and a progressive increase in systemic blood pressure (measured via tail-cuff method). Isolated aortas from both LBW sexes demonstrated reduced vasodilation in response to ACh, indicative of reduced nitric oxide bioavailability and endothelial dysfunction. ELISA and immunofluorescence analysis revealed a significant increase of circulating reactive oxygen species and NADPH oxidase type 4 (NOX4) expression in both LBW sexes, although these increases were more pronounced in males. Although more effective in males, chronic tempol treatment did improve all observed pathologies in both sexes of LBW mice. Chronic NOX4 inhibition with GKT137831 was more effective than tempol in preventing pathologies in LBW males. In conclusion, despite some minor differences, LBW female and male adults have a reduced nephron endowment comparable with progressive renal and vascular dysfunction, which is associated with increased oxidative stress and subsequent endothelial dysfunction. Tempol treatment and/or NOX4 inhibition attenuates renal and vascular dysfunction in LBW adults.
Collapse
Affiliation(s)
- Wasan Abdulmahdi
- Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York
| | - May M. Rabadi
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Edson Jules
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Yara Marghani
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Noor Marji
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Jessica Leung
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Avi Siani
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Tamar Siskind
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Kiara Vedovino
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Nazrul Chowdhury
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Miroslav Sekulic
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian B. Ratliff
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
- Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York
| |
Collapse
|
9
|
Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocaña-Calahorro F, Fernández E, Guieysse B. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:45-56. [PMID: 28333392 DOI: 10.1111/tpj.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 05/13/2023]
Abstract
Over the last decades, several studies have reported emissions of nitrous oxide (N2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO2- ) under aerobic conditions can reduce NO2- into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO3- ) is the main Nitrogen source and the intracellular concentration of NO2- is low (i.e. under physiological conditions), microalgal N2 O synthesis involves the reduction of NO3- to NO2- by NR followed by the reduction of NO2- to NO by the dual system involving NR. This microalgal N2 O pathway has broad implications for environmental science and algal biology because the pathway of NO3- assimilation is conserved among microalgae, and because its regulation may involve NO.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Andy Shilton
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Michael A Packer
- Cawthron Institute, 98 Halifax Street, Nelson, 7010, New Zealand
| | - Patricia A McLenachan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Benoit Guieysse
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
10
|
Ramdial K, Franco MC, Estevez AG. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res Bull 2017; 133:4-11. [DOI: 10.1016/j.brainresbull.2017.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
11
|
Honn M, Lindgren H, Bharath GK, Sjöstedt A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In vivo. Front Cell Infect Microbiol 2017; 7:14. [PMID: 28174696 PMCID: PMC5258697 DOI: 10.3389/fcimb.2017.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium and as such is expected to encounter a continuous attack by reactive oxygen species (ROS) in its intracellular habitat and efficiently coping with oxidative stress is therefore essential for its survival. The oxidative stress response system of F. tularensis is complex and includes multiple antioxidant enzymes and pathways, including the transcriptional regulator OxyR and the H2O2-decomposing enzyme catalase, encoded by katG. The latter is regulated by OxyR. A deletion of either of these genes, however, does not severely compromise the virulence of F. tularensis and we hypothesized that if the bacterium would be deficient of both catalase and OxyR, then the oxidative defense and virulence of F. tularensis would become severely hampered. To test this hypothesis, we generated a double deletion mutant, ΔoxyR/ΔkatG, of F. tularensis LVS and compared its phenotype to the parental LVS strain and the corresponding single deletion mutants. In accordance with the hypothesis, ΔoxyR/ΔkatG was distinctly more susceptible than ΔoxyR and ΔkatG to H2O2, ONOO−, and O2-, moreover, it hardly grew in mouse-derived BMDM or in mice, whereas ΔkatG and ΔoxyR grew as well as F. tularensis LVS in BMDM and exhibited only slight attenuation in mice. Altogether, the results demonstrate the importance of catalase and OxyR for a robust oxidative stress defense system and that they act cooperatively. The lack of both functions render F. tularensis severely crippled to handle oxidative stress and also much attenuated for intracellular growth and virulence.
