1
|
Cens T, Chavanieu A, Bertaud A, Mokrane N, Estaran S, Roussel J, Ménard C, De Jesus Ferreira M, Guiramand J, Thibaud J, Cohen‐Solal C, Rousset M, Rolland V, Vignes M, Charnet P. Molecular Targets of Neurotoxic Insecticides in
Apis mellifera. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thierry Cens
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Anaïs Bertaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Nawfel Mokrane
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Sébastien Estaran
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Julien Roussel
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Claudine Ménard
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | | | - Janique Guiramand
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Jean‐Baptiste Thibaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Catherine Cohen‐Solal
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Valérie Rolland
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| |
Collapse
|
2
|
Jiang J, Huang LX, Chen F, Sheng CW, Huang QT, Han ZJ, Zhao CQ. Novel alternative splicing of GABA receptor RDL exon 9 from Laodelphax striatellus modulates agonist potency. INSECT SCIENCE 2021; 28:757-768. [PMID: 32293803 DOI: 10.1111/1744-7917.12789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The resistance to dieldrin gene (RDL) encodes the primary subunit of the insect ionotropic γ-aminobutyric acid (GABA) receptor (GABAR), which is the target of phenylpyrazole and isoxazoline insecticides. The splice variants in exons 3 and 6 of RDL, which have been widely explored in many insects, modulate the agonist potency of the homomeric RDL GABAR and potentially play an important role in the development of insects. In the present study, four splice variants of exon 9 were identified in RDL of the small brown planthopper, Laodelphax striatellus (LsRDL), resulting in LsRDL-9a, LsRDL-9a', LsRDL-9b, and LsRDL-9c. LsRDL-9a has one more amino acid (E, glutamic acid) compared with LsRDL-9a', and LsRDL-9b lacked two amino acids and had seven different amino acids compared with LsRDL-9c. Two-electrode voltage-clamp recording on LsRDLs expressed in Xenopus oocytes showed that alternative splicing of exon 9 has significant impact on LsRDL sensitivity to the agonists GABA and β-alanine, whereas no significant difference was observed in the potencies of the non-competitive antagonists (NCAs) ethiprole and fluralaner on the splice variants. Our results suggest that alternative splicing of RDL exon 9 broadens functional capabilities of the GABAR in L. striatellus by influencing the action of GABA.
Collapse
Affiliation(s)
- Jie Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Xin Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Wang Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiu-Tang Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhao-Jun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chun-Qing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Kobayashi T, Hiragaki S, Suzuki T, Ochiai N, Canlas LJ, Tufail M, Hayashi N, Mohamed AAM, Dekeyser MA, Matsuda K, Takeda M. A unique primary structure of RDL (resistant to dieldrin) confers resistance to GABA-gated chloride channel blockers in the two-spotted spider mite Tetranychus urticae Koch. J Neurochem 2020; 155:508-521. [PMID: 32895930 DOI: 10.1111/jnc.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
Abstract
The primary structure of the second transmembrane (M2) segment of resistant to dieldrin (RDL), an ionotropic γ-aminobutyric acid receptor (GABAR) subunit, and the structure-function relationships in RDL are well conserved among insect species. An amino acid substitution at the 2' position in the M2 segment (Ala to Ser or Gly) confers resistance to non-competitive antagonists (NCAs) of GABARs. Here, a cDNA encoding RDL was cloned from the two-spotted spider mite Tetranychus urticae Koch. Unlike insect homologs, native TuRDL has His at the 2' position (H305) and Ile at 6' (I309) in the M2 segment and is insensitive to NCAs. Single and multiple mutations were introduced in the M2 segment of TuRDL, and the mutant proteins were expressed in Xenopus oocytes and examined for the restoration of sensitivity to NCAs. The sensitivity of a double mutant (H305A and I309T in the M2 segment) was greatly increased but was still considerably lower than that of insect RDLs. We therefore constructed chimeric RDLs consisting of TuRDL and Drosophila melanogaster RDL and examined their sensitivities to NCAs. The results show that the N-terminal region containing the Cys-loop as well as the M2 segment confers functional specificity; thus, our current understanding of the mechanism underlying NCA binding to GABARs requires reappraisal.
Collapse
Affiliation(s)
- Takeru Kobayashi
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Susumu Hiragaki
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Takeshi Suzuki
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Noriaki Ochiai
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Liza J Canlas
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Muhammad Tufail
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Naotaka Hayashi
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Ahmed A M Mohamed
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | | | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Makio Takeda
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Henry C, Cens T, Charnet P, Cohen-Solal C, Collet C, van-Dijk J, Guiramand J, de Jésus-Ferreira MC, Menard C, Mokrane N, Roussel J, Thibault JB, Vignes M, Rousset M. Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera. Br J Pharmacol 2020; 177:3924-3940. [PMID: 32436264 DOI: 10.1111/bph.15135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite a growing awareness, annual losses of honeybee colonies worldwide continue to reach threatening levels for food safety and global biodiversity. Among the biotic and abiotic stresses probably responsible for these losses, pesticides, including those targeting ionotropic GABA receptors, are one of the major drivers. Most insect genomes include the ionotropic GABA receptor subunit gene, Rdl, and two GABA-like receptor subunit genes, Lcch3 and Grd. Most studies have focused on Rdl which forms homomeric GABA-gated chloride channels, and a complete analysis of all possible molecular combinations of GABA receptors is still lacking. EXPERIMENTAL APPROACH We cloned the Rdl, Grd, and Lcch3 genes of Apis mellifera and systematically characterized the resulting GABA receptors expressed in Xenopus oocytes, using electrophysiological assays, fluorescence microscopy and co-immunoprecipitation techniques. KEY RESULTS The cloned subunits interacted with each other, forming GABA-gated heteromeric channels with particular properties. Strikingly, these heteromers were always more sensitive than AmRDL homomer to all the pharmacological agents tested. In particular, when expressed together, Grd and Lcch3 form a non-selective cationic channel that opens at low concentrations of GABA and with sensitivity to insecticides similar to that of homomeric Rdl channels. CONCLUSION AND IMPLICATIONS For off-target species like the honeybee, chronic sublethal exposure to insecticides constitutes a major threat. At these concentration ranges, homomeric RDL receptors may not be the most pertinent target to study and other ionotropic GABA receptor subtypes should be considered in order to understand more fully the molecular mechanisms of sublethal toxicity to insecticides.
