1
|
Krupa P, Siddiqui AM, Grahn PJ, Islam R, Chen BK, Madigan NN, Windebank AJ, Lavrov IA. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2020; 28:163-179. [PMID: 33089762 DOI: 10.1177/1073858420966276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.
Collapse
Affiliation(s)
- Petr Krupa
- Department of Neurosurgery, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
2
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
3
|
Han Q, Cao C, Ding Y, So KF, Wu W, Qu Y, Zhou L. Plasticity of motor network and function in the absence of corticospinal projection. Exp Neurol 2015; 267:194-208. [PMID: 25792481 DOI: 10.1016/j.expneurol.2015.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Despite the obvious clinical interest, our understanding of how developmental mechanisms are redeployed during degeneration and regeneration after brain and spinal cord injuries remains quite rudimentary. In animal models of spinal cord injury, although spontaneous regeneration of descending axons is limited, compensation by intact corticospinal axons, descending tracts from the brainstem, and local intrinsic spinal networks all contribute to the recovery of motor function. Here, we investigated spontaneous motor compensation and plasticity that occur in the absence of corticospinal tract, using Celsr3|Emx1 mice in which the corticospinal tract is completely and specifically absent as a consequence of Celsr3 inactivation in the cortex. Mutant mice had no paresis, but displayed hyperactivity in open-field, and a reduction in skilled movements in food pellet manipulation tests. The number of spinal motoneurons was reduced and their terminal arbors at neuromuscular junctions were atrophic, which was reflected in electromyography deficits. Rubrospinal projections, calretinin-positive propriospinal projections, afferent innervation of motoneurons by calretinin-positive segmental interneurons, and terminal ramifications of monoaminergic projections were significantly increased. Contrary to control animals, mutants also developed a severe and persistent disability of forelimb use following the section of the rubrospinal tract at the C4 spinal level. These observations demonstrate for the first time that the congenital absence of the corticospinal tract induces spontaneous plasticity, both at the level of the motor spinal cord and in descending monoaminergic and rubrospinal projections. Such compensatory mechanisms could be recruited in case of brain or spinal cord lesion or degeneration.
Collapse
Affiliation(s)
- Qi Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Changshu Cao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China
| | - Yuetong Ding
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China.
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China.
| |
Collapse
|
4
|
Liu J, Yang X, Jiang L, Wang C, Yang M. Neural plasticity after spinal cord injury. Neural Regen Res 2015; 7:386-91. [PMID: 25774179 PMCID: PMC4350123 DOI: 10.3969/j.issn.1673-5374.2012.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022] Open
Abstract
Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. The results showed that synaptic reorganization, axonal sprouting, and neurogenesis are critical factors for neural circuit reconstruction. Directed functional exercise, neurotrophic factor and transplantation of nerve-derived and non-nerve-derived tissues and cells can effectively ameliorate functional disturbances caused by spinal cord injury and improve quality of life for patients.
Collapse
Affiliation(s)
- Jian Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Lianying Jiang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
5
|
Fan J, Xiao Z, Zhang H, Chen B, Tang G, Hou X, Ding W, Wang B, Zhang P, Dai J, Xu R. Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3 promote axonal regeneration and partial functional recovery after complete spinal cord transection. J Neurotrauma 2011; 27:1671-83. [PMID: 20597688 DOI: 10.1089/neu.2010.1281] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotrophin-3 (NT3) is an important neurotrophic factor for spinal cord injury (SCI) repair. However, constant exchange of cerebrospinal fluid often decreases the effective dosage of NT3 at the targeted injury site. In the present study, a recombinant collagen-binding NT3 (CBD-NT3), consisting of a collagen-binding domain (CBD) and native NT3, was constructed. Linear rat-tail collagen (LRTC) was used as a physical carrier for CBD-NT3 to construct a LRTC/C3 system. The collagen-binding ability of CBD-NT3 was verified, and the bioactivity of CBD-NT3 was assayed with neurite outgrowth of dorsal root ganglia (DRG) explants and DRG cells in vitro. After complete spinal cord transection in rats, LRTC/CBD-NT3 or the LRTC/NT3 system was transplanted into the injury site. Hindlimb locomotion recovery was closely observed using the Basso-Beattie-Bresnahan (BBB) locomotor rating scale and the grid walk test. Significant improvement was observed in the LRTC/CBD-NT3 group. The results of regenerating nerve fiber and anterograde tracing of biotinylated dextran amine (BDA)-labeled corticospinal tract (CST) fibers demonstrated axonal regeneration of LRTC/CBD-NT3 in the injured spinal cord. Serotonin fiber regrowth also illustrated the effectiveness of LRTC/CBD-NT3. Thus, collagen-binding NT3 with LRTC may provide an effective method for treating SCI.