Collapse
Affiliation(s)
- Marie Honn
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Helena Lindgren
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Gurram K Bharath
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Anders Sjöstedt
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| |
Collapse
|
12
|
Therapeutic role of nitric oxide as emerging molecule. Biomed Pharmacother 2017; 85:182-201. [DOI: 10.1016/j.biopha.2016.11.125] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
|
13
|
Bhattarai Y, Fried D, Gulbransen B, Kadrofske M, Fernandes R, Xu H, Galligan J. High-fat diet-induced obesity alters nitric oxide-mediated neuromuscular transmission and smooth muscle excitability in the mouse distal colon. Am J Physiol Gastrointest Liver Physiol 2016; 311:G210-20. [PMID: 27288421 PMCID: PMC5007291 DOI: 10.1152/ajpgi.00085.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
We tested the hypothesis that colonic enteric neurotransmission and smooth muscle cell (SMC) function are altered in mice fed a high-fat diet (HFD). We used wild-type (WT) mice and mice lacking the β1-subunit of the BK channel (BKβ1 (-/-)). WT mice fed a HFD had increased myenteric plexus oxidative stress, a 28% decrease in nitrergic neurons, and a 20% decrease in basal nitric oxide (NO) levels. Circular muscle inhibitory junction potentials (IJPs) were reduced in HFD WT mice. The NO synthase inhibitor nitro-l-arginine (NLA) was less effective at inhibiting relaxations in HFD compared with control diet (CD) WT mice (11 vs. 37%, P < 0.05). SMCs from HFD WT mice had depolarized membrane potentials (-47 ± 2 mV) and continuous action potential firing compared with CD WT mice (-53 ± 2 mV, P < 0.05), which showed rhythmic firing. SMCs from HFD or CD fed BKβ1 (-/-) mice fired action potentials continuously. NLA depolarized membrane potential and caused continuous firing only in SMCs from CD WT mice. Sodium nitroprusside (NO donor) hyperpolarized membrane potential and changed continuous to rhythmic action potential firing in SMCs from HFD WT and BKβ1 (-/-) mice. Migrating motor complexes were disrupted in colons from BKβ1 (-/-) mice and HFD WT mice. BK channel α-subunit protein and β1-subunit mRNA expression were similar in CD and HFD WT mice. We conclude that HFD-induced obesity disrupts inhibitory neuromuscular transmission, SMC excitability, and colonic motility by promoting oxidative stress, loss of nitrergic neurons, and SMC BK channel dysfunction.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- 1The Neuroscience Program, Michigan State University, East Lansing, Michigan;
| | - David Fried
- 3Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Brian Gulbransen
- 1The Neuroscience Program, Michigan State University, East Lansing, Michigan; ,3Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Mark Kadrofske
- 4Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- 2Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| | - Hui Xu
- 1The Neuroscience Program, Michigan State University, East Lansing, Michigan; ,2Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| | - James Galligan
- The Neuroscience Program, Michigan State University, East Lansing, Michigan; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
14
|
Neri M, Riezzo I, Pomara C, Schiavone S, Turillazzi E. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations. Mediators Inflamm 2016; 2016:3423450. [PMID: 27274621 PMCID: PMC4870364 DOI: 10.1155/2016/3423450] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. AIM In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. CONCLUSIONS Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.
Collapse
Affiliation(s)
- M. Neri
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - C. Pomara
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Schiavone
- Institute of Pharmacology, Department of Clinical and Experimental Medicine, University of Foggia, Via L. Pinto 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
15
|
Ojiako OA, Chikezie PC, Ogbuji AC. Radical scavenging potentials of single and combinatorial herbal formulations in vitro. J Tradit Complement Med 2016; 6:153-9. [PMID: 27114938 PMCID: PMC4833459 DOI: 10.1016/j.jtcme.2014.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 11/21/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR), hydrogen peroxide (HP), nitric oxide radical (NOR), hydroxyl radical (HR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs), double herbal formulations (DHfs), triple herbal formulations (THfs), and a quadruple herbal formulation (QHf). The phytochemical composition and radical scavenging capacity index (SCI) of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL) of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf) appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.
Collapse
Affiliation(s)
- Okey A. Ojiako
- Department of Biochemistry, Federal University of Technology, Owerri, Nigeria
| | - Paul C. Chikezie
- Department of Biochemistry, Imo State University, Owerri, Nigeria
| | - Agomuo C. Ogbuji
- Department of Food Science and Technology, Abia State Polytechnic, Aba, Nigeria
| |
Collapse
|
16
|
Tamay-Cach F, Quintana-Pérez JC, Trujillo-Ferrara JG, Cuevas-Hernández RI, Del Valle-Mondragón L, García-Trejo EM, Arellano-Mendoza MG. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren Fail 2015; 38:171-5. [DOI: 10.3109/0886022x.2015.1120097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
17
|
Yoshioka Y, Sugino Y, Tozawa A, Yamamuro A, Kasai A, Ishimaru Y, Maeda S. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells. J Pharmacol Sci 2015; 130:51-9. [PMID: 26908040 DOI: 10.1016/j.jphs.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022] Open
Abstract
Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yuta Sugino
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Azusa Tozawa
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Akiko Yamamuro
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Kasai
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, and Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Ishimaru
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
18
|
Abstract
This review will focus on published human studies on oxidative stress and DNA damage in inflammatory bowel disease (IBD), both ulcerative colitis and Crohn's disease, assessing their role in the pathophysiology of these diseases. Search was performed over PubMed and ScienceDirect databases to identify relevant bibliography, using keywords including "oxidative stress," "DNA damage," "IBD," and "oxidative DNA damage." Whether as cause or effect, mechanisms underlying oxidative stress have the potential to condition the course of various pathologies, particularly those driven by inflammatory scenarios. IBDs are chronic inflammatory relapsing conditions. Oxidative stress has been associated with some of the characteristic clinical features exhibited in IBD, namely tissue injury and fibrosis, and also to the ulcerative colitis-associated colorectal cancer. The possible influence of oxidative stress over therapeutic behavior and response, as well as their contribution to the oxidative burden and consequences, is also addressed. Due to the high prevalence and incidence of IBD worldwide, and also to its associated morbidity, complications, and disease and treatment costs, it is of paramount importance to better understand the pathophysiology of these diseases.