Collapse
Affiliation(s)
| | - Thierry Cens
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Charnet
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | | | - Claude Collet
- UR 406 Abeilles et Environnement, INRAE, Avignon Cedex 9, France
| | | | | | | | - Claudine Menard
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Nawfel Mokrane
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Julien Roussel
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | | | - Michel Vignes
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Matthieu Rousset
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Liu G, Wu Y, Gao Y, Ju X, Ozoe Y. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4760-4768. [PMID: 32243147 DOI: 10.1021/acs.jafc.9b08189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
6
|
Kita T, Mino H, Ozoe F, Ozoe Y. Spatiotemporally different expression of alternatively spliced GABA receptor subunit transcripts in the housefly Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21541. [PMID: 30821008 DOI: 10.1002/arch.21541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Insect γ-aminobutyric acid (GABA) receptors are important as major inhibitory neurotransmitter receptors and targets for insecticides. The housefly GABA receptor subunit gene MdRdl is alternatively spliced at exons 3 (a or b) and 6 (c or d) to yield the variants of ac, ad, bc, and bd combinations. In the present study, the expression of the MdRdl transcript in the body parts and in the developmental stages of the housefly Musca domestica was examined by quantitative polymerase chain reaction using specific primers that amplify the combinations of alternative exons. The results indicated that the transcripts of MdRdl, including four combinations, were highly expressed in the adult stage. MdRdlbd was the most abundant in the adult head. The expression pattern did not change in the adult stage over 7 days after eclosion. The expression level of the MdRdl bd transcript in the female head was similar to that of the male head. In contrast, MdRdl bc was the predominant transcript in the pupal head and the adult leg. Because the homomeric Rdl bc GABA receptor has a high affinity for GABA, our results provide grounds for designing agonist or competitive-antagonist insecticides that target the orthosteric site of the GABA receptor containing this Rdl variant.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Hayata Mino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
7
|
Rufener L, Danelli V, Bertrand D, Sager H. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls). Parasit Vectors 2017; 10:530. [PMID: 29089046 PMCID: PMC5664438 DOI: 10.1186/s13071-017-2470-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. METHODS In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms), Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon), Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. RESULTS In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly) GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks) but also of crustaceans (sea lice), while no activity on a dog GABAA receptor was observed up to a concentration of 10 μM. CONCLUSIONS Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate's γ-aminobutyric acid-gated chloride channels (GABACls). They contribute to our understanding of the mode of action of this new ectoparasiticide compound.
Collapse
Affiliation(s)
- Lucien Rufener
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland.
| | - Vanessa Danelli
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Daniel Bertrand
- HiQScreen Sàrl, Route de Compois 6, CH-1222, Vésenaz, Switzerland
| | - Heinz Sager
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
8
|
Taylor-Wells J, Jones AK. Variations in the Insect GABA Receptor, RDL, and Their Impact on Receptor Pharmacology. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1265.ch001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennina Taylor-Wells
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| | - Andrew K. Jones
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| |
Collapse
|
9
|
Xu Z, Wu Q, Xu Q, He L. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite. Toxicol Sci 2016; 155:258-269. [DOI: 10.1093/toxsci/kfw210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein. PLoS One 2015; 10:e0138068. [PMID: 26368804 PMCID: PMC4569296 DOI: 10.1371/journal.pone.0138068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular structure and pharmacology of Cys-loop receptors in beneficial species.
Collapse
|
11
|
Liu G, Ozoe F, Furuta K, Ozoe Y. 4,5-Substituted 3-Isoxazolols with Insecticidal Activity Act as Competitive Antagonists of Housefly GABA Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6304-6312. [PMID: 26120732 DOI: 10.1021/acs.jafc.5b01843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The insect GABA receptor (GABAR), which is composed of five RDL subunits, represents an important target for insecticides. A series of 4,5-disubstituted 3-isoxazolols, including muscimol analogues, were synthesized and examined for their activities against four splice variants (ac, ad, bc, and bd) of housefly GABARs expressed in Xenopus oocytes. Muscimol was a more potent agonist than GABA in all four splice variants, whereas synthesized analogues did not exhibit agonism but rather antagonism in housefly GABARs. The introduction of bicyclic aromatic groups at the 4-position of muscimol and the simultaneous replacement of the aminomethyl group with a carbamoyl group at the 5-position to afford six 4-aryl-5-carbamoyl-3-isoxazolols resulted in compounds that exhibited significantly enhanced antagonism with IC50 values in the low micromolar range in the ac variant. The inhibition of GABA-induced currents by 100 μM analogues was approximately 1.5-4-fold greater in the ac and bc variants than in the ad and bd variants. 4-(3-Biphenylyl)-5-carbamoyl-3-isoxazolol displayed competitive antagonism, with IC50 values of 30, 34, 107, and 96 μM in the ac, bc, ad, and bd variants, respectively, and exhibited moderate insecticidal activity against houseflies, with an LD50 value of 5.6 nmol/fly. These findings suggest that these 3-isoxazolol analogues are novel lead compounds for the design and development of insecticides that target the orthosteric site of housefly GABARs.
