1
|
Samavat M, Bartol TM, Bromer C, Hubbard DD, Hanka DC, Kuwajima M, Mendenhall JM, Parker PH, Bowden JB, Abraham WC, Sejnowski TJ, Harris KM. Long-Term Potentiation Produces a Sustained Expansion of Synaptic Information Storage Capacity in Adult Rat Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574766. [PMID: 38260636 PMCID: PMC10802612 DOI: 10.1101/2024.01.12.574766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Long-term potentiation (LTP) has become a standard model for investigating synaptic mechanisms of learning and memory. Increasingly, it is of interest to understand how LTP affects the synaptic information storage capacity of the targeted population of synapses. Here, structural synaptic plasticity during LTP was explored using three-dimensional reconstruction from serial section electron microscopy. Storage capacity was assessed by applying a new analytical approach, Shannon information theory, to delineate the number of functionally distinguishable synaptic strengths. LTP was induced by delta-burst stimulation of perforant pathway inputs to the middle molecular layer of hippocampal dentate granule cells in adult rats. Spine head volumes were measured as predictors of synaptic strength and compared between LTP and control hemispheres at 30 min and 2 hr after the induction of LTP. Synapses from the same axon onto the same dendrite were used to determine the precision of synaptic plasticity based on the similarity of their physical dimensions. Shannon entropy was measured by exploiting the frequency of spine heads in functionally distinguishable sizes to assess the degree to which LTP altered the number of bits of information storage. Outcomes from these analyses reveal that LTP expanded storage capacity; the distribution of spine head volumes was increased from 2 bits in controls to 3 bits at 30 min and 2.7 bits at 2 hr after the induction of LTP. Furthermore, the distribution of spine head volumes was more uniform across the increased number of functionally distinguishable sizes following LTP, thus achieving more efficient use of coding space across the population of synapses.
Collapse
Affiliation(s)
- Mohammad Samavat
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, UC San Diego
- Computational Neurobiology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037
| | - Thomas M Bartol
- Computational Neurobiology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037
| | - Cailey Bromer
- Computational Neurobiology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037
| | - Dusten D Hubbard
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
| | - Dakota C Hanka
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
| | - Masaaki Kuwajima
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
| | - John M Mendenhall
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
| | - Patrick H Parker
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
| | - Jared B Bowden
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, 9016, New Zealand
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Kristen M Harris
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Rusakov DA, Giese KP, Sandi C, Dommett E, Overton PG. Remembering Mike Stewart. Neuropharmacology 2022; 207:108962. [PMID: 35051447 DOI: 10.1016/j.neuropharm.2022.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Karl Peter Giese
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Carmen Sandi
- Swiss Federal Institute of Technology in Lausanne (EPFL), Rte Cantonale, 1015, Lausanne, Switzerland
| | - Eleanore Dommett
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Vicar Lane, Sheffield, S1 2LT, UK
| |
Collapse
|
3
|
Huzian O, Baka J, Csakvari E, Dobos N, Leranth C, Siklos L, Duman RS, Farkas T, Hajszan T. Stress Resilience is Associated with Hippocampal Synaptoprotection in the Female Rat Learned Helplessness Paradigm. Neuroscience 2021; 459:85-103. [PMID: 33524494 DOI: 10.1016/j.neuroscience.2021.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022]
Abstract
The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.
Collapse
Affiliation(s)
- Orsolya Huzian
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Judith Baka
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Eszter Csakvari
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Nikoletta Dobos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Laszlo Siklos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, United States; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Tamas Farkas
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged Faculty of Science and Informatics, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Tibor Hajszan
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States.
| |
Collapse
|
4
|
Lewis V, Laberge F, Heyland A. Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Front Neurosci 2020; 13:1407. [PMID: 31992968 PMCID: PMC6971186 DOI: 10.3389/fnins.2019.01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.