Collapse
|
19
|
Samhan-Arias AK, Gutierrez-Merino C. Purified NADH-cytochrome b5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite. Free Radic Biol Med 2014; 73:174-89. [PMID: 22922784 DOI: 10.1016/j.freeradbiomed.2014.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/14/2022]
Abstract
Cytochrome b5 reductase (Cb5R) is a pleiotropic flavoprotein that catalyzes multiple one-electron reduction reactions with various redox partners in cells. In earlier work from our laboratory, we have shown its implication in the generation of reactive oxygen species (ROS), primarily a superoxide anion overshoot peak, which plays a major role as a triggering event for the acceleration of apoptosis in cerebellar granule neurons in culture. However, the results obtained in that work did not allow us to exclude the possibility that this superoxide anion production could be derived from Cb5R acting in concert with other cellular components. In this work, we have purified Cb5R from pig liver and we have experimentally shown that this enzyme catalyzed NADH-dependent production of superoxide anion, assayed with cytochrome c and nitroblue tetrazolium as detection reagents for this particular ROS. The basic kinetic parameters for this novel NADH-dependent activity of Cb5R at 37°C are Vmax = 3.0 ± 0.5 μmol/min/mg of purified Cb5R and KM(NADH) = 2.8 ± 0.3 μM NADH. In addition, we report that apocynin, a widely used inhibitor of nonmitochondrial ROS production in mammalian cell cultures and tissues, is a potent inhibitor of purified Cb5R activity at the concentrations used in the experiments done with cell cultures. In the presence of apocynin the KM(NADH) value of Cb5R increases, and docking simulations indicate that apocynin can bind to a site near to or partially overlapping the NADH binding site of Cb5R. Other ROS, such as nitric oxide and peroxynitrite, have inhibitory effects on purified Cb5R, providing the basis for a feedback cellular protection mechanism through modulation of excessive extramitochondrial superoxide anion production by Cb5R. Both kinetic assays and docking simulations suggest that nitric oxide-induced nitrosylation (including covalent adduction of nitroso functional groups) of Cb5R cysteines and peroxynitrite-induced tyrosine nitration and cysteine oxidation modified the conformation of the NADH binding domain leading to a decreased affinity of Cb5R for NADH.
Collapse
Affiliation(s)
- Alejandro K Samhan-Arias
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain.
| | - Carlos Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
20
|
Shah D, Mahajan N, Sah S, Nath SK, Paudyal B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci 2014; 21:23. [PMID: 24636579 PMCID: PMC3995422 DOI: 10.1186/1423-0127-21-23] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease whose etiology remains largely unknown. The uncontrolled oxidative stress in SLE contributes to functional oxidative modifications of cellular protein, lipid and DNA and consequences of oxidative modification play a crucial role in immunomodulation and trigger autoimmunity. Measurements of oxidative modified protein, lipid and DNA in biological samples from SLE patients may assist in the elucidation of the pathophysiological mechanisms of the oxidative stress-related damage, the prediction of disease prognosis and the selection of adequate treatment in the early stage of disease. Application of these biomarkers in disease may indicate the early effectiveness of the therapy. This review is intended to provide an overview of various reactive oxygen species (ROS) formed during the state of disease and their biomarkers linking with disease. The first part of the review presents biochemistry and pathophysiology of ROS and antioxidant system in disease. The second part of the review discusses the recent development of oxidative stress biomarkers that relates pathogenesis in SLE patients and animal model. Finally, this review also describes the reported clinical trials of antioxidant in the disease that have evaluated the efficacy of antioxidant in the management of disease with ongoing conventional therapy.
Collapse
Affiliation(s)
- Dilip Shah
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
21
|
de Boer-Maggard TR, Resendez A, Mascharak PK. Construction of a Biomimetic Peroxynitrite-Generating Platform: A Two-Component System to Synthesize Peroxynitrite in Situ under the Control of Light. Chembiochem 2013; 14:2106-9. [DOI: 10.1002/cbic.201300488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 12/15/2022]
|
22
|
The contribution of N₂O₃ to the cytotoxicity of the nitric oxide donor DETA/NO: an emerging role for S-nitrosylation. Biosci Rep 2013; 33:BSR20120120. [PMID: 23402389 PMCID: PMC3610299 DOI: 10.1042/bsr20120120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO− (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.
Collapse
|
23
|
Shah D, Sah S, Nath SK. Interaction between glutathione and apoptosis in systemic lupus erythematosus. Autoimmun Rev 2012; 12:741-51. [PMID: 23279845 DOI: 10.1016/j.autrev.2012.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by imbalance redox state and increased apoptosis. The activation, proliferation and cell death of lymphocytes are dependent on intracellular levels of glutathione and controlled production of reactive oxygen species (ROS). Changes in the intracellular redox environment of cells, through oxygen-derived free radical production known as oxidative stress, have been reported to be critical for cellular immune dysfunction, activation of apoptotic enzymes and apoptosis. The shift in the cellular GSH-to-GSSG redox balance in favor of the oxidized species, GSSG, constitutes an important signal that can decide the fate of the abnormal apoptosis in the disease. The current review will focus on four main areas: (1) general description of oxidative stress markers in SLE, (2) alteration of redox state and complication of disease, (3) role of redox mechanisms in the initiation and execution phases of apoptosis, and (4) intracellular glutathione and its checkpoints with lymphocyte apoptosis which represent novel targets for pharmacological intervention in SLE.