Collapse
Affiliation(s)
- Genyan Liu
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Fumiyo Ozoe
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Kenjiro Furuta
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- †Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
- §Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
12
|
Temporal integration of cholinergic and GABAergic inputs in isolated insect mushroom body neurons exposes pairing-specific signal processing. J Neurosci 2015; 34:16086-92. [PMID: 25429149 DOI: 10.1523/jneurosci.0714-14.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic modulation of neuronal activity plays a crucial role in physiological processes including learning and memory in both insects and mammals. During olfactory learning in honeybees (Apis mellifera) and Drosophila melanogaster the temporal relation between excitatory cholinergic and inhibitory GABAergic inputs critically affects learning. However, the cellular mechanisms of temporal integration of these antagonistic inputs are unknown. To address this question, we use calcium imaging of isolated honeybee and Drosophila Kenyon cells (KCs), which are targets of cholinergic and GABAergic inputs during olfactory learning. In the whole population of honeybee KCs we find that pairing of acetylcholine (ACh) and γ-aminobutyric acid (GABA) Comment: Please use the greek letter for gamma reduces the ACh-induced calcium influx, and depending on their temporal sequence, induces different forms of neuronal plasticity. After ACh-GABA pairing the calcium influx of a subsequent excitatory stimulus is increased, while GABA-ACh pairing affects the decay time leading to elevated calcium levels during the late phase of a subsequent excitatory stimulus. In an exactly defined subset of Drosophila KCs implicated in learning we find similar pairing-specific differences. Specifically the GABA-ACh pairing splits the KCs in two functional subgroups: one is only weakly inhibited by GABA and shows no neuronal plasticity and the other subgroup is strongly inhibited by GABA and shows elevated calcium levels during the late phase of a subsequent excitatory stimulus. Our findings provide evidence that insect KCs are capable of contributing to temporal processing of cholinergic and GABAergic inputs, which provides a neuronal mechanism of the differential temporal role of GABAergic inhibition during learning.
Collapse
|
13
|
Lees K, Musgaard M, Suwanmanee S, Buckingham SD, Biggin P, Sattelle D. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes. PLoS One 2014; 9:e97468. [PMID: 24823815 PMCID: PMC4019635 DOI: 10.1371/journal.pone.0097468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/20/2014] [Indexed: 11/18/2022] Open
Abstract
Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides.
Collapse
Affiliation(s)
- Kristin Lees
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Siros Suwanmanee
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Steven David Buckingham
- Wolfson Institute for Biomedical Research, Department of Medicine, University College London, London, United Kingdom
| | - Philip Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Sattelle
- Wolfson Institute for Biomedical Research, Department of Medicine, University College London, London, United Kingdom
| |
Collapse
|
14
|
Gassel M, Wolf C, Noack S, Williams H, Ilg T. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:111-24. [PMID: 24365472 DOI: 10.1016/j.ibmb.2013.11.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/13/2023]
Abstract
Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.
Collapse
Affiliation(s)
- Michael Gassel
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Christian Wolf
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Sandra Noack
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Heike Williams
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Thomas Ilg
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany.
| |
Collapse
|
15
|
Kita T, Ozoe F, Ozoe Y. Expression pattern and function of alternative splice variants of glutamate-gated chloride channel in the housefly Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:1-10. [PMID: 24291284 DOI: 10.1016/j.ibmb.2013.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. cDNAs encoding two alternative splice variants (MdGluClB and C) of the GluCl subunit were cloned from the housefly Musca domestica. The expression patterns of three variants, including the previously reported MdGluClA, differed among the body parts (head, thorax, abdomen, and leg) of the adult housefly and among developmental stages (embryo, larva, pupa, and adult). The MdGluClA and B transcripts were abundant in the central nervous system of the adult, whereas the MdGluClC transcript was expressed in the central nervous system and as the predominant variant in the peripheral tissues. The sensitivities to the agonist glutamate and the allosteric activator ivermectin B1a did not differ between channels containing MdGluCl variants when they were singly or co-expressed in Xenopus oocytes. By contrast, MdGluClA and B channels were more sensitive to the channel blockers fipronil and picrotoxinin than was MdGluClC channels. Heteromeric channels containing different subunit variants were more sensitive to picrotoxinin than were homomeric channels. Heteromeric channels were more sensitive to fipronil than were homomeric MdGluClC channels but not than homomeric MdGluClA and B channels. These results suggest that functionally indistinguishable but pharmacologically distinct GluCls are expressed in a spatially and temporally distinct manner in the housefly.