Collapse
Affiliation(s)
- Vern Lewis
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Abstract
Memory is fundamentally important to everyday life, and memory loss has devastating consequences to individuals and society. Understanding the neurophysiological and cellular basis of memory paves the way for gaining insights into the molecular steps involved in memory formation, thereby revealing potential therapeutic targets for neurological diseases. For three decades, long-term potentiation (LTP) has been the gold standard synaptic model for mammalian memory mechanisms, in large part because of its long-lasting nature. Here, the authors summarize the characteristics of LTP persistence in the dentate gyrus of the hippocampus, comparing this with other hippocampal subregions and neocortex. They consider how long LTP can last and how its persistence is affected by subsequent behavioral experiences. Next, they review the molecular mechanisms known to contribute to LTP induction and persistence, in particular the role of new gene expression and protein synthesis and how they may be associated with potential structural reorganization of the synapse. A temporal schema for the processes important for consolidating LTP into a persistent form is presented. The parallels between the molecular aspects of LTP and memory strongly support the continuation with LTP as a model system for studying the mechanisms underlying long-term memory consolidation and retention.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Box 56, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
6
|
Wosiski-Kuhn M, Stranahan AM. Transient increases in dendritic spine density contribute to dentate gyrus long-term potentiation. Synapse 2012; 66:661-4. [PMID: 22314918 DOI: 10.1002/syn.21545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/26/2011] [Indexed: 11/11/2022]
Abstract
Dendritic spines are the primary sites for excitatory neurotransmission in the adult brain and exhibit changes in their number and morphology with experience. The relationship between spine formation and synaptic activity has been best characterized along the apical dendrites of pyramidal neurons in the hippocampal CA1 subfield. However, less is known about the structural mechanisms at the spine that mediate plasticity in other hippocampal subfields. The dentate gyrus is the predominant point of entry for synaptic input to the hippocampus, and dentate granule cells differ from CA1 pyramidal neurons in terms of their morphology and biophysical properties. In order to understand the structural mechanisms for plasticity in the dentate gyrus, we measured dendritic spine density in hippocampal slice preparations at different intervals following synaptic stimulation. We observed that transient increases in dendritic spine density are detectable 30 min after induction of long-term potentiation (LTP). By 60 min poststimulation, dendritic spine density has returned to basal levels. Both early LTP and enhancements in dendritic spine density could be blocked by destabilizing actin filaments, but not by inhibitors of transcription or protein synthesis. These results indicate that spine formation is a transient event that is required for dentate gyrus LTP.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Physiology Department, Georgia Health Sciences University, Augusta, Georgia, USA
| | | |
Collapse
|
7
|
Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD, Bergles DE, Dailey ME. Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 2012; 60:175-88. [PMID: 22052455 PMCID: PMC3232333 DOI: 10.1002/glia.21249] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/02/2011] [Indexed: 12/20/2022]
Abstract
Glutamate transporters (GluTs) maintain a low ambient level of glutamate in the central nervous system (CNS) and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here, we examined the subcellular distribution and dynamic remodeling of the predominant GluT GLT-1 (excitatory amino acid transporter 2, EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. Green fluorescent protein (GFP)-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse three-dimensional confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of GluTs in developing astrocyte membranes and their position relative to synapses.
Collapse
|
8
|
Armstrong BC, Le Boutillier JC, Petit TL. Ultrastructural synaptic changes associated with neurofibromatosis type 1: a quantitative analysis of hippocampal region CA1 in a Nf1(+/-) mouse model. Synapse 2011; 66:246-55. [PMID: 22121000 DOI: 10.1002/syn.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequently diagnosed autosomal dominant inherited disorders resulting in neurological dysfunction, including an assortment of learning disabilities and cognitive deficits. To elucidate the neural mechanisms underlying the disorder, we employed a mouse model (Nf1(+/-) ) to conduct a quantitative analysis of ultrastructural changes associated with the NF1 disorder. Using both serial light and electron microscopy, we examined reconstructions of the CA1 region of the hippocampus, which is known to play a central role in many of the dysfunctions associated with NF1. In general, the morphology of synapses in both the Nf1(+/-) and wild-type groups of animals were similar. No differences were observed in synapse per neuron density, pre- and postsynaptic areas, or lengths. However, concave synapses were found to show a lower degree of curvature in the Nf1(+/-) mutant than in the wild type. These results indicate that the synaptic ultrastructure of Nf1(+/-) mice appears relatively normal with the exception of the degree of synaptic curvature in concave synapses, adding further support to the importance of synaptic curvature in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Blair C Armstrong