Collapse
Affiliation(s)
- Dilip Shah
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
24
|
Wei C, Kumar S, Kim IK, Gupta S. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes. PLoS One 2012; 7:e42586. [PMID: 22880044 PMCID: PMC3411836 DOI: 10.1371/journal.pone.0042586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023] Open
Abstract
Background Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H2O2 induced cardiac damage. Methods Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H2O2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H2O2-induced cardiac damage was evaluated. Results Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H2O2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4. Conclusion This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center; Scott & White; Central Texas Veterans Health Care System, Temple, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Jia Y, Li Y, Du S, Huang K. Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res 2012; 100:7-16. [PMID: 22713178 DOI: 10.1016/j.exer.2012.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/23/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Methionine sulfoxide reductases (Msrs) in lens cells are important for the maintenance of lens cell viability and resistance to oxidative stress damage. Peroxynitrite (ONOO(-)), as a strong oxidizing and nitrating agent, occurred in diabetic retinopathy patients and diabetic model animal. In an attempt to shed light on the roles of MsrB1, known as selenoprotein R, in protecting human lens epithelial (HLE) cells against peroxynitrite damage, and contribution of loss of its normal activity to cataract, the influences of MsrB1 gene silencing on peroxynitrite-induced apoptosis in HLE cells were studied. The results showed that both exogenous peroxynitrite and MsrB1 gene silencing by short interfering RNA (siRNA) independently resulted in oxidative stress, endoplasmic reticulum (ER) stress, activation of caspase-3 as well as an increase of apoptosis in HLE cells; moreover, when MsrB1-gene-silenced cells were exposed to 300 μM peroxynitrite, these indexes were further aggravated at the same conditions and DNA strand breaks occurred. The results demonstrate that in HLE cells MsrB1 may play important roles in regulating redox balance and mitigating ER stress as induced by oxidative stress under physiological conditions; MsrB1 may also protect HLE cells against peroxynitrite-induced apoptosis by inhibiting the activation of caspase-3 and oxidative damage of DNA under pathological conditions. Our results imply that loss of its normal activity is likely to contribute to cataract.
Collapse
Affiliation(s)
- Yi Jia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China.
| | | | | | | |
Collapse
|
26
|
Yu SS, Koblin RL, Zachman AL, Perrien DS, Hofmeister LH, Giorgio TD, Sung HJ. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds. Biomacromolecules 2011; 12:4357-66. [PMID: 22017359 DOI: 10.1021/bm201328k] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation-mediated oxidative stress is a common mechanism of implant rejection and failure. Therefore, polymer scaffolds that can degrade slowly in response to this environment may provide a viable platform for implant site-specific, sustained release of immunomodulatory agents over a long time period. In this work, proline oligomers of varying lengths (P(n)) were synthesized and exposed to oxidative environments, and their accelerated degradation under oxidative conditions was verified via high performance liquid chromatography and gel permeation chromatography. Next, diblock copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were carboxylated to form 100 kDa terpolymers of 4%PEG-86%PCL-10%cPCL (cPCL = poly(carboxyl-ε-caprolactone); i% indicates molar ratio). The polymers were then cross-linked with biaminated PEG-P(n)-PEG chains, where P(n) indicates the length of the proline oligomer flanked by PEG chains. Salt-leaching of the polymeric matrices created scaffolds of macroporous and microporous architecture, as observed by scanning electron microscopy. The degradation of scaffolds was accelerated under oxidative conditions, as evidenced by mass loss and differential scanning calorimetry measurements. Immortalized murine bone-marrow-derived macrophages were then seeded on the scaffolds and activated through the addition of γ-interferon and lipopolysaccharide throughout the 9-day study period. This treatment promoted the release of H(2)O(2) by the macrophages and the degradation of proline-containing scaffolds compared to the control scaffolds. The accelerated degradation was evidenced by increased scaffold porosity, as visualized through scanning electron microscopy and X-ray microtomography imaging. The current study provides insight into the development of scaffolds that respond to oxidative environments through gradual degradation for the controlled release of therapeutics targeted to diseases that feature chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Shann S Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Kumar S, Gupta S. Thymosin beta 4 prevents oxidative stress by targeting antioxidant and anti-apoptotic genes in cardiac fibroblasts. PLoS One 2011; 6:e26912. [PMID: 22046407 PMCID: PMC3201979 DOI: 10.1371/journal.pone.0026912] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022] Open
Abstract
Rationale Thymosin beta-4 (Tβ4) is a ubiquitous protein with diverse functions relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory responses. The effecter molecules targeted by Tβ4 for cardiac protection remains unknown. The purpose of this study is to determine the molecules targeted by Tβ4 that mediate cardio-protection under oxidative stress. Methods Rat neonatal fibroblasts cells were exposed to hydrogen peroxide (H2O2) in presence and absence of Tβ4 and expression of antioxidant, apoptotic and pro-fibrotic genes was evaluated by quantitative real-time PCR and western blotting. Reactive oxygen species (ROS) levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant and antiapoptotic genes were silenced by siRNA transfections in cardiac fibroblasts and the effect of Tβ4 on H2O2-induced profibrotic events was evaluated. Results Pre-treatment with Tβ4 resulted in reduction of the intracellular ROS levels induced by H2O2 in the cardiac fibroblasts. This was associated with an increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase and reduction of Bax/Bcl2 ratio. Tβ4 treatment reduced the expression of pro-fibrotic genes [connective tissue growth factor (CTGF), collagen type-1 (Col-I) and collagen type-3 (Col-III)] in the cardiac fibroblasts. Silencing of Cu/Zn-SOD and catalase gene triggered apoptotic cell death in the cardiac fibroblasts, which was prevented by treatment with Tβ4. Conclusion This is the first report that exhibits the targeted molecules modulated by Tβ4 under oxidative stress utilizing the cardiac fibroblasts. Tβ4 treatment prevented the profibrotic gene expression in the in vitro settings. Our findings indicate that Tβ4 selectively targets and upregulates catalase, Cu/Zn-SOD and Bcl2, thereby, preventing H2O2-induced profibrotic changes in the myocardium. Further studies are warranted to elucidate the signaling pathways involved in the cardio-protection afforded by Tβ4.