Collapse
Affiliation(s)
- Tomo Kita
- Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
16
|
Chikova A, Grando SA. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation. PLoS One 2011; 6:e27978. [PMID: 22125646 PMCID: PMC3220719 DOI: 10.1371/journal.pone.0027978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/28/2011] [Indexed: 02/06/2023] Open
Abstract
Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.
Collapse
Affiliation(s)
- Anna Chikova
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
- The D.I. Ivanovsky Institute of Virology of The Ministry of Health of The Russian Federation, Moscow, Russia
| | - Sergei A. Grando
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
- Cancer Center and Research Institute, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Two amino acid residues contribute to a cation-π binding interaction in the binding site of an insect GABA receptor. J Neurosci 2011; 31:12371-6. [PMID: 21865479 DOI: 10.1523/jneurosci.1610-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cys-loop receptor binding sites characteristically possess an "aromatic box," where several aromatic amino acid residues surround the bound ligand. A cation-π interaction between one of these residues and the natural agonist is common, although the residue type and location are not conserved. Even in the closely related vertebrate GABA(A) and GABA(C) receptors, residues in distinct locations perform this role: in GABA(A) receptors, a Tyr residue in loop A forms a cation-π interaction with GABA, while in GABA(C) receptors it is a loop B residue. GABA-activated Cys-loop receptors also exist in invertebrates, where they have distinct pharmacologies and are the target of a range of pesticides. Here we examine the location of GABA in an insect binding site by incorporating a series of fluorinated Phe derivatives into the receptor binding pocket using unnatural amino acid mutagenesis, and evaluating the resulting receptors when expressed in Xenopus oocytes. A homology model suggests that two aromatic residues (in loops B and C) are positioned such that they could contribute to a cation-π interaction with the primary ammonium of GABA, and the data reveal a clear correlation between the GABA EC(50) and the cation-π binding ability both at Phe206 (loop B) and Tyr254 (loop C), demonstrating for the first time the contribution of two aromatic residues to a cation-π interaction in a Cys-loop receptor.
Collapse
|
18
|
Nakao T, Kawase A, Kinoshita A, Abe R, Hama M, Kawahara N, Hirase K. The A2'N mutation of the RDL gamma-aminobutyric acid receptor conferring fipronil resistance in Laodelphax striatellus (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:646-652. [PMID: 21510217 DOI: 10.1603/ec10391] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) is a serious insect pest of rice, Oryza sativa L., and has developed resistance to fipronil in Japan. Sequence analysis of L. striatellus RDL gamma-aminobutyric acid (GABA) receptor subunit (LS-RDL) genes from a fipronil-resistant population and a fipronil-susceptible strain identified the A2'N mutation (index number for M2 membrane-spanning region), that was previously implicated in fipronil resistance in the planthopper Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Nineteen of 21 fipronil-resistant L. striatellus individuals were genotyped as heterozygous for the A2'N mutation, suggesting that this mutation is associated with fipronil resistance and that most fipronil-resistant L. striatellus express wild-type and A2'N mutant LS-RDL simultaneously. To confirm the role of the A2'N mutation of LS-RDL, Drosophila Mel-2 cells were transfected with wild-type and A2'N mutant LS-RDL genes, either individually or together. A membrane potential assay showed that fipronil had no inhibitory effect at 10 microM on cells transfected with the A2'N mutant LS-RDL gene with or without the wild-type LS-RDL gene. By contrast, the IC50 value of fipronil for wild-type LS-RDL homomers was 14 nM. These results suggest that the A2'N mutation of the RDL GABA receptor subunit confers fipronil resistance in L. striatellus as well as S. furcifera.
Collapse
Affiliation(s)
- Toshifumi Nakao
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., Mobara, Chiba 297-0017, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
McGonigle I, Lummis SCR. Molecular characterization of agonists that bind to an insect GABA receptor. Biochemistry 2010; 49:2897-902. [PMID: 20180551 PMCID: PMC2852148 DOI: 10.1021/bi901698c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ionotropic GABA receptors are widely distributed throughout the vertebrate and invertebrate central nervous system (CNS) where they mediate inhibitory neurotransmission. One of the most widely studied insect GABA receptors is constructed from RDL (resistance to dieldrin) subunits from Drosophila melanogaster. The aim of this study was to determine critical features of agonists binding to RDL receptors using in silico and experimental data. Partial atomic charges and dipole separation distances of a range of GABA analogues were calculated, and the potency of the analogues was determined using RDL receptors expressed in Xenopus oocytes. These data revealed functional agonists require an ammonium group and an acidic group with an optimum separation distance of ∼5 Å. To determine how the agonists bind to the receptor, a homology model of the extracellular domain was generated and agonists were docked into the binding site. The docking studies support the requirements for functional agonists and also revealed a range of potential interactions with binding site residues, including hydrogen bonds and cation−π interactions. We conclude that the model and docking procedures yield a good model of the insect GABA receptor binding site and the location of agonists within it.