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
9
|
Huntley GW, Elste AM, Patil SB, Bozdagi O, Benson DL, Steward O. Synaptic loss and retention of different classic cadherins with LTP-associated synaptic structural remodeling in vivo. Hippocampus 2010; 22:17-28. [PMID: 20848607 DOI: 10.1002/hipo.20859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2010] [Indexed: 11/10/2022]
Abstract
Cadherins are synaptic cell adhesion molecules that contribute to persistently enhanced synaptic strength characteristic of long-term potentiation (LTP). What is relatively unexplored is how synaptic activity of the kind that induces LTP-associated remodeling of synapse structure affects localization of cadherins, particularly in mature animals in vivo, details which could offer insight into how different cadherins contribute to synaptic plasticity. Here, we use a well-described in vivo LTP induction protocol that produces robust synaptic morphological remodeling in dentate gyrus of adult rats in combination with confocal and immunogold electron microscopy to localize cadherin-8 and N-cadherin at remodeled synapses. We find that the density and size of cadherin-8 puncta are significantly diminished in the potentiated middle molecular layer (MML) while concurrently, N-cadherin remains tightly clustered at remodeled synapses. These changes are specific to the potentiated MML, and occur without any change in density or size of synaptophysin puncta. Thus, the loss of cadherin-8 probably represents selective removal from synapses rather than overall loss of synaptic junctions. Together, these findings suggest that activity-regulated loss and retention of different synaptic cadherins could contribute to dual demands of both flexibility and stability in synapse structure that may be important for synaptic morphological remodeling that accompanies long-lasting plasticity.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029-6574, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Méndez-López M, Méndez M, López L, Cimadevilla JM, Arias JL. Hippocampal heterogeneity in spatial memory revealed by cytochrome oxidase. Neurosci Lett 2009; 452:162-6. [DOI: 10.1016/j.neulet.2009.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 11/30/2022]
|
11
|
Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallérac GM, Kraev IV, Rodríguez JJ. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 2005; 21:3368-78. [PMID: 16026474 DOI: 10.1111/j.1460-9568.2005.04174.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Examination of the morphological correlates of long-term potentiation (LTP) in the hippocampus requires the analysis of both the presynaptic and postsynaptic elements. However, ultrastructural measurements of synapses and dendritic spines following LTP induced via tetanic stimulation presents the difficulty that not all synapses examined are necessarily activated. To overcome this limitation, and to ensure that a very large proportion of the synapses and spines examined have been potentiated, we induced LTP in acute hippocampal slices of adult mice by addition of tetraethylammonium (TEA) to a modified CSF containing an elevated concentration of Ca(2+) and no Mg(+). Quantitative electron microscope morphometric analyses and three-dimensional (3-D) reconstructions of both dendritic spines and postsynaptic densities (PSDs) in CA1 stratum radiatum were made on serial ultrathin sections. One hour after chemical LTP induction the proportion of macular (unperforated) synapses decreased (50%) whilst the number of synapses with simple perforated and complex PSDs (nonmacular) increased significantly (17%), without significant changes in volume and surface area of the PSD. In addition, the surface area of mushroom spines increased significantly (13%) whilst there were no volume differences in either mushroom or thin spines, or in surface area of thin spines. CA1 stratum radiatum contained multiple-synapse en passant axons as well as multiple-synapse spines, which were unaffected by chemical LTP. Our results suggest that chemical LTP induces active dendritic spine remodelling and correlates with a change in the weight and strength of synaptic transmission as shown by the increase in the proportion of nonmacular synapses.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW, Bell JE, Kilford L, Kingsbury AE, Daniel SE, Ingham CA. Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 2005; 132:741-54. [PMID: 15837135 DOI: 10.1016/j.neuroscience.2005.01.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 11/20/2022]
Abstract
Dendritic spines are important structures which receive synaptic inputs in many regions of the CNS. The goal of this study was to test the hypothesis that numbers of dendritic spines are significantly reduced on spiny neurones in basal ganglia regions in Parkinson's disease as we had shown them to be in a rat model of the disease [Exp Brain Res 93 (1993) 17]. Postmortem tissue from the caudate and putamen of patients suffering from Parkinson's disease was compared with that from people of a similar age who had no neurological damage. The morphology of Golgi-impregnated projection neurones (medium-sized spiny neurones) was examined quantitatively. The numerical density of dendritic spines on dendrites was reduced by about 27% in both nuclei. The size of the dendritic trees of these neurones was also significantly reduced in the caudate nucleus from the brains of PD cases and their complexity was changed in both the caudate nucleus and the putamen. Dendritic spines receive crucial excitatory input from the cerebral cortex. Reduction in both the density of spines and the total length of the remaining dendrites is likely to have a grave impact on the ability of these neurones to function normally and may partly explain the symptoms of the disorder.