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Molecular Cardiology, Department of Molecular Medicine, College of Medicine, Texas A&M Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Molecular Medicine, College of Medicine, Texas A&M Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bicca MA, Figueiredo CP, Piermartiri TC, Meotti FC, Bouzon ZL, Tasca CI, Medeiros R, Calixto JB. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience 2011; 192:631-41. [PMID: 21756976 DOI: 10.1016/j.neuroscience.2011.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The toxicity of amyloid β (Aβ) is highly associated with Alzheimer's disease (AD), which has a high incidence in elderly people worldwide. While the current treatment for moderate and severe AD includes blockage of the N-methyl-d-aspartate receptor (NMDAR), the molecular mechanisms of its effect are still poorly understood. Herein, we report that a single i.p. administration of the selective and competitive (NMDAR) antagonist LY235959 reduced Aβ neurotoxicity by preventing the down-regulation of glial glutamate transporters (glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)), the decrease in glutamate uptake, and the production of reactive oxygen species (ROS) induced by Aβ(1-40). Importantly, the blockage of NMDAR restored the Aβ(1-40)-induced synaptic dysfunction and cognitive impairment. However, LY235959 failed to prevent the inflammatory response associated with Aβ(1-40) treatment. Altogether, our data indicate that the acute administration of Aβ promotes oxidative stress, a decrease in glutamate transporter expression, and neurotoxicity. Our results reinforce the idea that NMDAR plays a critical regulatory action in Aβ toxicity and they provide further pre-clinical evidence for the potential role of the selective and competitive NMDAR antagonists in the treatment of AD.
Collapse
Affiliation(s)
- M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liang YD, Yu CX. Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide-nitrite chemiluminescence system. Drug Test Anal 2011; 5:150-5. [DOI: 10.1002/dta.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/05/2022]
|
30
|
Tiago T, Marques-da-Silva D, Samhan-Arias AK, Aureliano M, Gutierrez-Merino C. Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration. Cell Calcium 2011; 49:174-83. [PMID: 21297919 DOI: 10.1016/j.ceca.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 02/07/2023]
Abstract
Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.
Collapse
Affiliation(s)
- Teresa Tiago
- Dept. Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006-Badajoz, Spain
| | | | | | | | | |
Collapse
|
31
|
Pycnogenol and Ginkgo biloba extract: effect on peroxynitrite-oxidized sarcoplasmic reticulum Ca-ATPase. Interdiscip Toxicol 2011; 3:132-6. [PMID: 21331179 PMCID: PMC3035570 DOI: 10.2478/v10102-010-0053-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 01/08/2023] Open
Abstract
The effect of two natural standardized plant extracts, Pycnogenol(®) and EGb 761, on sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) activity and posttranslational modifications induced by peroxynitrite was investigated to assess their possible protective role. EGb 761 was found to have a protective effect on SERCA activity in the concentration range of 5-40 µg/ml. On the other hand, Pycnogenol(®) caused a decrease of SERCA activity at concentrations of 25 µg/ml. EGb 761 did not prevent protein carbonyl formation upon oxidation with peroxynitrite. On the contrary, Pycnogenol(®) at the concentrations of 5 and 10 µg/ml significantly decreased the level of protein carbonyls by 44% and 54%, respectively. Neither Pycnogenol(®) nor EGb 761 exerted a protective effect against thiol group oxidation.The plant extracts studied modulated peroxynitrite-injured SERCA activity by different ways and failed to correlate with posttranslational modifications. Their effect seems to be associated with their ability to change SERCA conformation rather than by their antioxidant capacity.
Collapse
|
32
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
33
|
Tiago T, Palma PS, Gutierrez-Merino C, Aureliano M. Peroxynitrite-mediated oxidative modifications of myosin and implications on structure and function. Free Radic Res 2010; 44:1317-27. [PMID: 20815777 DOI: 10.3109/10715762.2010.502170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract The peroxynitrite-induced functional impairment of myosin was studied in different reaction conditions, known to alter the oxidative chemistry of peroxynitrite, to better understand the molecular mechanisms of this interaction. It is shown that peroxynitrite is able to enhance the basal MgATPase activity up to 2-fold while inhibiting the actin-stimulated ATPase activity of myosin and that the extent of these functional alterations is dependent on the reaction medium. The observed changes in the stimulation of the MgATPase activity correlate with the extent of carbonyl formation in myosin. The enzyme inhibition is more potent in conditions where the efficiency of tyrosine nitration and peroxynitrite reactivity towards sulphydryls are lower. Together with the observation that reversion of sulphydryl oxidation did not lead to the recovery of myosin functional and structural impairments, these results point out to the importance of protein carbonylation as a post-translational modification in the peroxynitrite-induced myosin functional impairment.