Collapse
Affiliation(s)
- Ian McGonigle
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
20
|
Dale RP, Jones AK, Tamborindeguy C, Davies TGE, Amey JS, Williamson S, Wolstenholme A, Field LM, Williamson MS, Walsh TK, Sattelle DB. Identification of ion channel genes in the Acyrthosiphon pisum genome. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:141-53. [PMID: 20482646 DOI: 10.1111/j.1365-2583.2009.00975.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aphids are major pests of crops, causing hundreds of millions of dollars worth of damage annually. Ion channel proteins are often the targets of modern insecticides and mutations in ion channel genes can lead to resistance to many leading classes of insecticides. The sequencing of the pea aphid, Acyrthosiphon pisum, genome has now allowed detailed in silico analysis of the aphid ion channels. The study has revealed significant differences in the composition of the ion channel families between the aphid and other insects. For example A. pisum does not appear to contain a homologue of the nACh receptor alpha 5 gene whilst the calcium channel beta subunit has been duplicated. These variations could result in differences in function or sensitivity to insecticides. The genome sequence will allow the study of aphid ion channels to be accelerated, leading to a better understanding of the function of these economically important channels. The potential for identifying novel insecticide targets within the aphid is now a step closer.
Collapse
Affiliation(s)
- R P Dale
- Syngenta, Jealotts Hill Research Centre, Bracknell, Berkshire, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
RDL receptors are invertebrate members of the Cys-loop family of ligand-gated ion channels. They are GABA (gamma-aminobutyric acid)-activated chloride-selective receptors that are closely related to their vertebrate orthologues, the GABA(A) receptors, as well as other Cys-loop receptors such as the ionotropic glycine, nicotinic acetylcholine and 5-HT(3) receptors. RDL receptors are widely expressed throughout the insect CNS (central nervous system) and are important in inhibitory neurotransmission. They are therefore a major insecticidal target site.
Collapse
|
22
|
Buckingham SD, Higashino Y, Sattelle DB. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone. INVERTEBRATE NEUROSCIENCE 2009; 9:85-9. [PMID: 19847463 DOI: 10.1007/s10158-009-0091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/18/2009] [Indexed: 02/05/2023]
Abstract
The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.
Collapse
Affiliation(s)
- Steven D Buckingham
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
23
|
Splice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency. J Neurosci 2009; 29:4287-92. [PMID: 19339622 DOI: 10.1523/jneurosci.5251-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular diversity of many gene products functioning in the nervous system is enhanced by alternative splicing and adenosine-to-inosine editing of pre-mRNA. Using RDL, a Drosophila melanogaster GABA-gated ion channel, we examined the functional impact of RNA editing at several sites along with alternative splicing of more than one exon. We show that alternative splicing and RNA editing have a combined influence on the potency of the neurotransmitter GABA, and the editing isoforms detected in vivo span the entire functional range of potencies seen for all possible edit variants expressed in Xenopus laevis oocytes. The extent of RNA editing is developmentally regulated and can also be linked to the choice of alternative exons. These results provide insights into how the rich diversity of signaling necessary for complex brain function can be achieved by relatively few genes.
Collapse
|
24
|
RNA editing regulates insect gamma-aminobutyric acid receptor function and insecticide sensitivity. Neuroreport 2008; 19:939-43. [PMID: 18520997 DOI: 10.1097/wnr.0b013e32830216c7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A-to-I pre-mRNA editing by adenosine deaminase enzymes has been reported to enhance protein diversity in the nervous system. In Drosophila, the resistance to dieldrin (RDL) gamma-aminobutyric acid (GABA) receptor subunit displays an editing site (R122) that is close to the putative GABA-binding site. We assessed the functional effects of editing at this site by expressing homomeric RDL receptors in Xenopus oocytes. After replacement of arginine 122 with a glycine, both agonist and fipronil potencies were shifted to the right in either fipronil-sensitive receptors or mutated resistant receptors (A301G/T350M). These data provide the first insight on the influence of RNA editing on GABA receptor function.
Collapse
|
25
|
GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron 2008; 56:1090-102. [PMID: 18093529 DOI: 10.1016/j.neuron.2007.10.036] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/27/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022]
Abstract
In both mammals and insects, neurons involved in learning are strongly modulated by the inhibitory neurotransmitter GABA. The GABAA receptor, resistance to dieldrin (Rdl), is highly expressed in the Drosophila mushroom bodies (MBs), a group of neurons playing essential roles in insect olfactory learning. Flies with increased or decreased expression of Rdl in the MBs were generated. Olfactory associative learning tests showed that Rdl overexpression impaired memory acquisition but not memory stability. This learning defect was due to disrupting the physiological state of the adult MB neurons rather than causing developmental abnormalities. Remarkably, Rdl knockdown enhanced memory acquisition but not memory stability. Functional cellular imaging experiments showed that Rdl overexpression abolished the normal calcium responses of the MBs to odors while Rdl knockdown increased these responses. Together, these data suggest that RDL negatively modulates olfactory associative learning, possibly by gating the input of olfactory information into the MBs.