Collapse
Affiliation(s)
- B Stephens
- Division of Veterinary Biomedical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ, Rodriguez JJ, Cordero MI, Donohue HS, Gabbott PLA, Popov VI. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 2005; 131:43-54. [PMID: 15680690 DOI: 10.1016/j.neuroscience.2004.10.031] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/18/2022]
Abstract
Chronic stress and spatial training have been proposed to affect hippocampal structure and function in opposite ways. Previous morphological studies that addressed structural changes after chronic restraint stress and spatial training were based on two-dimensional morphometry which does not allow a complete morphometric characterisation of synaptic features. Here, for the first time in such studies, we examined these issues by using three-dimensional (3-D) reconstructions of electron microscope images taken from thorny excrescences of hippocampal CA3 pyramidal cells. Ultrastructural alterations in postsynaptic densities (PSDs) of thorny excrescences receiving input from mossy fibre boutons were also determined, as were changes in numbers of multivesicular bodies (endosome-like structures) within thorny excrescences and dendrites. Quantitative 3-D data demonstrated retraction of thorny excrescences after chronic restraint stress which was reversed after water maze training, whilst water maze training alone increased thorny excrescence volume and number of thorns per thorny excrescence. PSD surface area was unaffected by restraint stress but water maze training increased both number and area of PSDs per thorny excrescence. In restrained rats that were water maze trained PSD volume and surface area increased significantly. The proportion of perforated PSDs almost doubled after water maze training and restraint stress. Numbers of endosome-like structures in thorny excrescences decreased after restraint stress and increased after water maze training. These findings demonstrate that circuits involving contacts between mossy fibre terminals and CA3 pyramidal cells at stratum lucidum level are affected conversely by water maze training and chronic stress, confirming the remarkable plasticity of CA3 dendrites. They provide a clear illustration of the structural modifications that occur after life experiences noted for their different impact on hippocampal function.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mezey S, Doyère V, De Souza I, Harrison E, Cambon K, Kendal CE, Davies H, Laroche S, Stewart MG. Long-term synaptic morphometry changes after induction of long-term potentiation and long-term depression in the dentate gyrus of awake rats are not simply mirror phenomena. Eur J Neurosci 2004; 19:2310-8. [PMID: 15090057 DOI: 10.1111/j.0953-816x.2004.03334.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanisms of expression of long-term synaptic plasticity are believed to involve morphological changes of the activated synapses and remodelling of connectivity. Here, we investigated changes in synaptic and neuronal parameters in the dentate gyrus 24 h after induction of long-term potentiation (LTP) and long-term depression (LTD) in awake rats. In dentate granule cells, tetanization of the medial or lateral perforant paths induces LTP in specific synaptic bands along the dendrites in the middle and outer molecular layers, respectively, and tetanization of the lateral path induces robust LTD heterosynaptically in the middle molecular layer. This functional segregation allowed us to assess morphological changes associated with LTP and LTD in each pathway in the same population of neurons. Electron microscopy and unbiased counting methods were used to estimate neuronal density, axospinous, axodendritic and perforated synapse density, multiple synapse bouton density and postsynaptic density (PSD) area. Whereas there was no change in neuronal density, PSD area and multiple synapse boutons 24 h after either LTP or LTD, there was a noninput-specific increase in unperforated axospinous synapses after both LTP and LTD. However, we found that LTP of the medial, but not lateral, perforant path is associated with a specific increase in perforated axospinous synapses in the potentiated area. We also show that heterosynaptic LTD is associated with an input-specific increase in axodendritic synapse density. These results suggest that each perforant pathway may differ with respect to the nature of LTP-induced long-term changes and show that morphologically LTD is not simply the converse of LTP.
