1
|
Sanoja R, Taepavarapruk N, Benda E, Tadavarty R, Soja PJ. Enhanced excitability of thalamic sensory neurons and slow-wave EEG pattern after stimuli that induce spinal long-term potentiation. J Neurosci 2013; 33:15109-19. [PMID: 24048841 PMCID: PMC6618413 DOI: 10.1523/jneurosci.2110-13.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/24/2013] [Accepted: 08/13/2013] [Indexed: 11/21/2022] Open
Abstract
Spinal nociceptive neurons are well known to undergo a process of long-term potentiation (LTP) following conditioning by high-frequency sciatic nerve stimulation (HFS) at intensities recruiting C-fibers. However, little if any information exists as to whether such HFS conditioning that produces spinal LTP affects sensory transmission at supraspinal levels. The present study explored this possibility. Conventional extracellular recording methods were used to examine the consequences of HFS versus sham HFS conditioning on individual wide-dynamic range thalamic neurons located in the ventro-postero-lateral (VPL) nucleus in isoflurane-anesthetized rats. Following HFS, the ongoing firing rate and stimulus-evoked (brush, pinch, sciatic nerve) responses were markedly enhanced as were responses to juxtacellular, microiontophoretic applications of glutamate. These HFS-induced enhancements lasted throughout the recording period. Sham stimuli had no effect on VPL neuron excitability. Cortical electroencephalographic (EEG) wave activities were also measured around HFS in conjunction with VPL neuron recordings. The cortical EEG pattern under baseline conditions consisted of recurring short duration bursts of high-amplitude slow waves followed by longer periods of flat EEG. Following HFS, the EEG shifted to a continuous large-amplitude, slow-wave pattern within the 0.5-8.0 Hz bandwidth lasting throughout the recording period. Sham HFS did not alter EEG activity. Sciatic nerve conditioning at A-δ fiber strength, known to reverse spinal LTP, did not alter enhanced neuronal excitability or the EEG slow-wave pattern induced by HFS. These data support the concept that HFS conditioning of the sciatic nerve, which leads to spinal LTP, is associated with distinct, long-lasting changes in the excitability of neurons comprising thalamocortical networks.
Collapse
Affiliation(s)
- Raul Sanoja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Niwat Taepavarapruk
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Elke Benda
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Ramakrishna Tadavarty
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Peter J. Soja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| |
Collapse
|
2
|
Stettner GM, Lei Y, Benincasa Herr K, Kubin L. Evidence that adrenergic ventrolateral medullary cells are activated whereas precerebellar lateral reticular nucleus neurons are suppressed during REM sleep. PLoS One 2013; 8:e62410. [PMID: 23630631 PMCID: PMC3632524 DOI: 10.1371/journal.pone.0062410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023] Open
Abstract
Rapid eye movement sleep (REMS) is generated in the brainstem by a distributed network of neurochemically distinct neurons. In the pons, the main subtypes are cholinergic and glutamatergic REMS-on cells and aminergic REMS-off cells. Pontine REMS-on cells send axons to the ventrolateral medulla (VLM), but little is known about REMS-related activity of VLM cells. In urethane-anesthetized rats, dorsomedial pontine injections of carbachol trigger REMS-like episodes that include cortical and hippocampal activation and suppression of motoneuronal activity; the episodes last 4–8 min and can be elicited repeatedly. We used this model to determine whether VLM catecholaminergic cells are silenced during REMS, as is typical of most aminergic neurons studied to date, and to investigate other REMS-related cells in this region. In 18 anesthetized, paralyzed and artificially ventilated rats, we obtained extracellular recordings from VLM cells when REMS-like episodes were elicited by pontine carbachol injections (10 mM, 10 nl). One major group were the cells that were activated during the episodes (n = 10). Their baseline firing rate of 3.7±2.1 (SD) Hz increased to 9.7±2.1 Hz. Most were found in the adrenergic C1 region and at sites located less than 50 µm from dopamine β-hydroxylase-positive (DBH+) neurons. Another major group were the silenced or suppressed cells (n = 35). Most were localized in the lateral reticular nucleus (LRN) and distantly from any DBH+ cells. Their baseline firing rates were 6.8±4.4 Hz and 15.8±7.1 Hz, respectively, with the activity of the latter reduced to 7.4±3.8 Hz. We conclude that, in contrast to the pontine noradrenergic cells that are silenced during REMS, medullary adrenergic C1 neurons, many of which drive the sympathetic output, are activated. Our data also show that afferent input transmitted to the cerebellum through the LRN is attenuated during REMS. This may distort the spatial representation of body position during REMS.