Collapse
|
26
|
An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:329-40. [DOI: 10.1007/s00359-007-0308-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|
27
|
Narusuye K, Nakao T, Abe R, Nagatomi Y, Hirase K, Ozoe Y. Molecular cloning of a GABA receptor subunit from Laodelphax striatella (Fallén) and patch clamp analysis of the homo-oligomeric receptors expressed in a Drosophila cell line. INSECT MOLECULAR BIOLOGY 2007; 16:723-733. [PMID: 18093001 DOI: 10.1111/j.1365-2583.2007.00766.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A cDNA encoding a gamma-aminobutyric acid (GABA) receptor subunit was cloned from the small brown planthopper Laodelphax striatella. The L. striatella GABA receptor subunit was found to have high amino acid sequence similarity to the bd-type splice variant of the Drosophila GABA receptor Rdl subunit and several other GABA receptor subunits, with identities of over 70%. The cDNA was inserted into the expression vector pAc5.1-lac-Hygro. Clonal cell lines stably expressing homo-oligomeric L. striatella GABA receptors were generated by transfecting the vector into D.mel-2 cells. Expression of functional GABA receptors in the cell lines was demonstrated by whole-cell patch clamp recordings. GABA induced inward currents with an EC(50) value of 29 microM and a Hill coefficient of 1.7. The GABA-evoked responses reversed close to the Nernst equilibrium potential for chloride ions. The amplitudes of agonist-induced currents were found to be in the order muscimol (100 microM) >/= GABA (100 microM) > isoguvacine (100 microM) > cis-4-aminocrotonic acid (CACA) (100 microM) > 5-(4-piperidyl)-3-isoxazolol (4-PIOL) (1 mM). Antagonists such as fipronil (100 nM), 4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) (100 nM), dieldrin (100 nM) and SR95531 (gabazine) (1 microM) suppressed GABA-induced currents. The functional expression of a GABA receptor from an agricultural pest presents a unique opportunity to discover new molecules active at this important target site.
Collapse
Affiliation(s)
- K Narusuye
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 2007; 8:327. [PMID: 17880682 PMCID: PMC2064938 DOI: 10.1186/1471-2164-8-327] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/19/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate chemical neurotransmission and are studied extensively as potential targets of drugs used to treat neurological disorders such as Alzheimer's disease. Insect cys-loop LGICs are also of interest as they are targets of highly successful insecticides. The red flour beetle, Tribolium castaneum, is a major pest of stored agricultural products and is also an important model organism for studying development. RESULTS As part of the T. castaneum genome sequencing effort, we have characterized the beetle cys-loop LGIC superfamily which is the third insect superfamily to be described after those of Drosophila melanogaster and Apis mellifera, and also the largest consisting of 24 genes. As with Drosophila and Apis, Tribolium possesses ion channels gated by acetylcholine, gamma-amino butyric acid (GABA), glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel subunit (pHCl), CG8916 and CG12344. Similar to Drosophila and Apis, Tribolium cys-loop LGIC diversity is broadened by alternative splicing although the beetle orthologs of RDL and GluCl possess more variants of exon 3. Also, RNA A-to-I editing was observed in two Tribolium nicotinic acetylcholine receptor subunits, Tcasalpha6 and Tcasbeta1. Editing in Tcasalpha6 is evolutionarily conserved with D. melanogaster, A. mellifera and Heliothis virescens, whereas Tcasbeta1 is edited at a site so far only observed in the beetle. CONCLUSION Our findings reveal that in diverse insect species the cys-loop LGIC superfamily has remained compact with only minor changes in gene numbers. However, alternative splicing, RNA editing and the presence of divergent subunits broadens the cys-loop LGIC proteome and generates species-specific receptor isoforms. These findings on Tribolium castaneum enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that target an important agricultural pest.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, The Sherrington Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - David B Sattelle
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, The Sherrington Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
29
|
Eguchi Y, Ihara M, Ochi E, Shibata Y, Matsuda K, Fushiki S, Sugama H, Hamasaki Y, Niwa H, Wada M, Ozoe F, Ozoe Y. Functional characterization of Musca glutamate- and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes. INSECT MOLECULAR BIOLOGY 2006; 15:773-83. [PMID: 17201770 DOI: 10.1111/j.1365-2583.2006.00680.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ligand-gated chloride channels (LGICs) are important targets for insecticides and parasiticides. Genes encoding subunits of two LGICs, a glutamate-gated chloride channel (MdGluCl-alpha) and a gamma-aminobutyric acid (GABA)-gated chloride channel (MdRdl), were cloned from house-flies (Musca domestica L.). These genes were first expressed independently in Xenopus laevis oocytes by cRNA injection in order to investigate the pharmacology of these ligand-gated channels using two-electrode voltage-clamp electrophysiology. It was found that L-glutamate and GABA activated the MdGluCl-alpha homo-oligomers with an EC(50) value of 30 microM and the MdRdl homo-oligomers with an EC(50) value of 101 microM, respectively. Both channels were chloride ion-permeable, and the MdRdl channel was more sensitive to chloride channel blockers, such as gamma-hexachlorocyclohexane (gamma-HCH), fipronil and picrotoxinin, than the MdGluCl-alpha channel. MdGluCl-alpha required only 1-2 days of incubation after cRNA injection to be expressed in oocytes, whereas 4-7 days of incubation was necessary to achieve MdRdl expression. However, when the cRNA of MdGluCl-alpha was injected at a dose of 1% (w/w) 1 day after the injection of the cRNA of MdRdl, a significant increase in the current amplitude of responses to GABA was observed, and the incubation period necessary for MdRdl expression became shorter. These results suggest that MdGluCl-alpha assists in the expression of MdRdl when the two are coexpressed.