Collapse
Affiliation(s)
- Teresa Tiago
- Depto Bioquímica y Biología Molecular, Facultad de Ciencias, University of Extremadura, 06071 Badajoz, Spain.
| | | | | | | |
Collapse
|
34
|
Wang Y, Chen ZZ. A novel poly(cyanocobalamin) modified glassy carbon electrode as electrochemical sensor for voltammetric determination of peroxynitrite. Talanta 2010; 82:534-9. [DOI: 10.1016/j.talanta.2010.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/06/2010] [Accepted: 05/08/2010] [Indexed: 11/30/2022]
|
35
|
Abstract
Cellular damage occurring under oxidative conditions has been ascribed mainly to the formation of peroxynitrite (ONOOH/ONOO(-)) that originates from the reaction of NO(*) with O(2) (*-). The detrimental effects of peroxynitrite are exacerbated by the reaction with CO(2) that leads to ONOOC(O)O(-), which further decays to the strong oxidant radicals NO(2) (*) and CO(3) (*-). The reaction with CO(2), however, may redirect peroxynitrite specificity. An excessive formation of peroxynitrite represents an important mechanism contributing to the DNA damage, the inactivation of metabolic enzymes, ionic pumps, and structural proteins, and the disruption of cell membranes. Because of its ability to oxidize biomolecules, peroxynitrite is implicated in an increasing list of diseases, including neurodegenerative and cardiovascular disorders, inflammation, pain, autoimmunity, cancer, and aging. However, peroxynitrite displays also protective activities: (i) at high concentrations, it shows anti-viral, anti-microbial, and anti-parasitic actions; and (ii) at low concentrations, it stimulates protective mechanisms in the cardiovascular, nervous, and respiratory systems. The detrimental effects of peroxynitrite and related reactive species are impaired by (pseudo-) enzymatic systems, mainly represented by heme-proteins (e.g., hemoglobin and myoglobin). Here, we report biochemical aspects of peroxynitrite actions being at the root of its biomedical effects.
Collapse
|
36
|
Sedan D, Andrinolo D, Telese L, Giannuzzi L, de Alaniz MJ, Marra CA. Alteration and recovery of the antioxidant system induced by sub-chronic exposure to microcystin-LR in mice: Its relation to liver lipid composition. Toxicon 2010; 55:333-42. [DOI: 10.1016/j.toxicon.2009.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
37
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Brodsky M, Hirsh S, Albeck M, Sredni B. Resolution of inflammation-related apoptotic processes by the synthetic tellurium compound, AS101 following liver injury. J Hepatol 2009; 51:491-503. [PMID: 19595469 DOI: 10.1016/j.jhep.2009.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/16/2009] [Accepted: 04/02/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Fulminant hepatic failure is a dangerous condition, which occurs when large parts of the liver become damaged beyond repair, and the liver is no longer able to function. This syndrome is induced by inflammatory processes, resulting in acute liver failure. Recently, the organotellurium compound, trichloro(dioxoethylene-O,O(')) tellurate (AS101), has been found by our group to be able to directly inhibit caspases, due to its Te(IV)-thiol chemistry. The aim of this study was to examine the potential of AS101 as an anti-inflammatory and anti-apoptotic compound in vitro and in vivo following liver injury. METHODS Propionibacterium acnes-primed LPS-induced liver injury was performed in Balb/c mice. ALT/AST, cytokines, caspase-1,-3 and-8 activities, and liver histology were assessed. RESULTS AS101 inhibited TNFalpha or anti-FAS-induced apoptotic processes in hepatocytes in vitro. A P. acnes+LPS in vivo liver injury model revealed lower serum ALT and AST and reduced necrosis and apoptosis in AS101-treated mice. IL-18 and IL-1beta reduced levels in AS101-treated mice were associated with caspase-1 activity inhibition. Our findings suggest IL-6, IL-17 and pSTAT3 as additional novel players in the pathogenicity of FHF. Inhibition of caspase-3, and-8 activities by AS101 treatment contributed to decreased hepatocyte death, resulting in increased survival. CONCLUSIONS We suggest that due to its interaction with key-target cysteine residues, AS101 mediates anti-inflammatory and anti-apoptotic effects in this FHF model, which may serve as a potent treatment for mitigation of hepatic damage.