Collapse
Affiliation(s)
- Georg M. Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanlin Lei
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kate Benincasa Herr
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Affiliation(s)
- Carol A Landis
- Department of Biobehavioral Nursing and Health System, University of Washington, Seatle, WA 98195-7266, USA.
| |
Collapse
|
4
|
|
5
|
Taepavarapruk N, Taepavarapruk P, John J, Lai YY, Siegel JM, Phillips AG, McErlane SA, Soja PJ. State-dependent changes in glutamate, glycine, GABA, and dopamine levels in cat lumbar spinal cord. J Neurophysiol 2008; 100:598-608. [PMID: 18353913 DOI: 10.1152/jn.01231.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have indicated that the glycine receptor antagonist strychnine and the gamma-aminobutyric acid type A (GABA A) receptor antagonist bicuculline reduced the rapid-eye-movement (REM) sleep-specific inhibition of sensory inflow via the dorsal spinocerebellar tract (DSCT). These findings imply that the spinal release of glycine and GABA may be due directly to the REM sleep-specific activation of reticulospinal neurons and/or glutamate-activated last-order spinal interneurons. This study used in vivo microdialysis and high-performance liquid chromatography analysis techniques to provide evidence for these possibilities. Microdialysis probes were stereotaxically positioned in the L3 spinal cord gray matter corresponding to sites where maximal cerebellar-evoked field potentials or individual DSCT and nearby spinoreticular tract (SRT) neurons could be recorded. Glutamate, glycine, and GABA levels significantly increased during REM sleep by approximately 48, 48, and 14%, respectively, compared with the control state of wakefulness. In contrast, dopamine levels significantly decreased by about 28% during REM sleep compared with wakefulness. During the state of wakefulness, electrical stimulation of the nucleus reticularis gigantocellularis (NRGc) at intensities sufficient to inhibit DSCT neuron activity, also significantly increased glutamate and glycine levels by about 69 and 45%, respectively, but not GABA or dopamine levels. We suggest that the reciprocal changes in the release of glutamate, glycine, and GABA versus dopamine during REM sleep contribute to the reduction of sensory inflow to higher brain centers via the DSCT and nearby SRT during this behavioral state. The neural pathways involved in this process likely include reticulo- and diencephalospinal and spinal interneurons.
Collapse
Affiliation(s)
- N Taepavarapruk
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Morales FR, Sampogna S, Rampon C, Luppi PH, Chase MH. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat. Neuroscience 2006; 142:37-47. [PMID: 16891059 DOI: 10.1016/j.neuroscience.2006.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active sleep-selective inhibition of motoneurons that innervate the muscles of the larynx and pharynx.
Collapse
Affiliation(s)
- F R Morales
- WebSciences International, 1251 Westwood Boulevard, Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
7
|
Taepavarapruk N, McErlane SA, Chan A, Chow S, Fabian L, Soja PJ. State-Dependent GABAergic Inhibition of Sciatic Nerve-Evoked Responses of Dorsal Spinocerebellar Tract Neurons. J Neurophysiol 2004; 92:1479-90. [PMID: 15102903 DOI: 10.1152/jn.01108.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve-evoked potentials recorded in the cerebellum 35 yr ago inferred that sensory transmission via the dorsal spinocerebellar tract (DSCT) is reduced occasionally and only during eye movements of active sleep compared with wakefulness or quiet sleep. A reduction or withdrawal of primary afferent input and/or ongoing inhibition of individual lumbar DSCT neurons may underlie this occurrence. This study distinguished between these possibilities by examining whether peripheral nerve-evoked responses recorded from individual DSCT neurons are suppressed specifically during active sleep, and if so, whether GABA mediates this phenomenon. Synaptic responses to threshold stimuli applied to the sciatic nerve were characterized by a single spike response at short latency and/or a longer latency burst of action potentials. During the state of quiet wakefulness, response magnitude did not differ from that observed during quiet sleep. During active sleep, short and long latency responses were suppressed by 26 and 14%, respectively, and returned to pre-active sleep levels following awakening from active sleep. Sciatic nerve-evoked early and late responses were further analyzed in a paired fashion around computer-tagged eye movement events that hallmark the state of active sleep. Response magnitude was suppressed by 14.4 and 11.5%, respectively, during eye movement events of active sleep. The GABAA antagonist bicuculline, applied juxtacellularly by microiontophoresis, abolished response suppression during non–eye movement periods and eye movement events of active sleep. In conclusion, synaptic transmission via DSCT neurons is inhibited by GABA tonically during non–eye movement periods and phasically during eye movement events of active sleep.