Collapse
Affiliation(s)
- Y Eguchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The inhibitory ligand-gated ion channel family of receptors, including the type A gamma-aminobutryic acid (GABA(A)) and glycine receptors, mediates inhibitory neurotransmissions in the central nervous system. In this study, GABA receptor (GABR) evolution was explored through comparative genomics using genomes that span divergent lineages. GABA(A)/Gly receptor-like (GRL) gene sequences were retrieved from the genomes of various species ranging from mammal to fish to worm and subjected to cross-species comparison. All vertebrate GRL gene sets in the study but no invertebrate ones exhibit the extensive and conserved pattern of gene clustering that is characteristic of human GABR genes, indicating that the gene clusters were established early in vertebrate evolution, after divergence from the invertebrates. Moreover, the vertebrate gene structure is highly conserved with a basic 9-coding exon structure, whereas, as well as being diverse in copy numbers and chromosomal loci, the invertebrate GRL genes display a variety of gene structures. Remarkably, the invertebrates each possess a unique GRL gene pair that lies in neighboring loci within their respective genomes: zc482.5 and zc482.1 in roundworm, CG8916 and CG17336 in fruitfly, Ci4249 and Ci4254 in Ciona, and these were revealed by phylogenetic analysis to be homologous to human GABR alpha and beta subunits, respectively. The phylogenetic classification of these genes is also corroborated by experimental ligand-binding measurements using recombinant gene products. Furthermore, the 3 invertebrate gene pairs harbor characteristic key residues and exhibit similarities in intron positions to their vertebrate counterparts. The results strongly indicate that such a gene pair originally existed in the bilaterian ancestor from which all 3 phyla evolved and suggest that the extant GABR clusters arose from an ancestral alpha-beta subunit gene pair gave rise to the extant GABR clusters.
Collapse
Affiliation(s)
- Shui-Ying Tsang
- Department of Biochemistry and Applied Genomics Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
31
|
Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. INVERTEBRATE NEUROSCIENCE 2006; 6:123-32. [PMID: 16902773 DOI: 10.1007/s10158-006-0026-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, gamma-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | | |
Collapse
|
32
|
Buckingham SD, Pym L, Sattelle DB. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol Biol 2006; 322:331-45. [PMID: 16739734 DOI: 10.1007/978-1-59745-000-3_23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Xenopus laevis oocyte offers one of the most convenient expression systems for assaying the actions of candidate ligands on cloned ionotropic neurotransmitter receptors (also known as ligand-gated ion channels [LGICs]). Their large size makes injection of complementary ribonucleic acid or complementary deoxyribonucleic acid and electrophysiological recording very easy. Furthermore, Xenopus oocytes translate messages very efficiently, resulting in the detection of large-amplitude ligand-induced currents from expressed, recombinant LGICs. Compared to other electrophysiological techniques, recording from oocytes is not difficult and requires only a basic electrophysiological recording setup. Oocytes can be used for two-electrode voltage clamp, as well as cell-attached patch and inside- or outside-out patch clamp recordings. A variety of protocols allows the experimenter to determine the actions of ligands on cloned receptors and parameters, such as their affinity, efficacy, rates of association and desensitization, and reversibility, to be estimated. Here, we present protocols for using Xenopus oocytes in assaying candidate ligands acting against cloned targets of drugs and pesticides.
Collapse
|
33
|
Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB. Ion channels: molecular targets of neuroactive insecticides. INVERTEBRATE NEUROSCIENCE 2005; 5:119-33. [PMID: 16172884 DOI: 10.1007/s10158-005-0004-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.
Collapse
Affiliation(s)
- Valérie Raymond-Delpech
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | | | |
Collapse
|
34
|
Le Goff G, Hamon A, Bergé JB, Amichot M. Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 2005; 92:1295-305. [PMID: 15748149 DOI: 10.1111/j.1471-4159.2004.02922.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Eyguieres 42 strain of Drosophila simulans, obtained by laboratory selection, displayed approximately 20,000-fold resistance to the insecticide fipronil. Molecular cloning of the cDNA encoding the RDL GABA receptor subunit of this strain revealed the presence of two mutations: the Rdl mutation (A301G) and an additional mutation in the third transmembrane domain (T350M). In order to assess the individual and combined roles of the two mutations in fipronil resistance, the functional properties of wild-type, A301G, T350M and A301G/T350M homomultimeric RDL receptors were compared by expression in Xenopus oocytes. In wild-type receptors, the inhibition of GABA (EC(30))-induced currents by fipronil and picrotoxin was enhanced by repeated GABA applications. The A301G mutation nearly abolished this effect, decreased the sensitivity to fipronil and picrotoxin and increased the reversibility of inhibition. The T350M mutation also reduced the sensitivity to both antagonists. Of the four receptor variants tested, the double mutant showed the highest resistance to fipronil, following repeated GABA applications. In conclusion, the present study emphasizes new aspects of the pharmacological alterations induced by the Rdl mutation and shows that resistance to GABA receptor-directed insecticides may implicate a mutation distinct from Rdl.
Collapse
Affiliation(s)
- Gaëlle Le Goff
- UMR 1112, INRA-Université de Nice-Sophia Antipolis, Sophia-Antipolis, France
| | | | | | | |
Collapse
|
35
|
Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC. Edit, cut and paste in the nicotinic acetylcholine receptor gene family ofDrosophila melanogaster. Bioessays 2005; 27:366-76. [PMID: 15770687 DOI: 10.1002/bies.20207] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A-to-I pre-mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dalpha6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three-dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function.