Collapse
Affiliation(s)
- Miri Brodsky
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | | | | | |
Collapse
|
39
|
Relph RA, Bopp JC, Johnson MA, Viggiano AA. Argon cluster-mediated isolation and vibrational spectra of peroxy and nominally D3h isomers of CO3− and NO3−. J Chem Phys 2008; 129:064305. [DOI: 10.1063/1.2958223] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1199-234. [PMID: 18331199 DOI: 10.1089/ars.2007.1927] [Citation(s) in RCA: 423] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A marked increase in interest has occurred over the last few years in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, may play in both disease prevention and human pathologies. This increased interest has been sparked by developments in our understanding of polymorphisms that control the levels of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of specific biomarkers that can be used in vivo to detect damage induced by these oxidants, the detection of active forms of these peroxidases at most, if not all, sites of inflammation, and a correlation between the levels of these enzymes and a number of major human pathologies. This article reviews recent developments in our understanding of the enzymology, chemistry, biochemistry and biologic roles of mammalian peroxidases and the oxidants that they generate, the potential role of these oxidants in human disease, and the use of the levels of these enzymes in disease prognosis.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, Camperdown, University of Sydney, Sydney, Australia., Faculty of Medicine, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
41
|
Barelli S, Canellini G, Thadikkaran L, Crettaz D, Quadroni M, Rossier JS, Tissot JD, Lion N. Oxidation of proteins: Basic principles and perspectives for blood proteomics. Proteomics Clin Appl 2008; 2:142-57. [DOI: 10.1002/prca.200780009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Elmi S, Sallam NA, Rahman MM, Teng X, Hunter AL, Moien-Afshari F, Khazaei M, Granville DJ, Laher I. Sulfaphenazole treatment restores endothelium-dependent vasodilation in diabetic mice. Vascul Pharmacol 2008; 48:1-8. [DOI: 10.1016/j.vph.2007.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 09/02/2007] [Accepted: 09/06/2007] [Indexed: 02/07/2023]
|
43
|
Rittschof D, Bonaventura C, Wilker JJ, Van Dover CL. Oxidative iron species and ocean challenges: a perspective. BIOFOULING 2008; 24:173-175. [PMID: 18348007 DOI: 10.1080/08927010801958952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The idea of using oxidative iron (Fe(6+)) to manage fouling and potentially invasive and pathogenic species in ballast water has merit and is attractive when viewed in the broadest context. Ferrate (Fe(6+)) has potential in ballast water management because it reduces a complex global problem to a single issue, viz.how to dispose of the waste which is predominantly Fe(3+). Waste iron disposal must be considered carefully because iron limits photosynthesis in oligotrophic oceans, alters physiological processes in bacteria and animals, produces reactive oxygen species, causes nitrosative stress and increased availability enhances the virulence of pathogenic bacteria. The case is made that the oxidative iron waste should be recycled rather than discharged into the ocean.
Collapse
Affiliation(s)
- Dan Rittschof
- Duke University Marine Laboratory, Beaufort, NC, USA.
| | | | | | | |
Collapse
|
44
|
Bostanci MO, Bağirici F. Neuroprotective effect of aminoguanidine on iron-induced neurotoxicity. Brain Res Bull 2007; 76:57-62. [PMID: 18395611 DOI: 10.1016/j.brainresbull.2007.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 11/04/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
Abstract
Iron is a commonly used metal to induce neuronal hyperactivity and oxidative stress. Iron levels rise in the brain in some neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. A body of evidence indicates a link between neuronal death and nitric oxide. The present study was performed to investigate whether nitric oxide produced by inducible nitric oxide synthase is involved in iron-induced neuron death. For this purpose rats were divided into four groups: control, iron, aminoguanidine and iron+aminoguanidine. Animals in iron and iron+aminoguanidine groups received intracerebroventricular FeCl3 injection (200 mM, 2.5 microl). Rats belonging to control and aminoguanidine groups received the same amount of saline into the cerebral ventricles. All animals were kept alive for 10 days following the operation and animals in aminoguanidine and iron+aminoguanidine groups received intraperitoneal aminoguanidine injections once a day (100mg/kg day) during this period. After 10 days, rats were perfused intracardially under deep urethane anesthesia. Removed brains were processed using the standard histological techniques. The total numbers of neurons in hippocampus of all rats were estimated with the unbiased stereological techniques. It was found that aminoguanidine decreased mean neuron loss from 43.4% to 20.3%. Results of the present study suggest that aminoguanidine may attenuate the neurotoxic effects of iron by inhibiting inducible nitric oxide synthase.
Collapse
Affiliation(s)
- M Omer Bostanci
- Department of Physiology, Faculty of Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey.
| | | |
Collapse
|
45
|
Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res 2007; 1182:123-37. [PMID: 16538396 DOI: 10.1016/j.brainres.2007.08.087] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 11/19/2022]
|
46
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|
47
|
Rochat T, Bermúdez-Humarán L, Gratadoux JJ, Fourage C, Hoebler C, Corthier G, Langella P. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microb Cell Fact 2007; 6:22. [PMID: 17659075 PMCID: PMC1949835 DOI: 10.1186/1475-2859-6-22] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/20/2007] [Indexed: 01/22/2023] Open
Abstract
Background Human immune cells generate large amounts of reactive oxygen species (ROS) throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat) in Lb. casei BL23 successfully enhances its survival when exposed to oxidative stress. In this study, we evaluated the preventive effects of this antioxidative Lb. casei strain in a murine model of dextran sodium sulfate (DSS)-induced moderate colitis. Results Either Lb. casei BL23 MnKat- or MnKat+ was administered daily to mice treated with DSS for 10 days. In contrast to control mice treated with PBS for which DSS induced bleeding diarrhea and mucosal lesions, mice treated with both Lb. casei strains presented a significant (p < 0.05) reduction of caecal and colonic inflammatory scores. Conclusion No contribution of MnKat to the protective effect from epithelial damage has been observed in the tested conditions. In contrast, these results confirm the high interest of Lb. casei as an anti-inflammatory probiotic strain.