Collapse
Affiliation(s)
- Szilvia Mezey
- Department of Biological Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML, Gabbott PLA, Bliss TVP, Stewart MG. Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation(ltp): A serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 2004; 128:251-62. [PMID: 15350638 DOI: 10.1016/j.neuroscience.2004.06.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 11/30/2022]
Abstract
In anaesthetised rats, long-term potentiation (LTP) was induced unilaterally in the dentate gyrus by tetanic stimulation of the perforant path. Animals were killed 6 h after LTP induction and dendritic spines and synapses in tetanised and untetanised (contralateral) hippocampal tissue from the middle molecular layer (MML) were examined in the electron microscope using stereological analysis. Three-dimensional reconstructions were also used for the first time in LTP studies in vivo, with up to 130 ultrathin serial sections analysed per MML dendritic segment. A volume sampling procedure revealed no significant changes in hippocampal volume after LTP and an unbiased counting method demonstrated no significant changes in synapse density in potentiated compared with control tissue. In the potentiated hemisphere, there were changes in the proportion of different spine types and their synaptic contacts. We found an increase in the percentage of synapses on thin dendritic spines, a decrease in synapses on both stubby spines and dendritic shafts, but no change in the proportion of synapses on mushroom spines. Analysis of three-dimensional reconstructions of thin and mushroom spines following LTP induction revealed a significant increase in their volume and area. We also found an increase in volume and area of unperforated (macular) and perforated (segmented) postsynaptic densities. Our data demonstrate that whilst there is no change in synapse density 6 h after the induction of LTP in vivo, there is a considerable restructuring of pre-existing synapses, with shaft and stubby spines transforming to thin dendritic spines, and mushroom spines changing only in shape and volume.
Collapse
Affiliation(s)
- V I Popov
- The Open University, Department of Biological Sciences, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dhanrajan TM, Lynch MA, Kelly A, Popov VI, Rusakov DA, Stewart MG. Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone. Hippocampus 2004; 14:255-64. [PMID: 15098730 PMCID: PMC3369534 DOI: 10.1002/hipo.10172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Evidence for morphological substrates of long-term changes in synaptic efficacy is controversial, partly because it is difficult to employ an unambiguous control. We have used a high-frequency stimulation protocol in vivo to induce long-term potentiation (LTP) in the hippocampal dentate gyrus of aged (22-month-old) rats and have found a clear distinction between animals that sustain LTP and those that fail to sustain it. The "failure group" was used as a specific/"like-with-like" control for morphological changes associated with the expression of LTP per se. Quantitative optical and electron microscopy was used to analyze large populations of dendritic spines and excitatory perforant path synapses; LTP was found to be associated with an increase in numbers of segmented (perforated) postsynaptic densities in spine synapses. In contrast, an increase in the number of branched spines appears to result from high-frequency stimulation alone. These data shed light on the current controversy about the expression mechanism of LTP.
Collapse
Affiliation(s)
| | | | - Aine Kelly
- Department of Physiology, Trinity College, Dublin, Ireland
| | - Victor I. Popov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitri A. Rusakov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Michael G. Stewart
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
17
|
Williams JM, Guévremont D, Kennard JTT, Mason-Parker SE, Tate WP, Abraham WC. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity. Neuroscience 2003; 118:1003-13. [PMID: 12732245 DOI: 10.1016/s0306-4522(03)00028-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptic plasticity in the dentate gyrus is dependent on activation of the N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors. In this study, we show that synaptic plasticity in turn regulates NMDA receptors, since subunits of the NMDA receptor complex are bidirectionally and independently regulated in the dentate gyrus following activation of perforant synapses in awake animals. Low-frequency stimulation that produced a mild synaptic depression resulted in a decrease in the NMDA receptor subunits NR1 and NR2B 48 h following stimulation. High-frequency stimulation that produced long-term potentiation resulted in an increase in NR1 and NR2B at the same time point. Further investigations revealed that in contrast to NR2B, NR1 levels increased gradually after long-term potentiation induction, reaching a peak level at 48 h, and were insensitive to the competitive NMDA receptor antagonist 3-3(2-carboxypiperazin-4-yl) propyl-1-phosphate. The increased levels of NR1 and NR2B at 48 h were found associated with synaptic membranes and with increased NMDA receptor-associated proteins, postsynaptic density protein 95, neuronal nitric oxide synthase and Ca(2+)/calmodulin-dependent protein kinase II, alpha subunit. These data suggest that the persistence of long-term potentiation is associated with an increase in the number of NMDA receptor complexes, which may be indicative of an increase in synaptic contact area.