Collapse
Affiliation(s)
- D B Sattelle
- MRC Functional Genetics Unit, Department of Human Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Farooqui T, Vaessin H, Smith BH. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:701-713. [PMID: 15288204 DOI: 10.1016/j.jinsphys.2004.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/28/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
Octopamine plays important neuromodulatory roles in the honeybee brain. Accordingly, mRNA from a recently identified honeybee octopamine receptor (AmOA1) is distributed throughout the brain. We have evaluated the occurrence of AmOA1 in the antennal lobe (AL) as well as rest of the brain (RB) by western blotting using an antiserum raised against a peptide selected from AmOA1 sequence. In addition to an expected band (78 kDa in the AL), one additional band (72 kDa) was identified from the AL and four bands (48, 60, 72 and 78 kDa) were observed in the RB. These bands were also recognized with antiserum against a different peptide segment from an octopamine receptor ortholog from the fruitfly (OAMB). Significant sequence identity with the peptide segment used to generate the antiserum was only found with OAMB and its splice variants in fruitfly; it was less conserved in other biogenic amine receptors from honeybee and other insects. Furthermore, western blot analysis performed on brains with dsRNA-treated antennal lobes showed a decrease in the intensity of all four bands. This suggests that AmOA1 antiserum specifically recognizes one or more types of AmOA1 receptors in the honeybee brain. We extend our earlier study of RNAi to quantify the rate of spread of dsRNA from a localized injection to other neuropils.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Avenue Columbus, OH 43210-1220, USA.
| | | | | |
Collapse
|
37
|
Abstract
In Drosophila melanogaster and humans, members of three different ion-channel gene families share tandem exon duplications, which are alternatively spliced. In this article, I demonstrate that the duplication events that give rise to these mutually exclusive exons are unlikely to be ancestral but have probably occurred independently in different lineages. These events provide remarkable examples of evolutionary convergence in alternative splicing. The result has important implications for the analysis of regulation of alternative splicing using comparative genomics and our understanding of molecular evolution.
Collapse
|
38
|
Abstract
Processing of olfactory information in the antennal lobes of insects and olfactory bulbs of vertebrates is modulated by centrifugal inputs that represent reinforcing events. Octopamine release by one such pathway in the honeybee antennal lobe modulates olfactory processing in relation to nectar (sucrose) reinforcement. To test more specifically what role octopamine plays in the antennal lobe, we used two treatments to disrupt an octopamine receptor from Apis mellifera brain (AmOAR) function: (1) an OAR antagonist, mianserin, was used to block receptor function, and (2) AmOAR double-stranded RNA was used to silence receptor expression. Both treatments inhibited olfactory acquisition and recall, but they did not disrupt odor discrimination. These results suggest that octopamine mediates consolidation of a component of olfactory memory at this early processing stage in the antennal lobe. Furthermore, after consolidation, octopamine release becomes essential for recall, which suggests that the modulatory circuits become incorporated as essential components of neural representations that activate odor memory.
Collapse
|
39
|
Panek I, French AS, Seyfarth EA, Sekizawa SI, Torkkeli PH. Peripheral GABAergic inhibition of spider mechanosensory afferents. Eur J Neurosci 2002; 16:96-104. [PMID: 12153534 DOI: 10.1046/j.1460-9568.2002.02065.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spider mechanosensory neurons receive an extensive network of efferent synapses onto their sensory dendrites, somata and distal axonal regions. The function of these synapses is unknown. Peripheral synapses are also found on crustacean stretch-receptor neurons but not on mechanosensory afferents of other species, although inhibitory GABAergic synapses are a common feature of centrally located axon terminals. Here we investigated the effects of GABA receptor agonists and antagonists on one group of spider mechanosensory neurons, the slit sense organ VS-3, which are accessible to current- and voltage-clamp recordings. Bath application of GABA activated an inward current that depolarized the membrane and increased the membrane conductance leading to impulse inhibition. VS-3 neuron GABA receptors were activated by muscimol and inhibited by picrotoxin but not bicuculline, and their dose-response relationship had an EC(50) of 103.4 microm, features typical for insect ionotropic GABA receptors. Voltage- and current-clamp analysis confirmed that, while the Na(+) channel inhibition resulting from depolarization can lead to impulse inhibition, the increase in membrane conductance (i.e. 'shunting') completely inhibited impulse propagation. This result argues against previous findings from other preparations that GABA-mediated inhibition is caused by a depolarization that inactivates Na(+) conductance, and it supports those findings that assign this role to membrane shunting. Our results show that GABA can rapidly and selectively inhibit specific mechanoreceptors in the periphery. This type of peripheral inhibition may provide spiders with a mechanism for distinguishing between signals from potential prey, predators or mates, and responding with appropriate behaviour to each signal.
Collapse
Affiliation(s)
- Izabela Panek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | | | | | | | |
Collapse
|
40
|
Raymond V, Sattelle DB. Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 2002; 1:427-36. [PMID: 12119744 DOI: 10.1038/nrd821] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The world's three best-selling veterinary antiparasitic drugs ('parasiticides') act on ligand-gated ion channels. The sequencing of the complete genomes of the invertebrate genetic model organisms Caenorhabditis elegans and Drosophila melanogaster has led to the recent cloning of new subunits of 5-hydroxytryptamine-gated and histamine-gated chloride channels. Together with L-glutamate-gated chloride channels, which are important targets of known parasiticides, and acetylcholine-gated chloride channels, these new classes of ligand-gated chloride channels, which are known only from invertebrates, add to our understanding of inhibitory neural signalling. They could offer the prospect of being targets for a new generation of selective drugs to control nematode and insect parasites.
Collapse
Affiliation(s)
- Valérie Raymond
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|