Collapse
Affiliation(s)
- Tatiana Rochat
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Luis Bermúdez-Humarán
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Jean-Jacques Gratadoux
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Christel Fourage
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Christine Hoebler
- Physiologie Intestinale, Croissance et Nutrition Humaine, UMR INRA/Université de Nantes, Rue de la Géraudière – BP 71627, 44316 Nantes cedex 3, France
| | - Gérard Corthier
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Philippe Langella
- Unité d'Ecologie et Physiologie du Système Digestif, Centre de Recherche INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
48
|
Mathisen GH, Thorkildsen IH, Paulsen RE. Secretory PLA2-IIA and ROS generation in peripheral mitochondria are critical for neuronal death. Brain Res 2007; 1153:43-51. [PMID: 17462609 DOI: 10.1016/j.brainres.2007.03.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 03/16/2007] [Accepted: 03/21/2007] [Indexed: 12/21/2022]
Abstract
In this study the role of mitochondrial secretory PLA2-IIA in glutamate-induced cell death in cultured cerebellar granule neurons has been investigated. Inhibition of secretory PLA2-IIA blocked glutamate-induced cell death. Since PLA2 may generate reactive oxygen species (ROS), we have investigated ROS production, detected as dihydrorhodamine 123 oxidation and nitrotyrosine modifications of proteins, following glutamate treatment in the absence or presence of an inhibitor of secretory PLA2-IIA. There was an increased generation of ROS in both glutamate- and buffer-treated neurons compared to untreated neurons. Scavenging with dihydrorhodamine 123 reduced glutamate-induced death (60%), showing that ROS detected in glutamate-treated neurons were associated with cell death. However, ROS detected in buffer-treated neurons were not associated with toxicity. Glutamate treatment led to ROS production predominantly in peripheral mitochondria, whereas buffer treatment led to ROS production in somal mitochondria. Inhibition of secretory PLA2-IIA (i) reduced the generation of ROS after glutamate treatment, (ii) reduced the ROS production in peripheral mitochondria in glutamate-treated neurons, consistent with the fact that calcium entry through glutamate (NMDA) receptors has a privileged access to peripheral mitochondria, and (iii) did not reduce the generation of ROS after buffer treatment. In conclusion, activation of NMDA receptors induces ROS, which is critical for neuronal death, due to secretory PLA2-IIA associated with peripheral mitochondria.
Collapse
Affiliation(s)
- Gro H Mathisen
- Department of Pharmaceutical Biosciences, University of Oslo, Blindern, N-0316 Oslo, Norway
| | | | | |
Collapse
|
49
|
Ribeiro MFT, Dias ACB, Santos JLM, Fernandes E, Lima JLFC, Zagatto EAG. A Multipumping Flow System for In Vitro Screening of Peroxynitrite Scavengers. ACTA ACUST UNITED AC 2007; 12:875-80. [PMID: 17848640 DOI: 10.1177/1087057107305402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations. ( Journal of Biomolecular Screening 2007:875-880)
Collapse
Affiliation(s)
- Marta F T Ribeiro
- Departamento de Química-Física, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
50
|
Deng Y, Thompson BM, Gao X, Hall ED. Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol 2007; 205:154-65. [PMID: 17349624 PMCID: PMC1950332 DOI: 10.1016/j.expneurol.2007.01.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/19/2006] [Accepted: 01/25/2007] [Indexed: 11/19/2022]
Abstract
We assessed the temporal and spatial characteristics of PN-induced oxidative damage and its relationship to calpain-mediated cytoskeletal degradation and neurodegeneration in a severe unilateral controlled cortical impact (CCI) traumatic brain injury (TBI) model. Quantitative temporal time course studies were performed to measure two oxidative damage markers: 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE) at 30 min, 1, 3, 6, 12, 24, 48, 72 h and 7 days after injury in ipsilateral cortex of young adult male CF-1 mice. Secondly, the time course of Ca(++)-activated, calpain-mediated proteolysis was also analyzed using quantitative western-blot measurement of breakdown products of the cytoskeletal protein alpha-spectrin. Finally, the time course of neurodegeneration was examined using de Olmos silver staining. Both oxidative damage markers increased in cortical tissue immediately after injury (30 min) and elevated for the first 3-6 h before returning to baseline. In the immunostaining study, the PN-selective marker, 3NT, and the lipid peroxidation marker, 4HNE, were intense and overlapping in the injured cortical tissue. alpha-Spectrin breakdown products, which were used as biomarker for calpain-mediated cytoskeletal degradation, were also increased after injury, but the time course lagged behind the peak of oxidative damage and did not reach its maximum until 24 h post-injury. In turn, cytoskeletal degradation preceded the peak of neurodegeneration which occurred at 48 h post-injury. These studies have led us to the hypothesis that PN-mediated oxidative damage is an early event that contributes to a compromise of Ca(++) homeostatic mechanisms which causes a massive Ca(++) overload and calpain activation which is a final common pathway that results in post-traumatic neurodegeneration.
Collapse
Affiliation(s)
- Ying Deng
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0509, USA
| | | | | | | |
Collapse
|