Collapse
Affiliation(s)
- J M Williams
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
18
|
Eyre MD, Richter-Levin G, Avital A, Stewart MG. Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 2003; 17:1973-80. [PMID: 12752797 DOI: 10.1046/j.1460-9568.2003.02624.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hippocampus is believed to play a crucial role in the formation of memory for spatial tasks. In the present study quantitative electron microscopy was used to investigate morphological changes in the hippocampal dentate gyrus of 3-month-old male rats at 3, 9 and 24 h after training to find a hidden platform in a Morris water maze. Average escape latency (time taken to reach the platform) in all trained groups decreased progressively with increased training but data from a probe trial (quadrant analysis test) at the end of training indicated that only animals in the 9- and 24-h groups, not the 3-h group, displayed significant retention of platform location. Unbiased stereological methods were used to estimate synapse and neuronal density at each time point after training. The majority of synapses had unperforated postsynaptic densities, were localized on small dendritic spines and were classed as axo-spinous. In comparison to age-matched untrained rats, significant but transient increases were observed in axo-spinous synapse density and synapse-to-neuron ratio 9 h after the start of training, but not at earlier (3 h) or later (24 h) times. These changes at 9 h post-training were accompanied by transient decreases in both mean synaptic height and area of postsynaptic density. No such changes were observed in an exercise-matched control group of rats, indicating that the transient synaptic changes in the dentate gyrus are most likely to be specifically related to processes involved in memory formation for the spatial learning task.
Collapse
Affiliation(s)
- Mark D Eyre
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | | | |
Collapse
|
19
|
Dermon CR, Zikopoulos B, Panagis L, Harrison E, Lancashire CL, Mileusnic R, Stewart MG. Passive avoidance training enhances cell proliferation in 1-day-old chicks. Eur J Neurosci 2002; 16:1267-74. [PMID: 12405987 DOI: 10.1046/j.1460-9568.2002.02177.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One-day-old domestic chicks were injected i.p. with bromodeoxyuridine (BrdU) before training on a one-trial passive avoidance task where the aversive experience was a bead coated with a bitter tasting substance, methyl anthranilate (MeA). Animals were tested 24 h later; those avoiding (if MeA-trained) or pecking if water (W)-trained (which they peck appetitively), along with a group of untrained naïve chicks, were used to determine cell proliferation either 24 h or 9 days post BrdU injection. In all three groups, BrdU positive cells were identified sparsely throughout the forebrain but labelling was pronounced around ventricular zone (VZ) surfaces at both 24 h and 9 days post-BrdU-injection. Double immunolabelling with neuronal specific antibodies, to either NeuN, or beta-tubulin III, confirmed that most BrdU labelled cells appeared to be neurons. Unbiased stereological analysis of labelled cells in selected forebrain areas 24 h post BrdU injection showed a significant MeA-training induced increase in labelled cells in both the dorsal VZ surface bordering the intermediate and medial hyperstriatum ventrale (IMHV) and the tuberculum olfactorium (TO). By 9 days post-BrdU-injection, there was a significantly greater number of BrdU labelled cells in MeA-trained birds within the IMHV, lobus parolfactorius (LPO) and TO. These results demonstrate that avoidance training in 1-day-old chicks has a marked effect on cell proliferation, in the LPO and IMHV, regions of the chick previously identified as a key loci of memory formation, and in a second region (TO), which has olfactory functions, but has not been previously investigated in relation to avoidance learning.
Collapse
Affiliation(s)
- C R Dermon
- Department of Biology, University of Crete, 71409, Greece
| | | | | | | | | | | | | |
Collapse
|