Collapse
Affiliation(s)
- Niwat Taepavarapruk
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Cairns BE, Kiang T, McErlane SA, Fragoso MC, Soja PJ. Eye movement-related modulation of trigeminal neuron activity during active sleep and wakefulness. Brain Res 2003; 975:110-9. [PMID: 12763598 DOI: 10.1016/s0006-8993(03)02595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amplitude of electrically-evoked mass action potentials recorded in the spinal cord and brainstem has been reported to decrease only during eye movement events of active sleep. In contrast, we have reported that the response of trigeminal sensory neurons to peripheral stimuli is modulated throughout the behavioral state of active sleep. It is unclear whether eye movement events contribute to the modulation of trigeminal sensory neuron activity during active sleep. In the present study, eye movement events were demarcated in order to investigate how these events affect peripheral input to trigeminal sensory neurons in chronic, intact, behaving cats. When compared with wakefulness, the mean response of 45 trigeminal sensory neurons to low-intensity electrical stimulation of the canine tooth pulp was significantly suppressed by 28% during periods of active sleep where no eye movement activity was present and by 41% during periods of active sleep with eye movement events. Hence, during active sleep, tooth pulp-evoked responses were significantly decreased by 16% during eye movement events when compared with non-eye movement active sleep. To investigate whether presynaptic inhibition played a role in this phenomenon, the excitability of eight individual tooth pulp afferent terminals during eye movement periods was compared with non-eye movement periods of active sleep. No evidence of eye movement-related depolarization of tooth pulp terminals was detected. When compared to wakefulness, the responses of six trigeminal sensory neurons to air puff stimulation of facial hair mechanoreceptors were significantly increased by 96% during periods of active sleep where no eye movement activity was present but were significantly decreased by 15% during eye movement events when compared with non-eye movement active sleep. The results of the present study indicate that neuronal responses to both tooth pulp and facial hair mechanoreceptor stimulation are significantly attenuated during eye movement events of active sleep.
Collapse
Affiliation(s)
- Brian E Cairns
- Department of Anesthesia, Harvard Medical School/Children's Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
During the state of active sleep (AS), Clarke's column dorsal spinocerebellar tract (DSCT) neurons undergo a marked reduction in their spontaneous and excitatory amino acid (EAA)-evoked responses. The present study was performed to examine the magnitude, consistency of AS-specific suppression, and potential role of classical inhibitory amino acids GABA and glycine (GLY) in mediating this phenomenon. AS-specific suppression of DSCT neurons, expressed as the reduction in mean spontaneous firing rate during AS versus the preceding episode of wakefulness, was compared across three consecutive sleep cycles (SC), each consisting of wakefulness (W), AS, and awakening from AS (RW). Spontaneous spike rate did not differ during W or RW between SC1, SC2, and SC3. AS-specific suppression of spontaneous firing rate was found to be consistent and measured 40.3, 31.5, and 41.6% in SC1, SC2, and SC3, respectively, indicating that such inhibition is marked and stable for pharmacological analyses. Microiontophoretic experiments were performed in which the magnitude of AS-specific suppression of spontaneous spike activity was measured over three consecutive SCs: SC1-control (no drug), SC2-test (drug), and SC3-recovery (no drug). The magnitude of AS-specific suppression during SC2-test measured only 11.7 or 14.6% in the presence of GABA(A) antagonist bicuculline (BIC) or GLY antagonist strychnine (STY), respectively. Coadministration of BIC and STY abolished AS-specific suppression. AS-specific suppression of EAA-evoked DSCT spike activity was also abolished in SC2-test after BIC or STY, respectively. We conclude that GABA and GLY mediate behavioral state-specific inhibition of ascending sensory transmission via Clarke's column DSCT neurons.
Collapse
|