Collapse
Affiliation(s)
- Juan Fan
- Department of Neurosurgery, Beijing Military General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fan J, Zhang H, He J, Xiao Z, Chen B, Xiaodan J, Dai J, Xu R. Neural regrowth induced by PLGA nerve conduits and neurotrophin-3 in rats with complete spinal cord transection. J Biomed Mater Res B Appl Biomater 2011; 97:271-7. [DOI: 10.1002/jbm.b.31810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 11/09/2022]
|
7
|
Hossain WA, D'Sa C, Morest DK. Interactive roles of fibroblast growth factor 2 and neurotrophin 3 in the sequence of migration, process outgrowth, and axonal differentiation of mouse cochlear ganglion cells. J Neurosci Res 2008; 86:2376-91. [PMID: 18438927 DOI: 10.1002/jnr.21685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A growth factor may have different actions depending on developmental stage. We investigated this phenomenon in the interactions of fibroblast growth factor 2 (FGF2) and neurotrophins on cochlear ganglion (CG) development. The portions of the otocyst fated to form the CG and cochlear epithelium were cocultured at embryonic day 11 (E11). Cultures were divided into groups fed with defined medium, with or without FGF2 and neurotrophin supplements, alone or in combination, for 7 days. We measured the number of migrating neuroblasts and distances migrated, neurite outgrowth, and axonlike processes. We used immunohistochemistry to locate neurotrophin 3 (NT3) and its high-affinity receptor (TrkC) in the auditory system, along with FGF2 and its R1 receptor, at comparable developmental stages in vitro and in situ from E11 until birth (P1) in the precursors of hair cells, support cells, and CG cells. Potential sites for interaction were localized to the nucleus, perikaryal cytoplasm, and cell surfaces, including processes and growth cones. Time-lapse imaging and quantitative measures support the hypothesis that FGF2 alone or combined with neurotrophins promotes migration and neurite outgrowth. Synergism or antagonism between NT3 and other factors suggest interactions at the receptor level. Formation of axons, endings, and synaptic vesicle protein 2 were increased by interactions of NT3 and FGF2. Similar experiments with a mutant overexpressor for FGF2 suggest that endogenous FGF2 supports migration and neurite outgrowth of CG neuroblasts as well as proliferation, leading to accelerated development. The findings suggest interactive and sequential roles for FGF2 and NT3.
Collapse
Affiliation(s)
- Waheeda A Hossain
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
8
|
Guest JD, Herrera L, Margitich I, Oliveria M, Marcillo A, Casas CE. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection. Exp Neurol 2008; 212:261-74. [PMID: 18511045 DOI: 10.1016/j.expneurol.2008.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 02/20/2008] [Accepted: 03/03/2008] [Indexed: 12/17/2022]
Abstract
Transplantation of olfactory ensheathing glial cells (OEG) may improve the outcome from spinal cord injury. Proof-of-principle studies in primates are desirable and the feasibility and efficacy of using in vitro expanded OEG should be tested. An intermediate step between the validation of rodent studies and human clinical trials is to study expanded primate OEG (POEG) xenografts in immunotolerant rodents. In this study the time course to generate purified POEG was evaluated as well as their survival, effect on damaged axons of the corticospinal and serotonergic systems, tissue sparing, and chronic locomotor recovery following transplantation. Fifty-seven nude rats underwent T9/10 spinal cord transection. Thirty-eight rats received POEG, 19 controls were injected with cell medium, and 10 received lentivirally-GFP-transfected POEG. Histological evaluation was conducted at 6 weeks, 8 weeks, 14 weeks and 23-24 weeks. Of these 57 rats, 18 were studied with 5-HT immunostaining, 16 with BDA anterograde CST labeling, and six were used for transmission electron microscopy. In grafted animals, behavioral recovery, sprouting and limited regeneration of 5-HT fibers, and increased numbers of proximal collateral processes but not regeneration of CST fibers was observed. Grafted animals had less cavitation in the spinal cord stumps than controls. Behavioral recovery peaked at three months and then declined. Five POEG-transplanted animals that had shown behavioral recovery underwent retransection and behavioral scores did not change significantly, suggesting that long tract axonal regeneration did not account for the locomotor improvement. At the ultrastructural level presumptive POEG were found to have direct contacts with astrocytes forming the glia limitans, distinct from those formed by Schwann cells. At 6 weeks GFP expression was detected in cells within the lesion site and within nerve roots but did not match the pattern of Hoechst nuclear labeling. At 3.5 months only GFP-positive debris in macrophages could be detected. Transplanted POEG support behavioral recovery via mechanisms that appear to be independent of long tract regeneration.
Collapse
Affiliation(s)
- J D Guest
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Iarikov DE, Kim BG, Dai HN, McAtee M, Kuhn PL, Bregman BS. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma 2007; 24:690-702. [PMID: 17439351 DOI: 10.1089/neu.2006.0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional deficits following spinal cord injury (SCI) result from a disruption of corticofugal projections at the lesion site. Not only direct regeneration of the severed axons but also anatomical re-organization of spared corticofugal pathways can reestablish connections between the supraspinal and spinal motor centers. We have previously shown that delayed transplantation of fetal spinal cord tissue and neurotrophin administration by two weeks after SCI supported recovery of forelimb function in adult rats. The current study determined whether the same intervention enhances plasticity of corticofugal fibers at the midbrain and spinal cord level. Anterograde tracing of the left corticorubral fibers revealed that the animals with transplants and neurotrophins (BDNF or NT-3) increased the extent of the traced fibers crossing to the right red nucleus (RN), of which the axons are spared by a right cervical overhemisection lesion. More neurons in the left motor cortex were recruited by the treatment to establish connections with the right RN. The right corticorubral projections also increased the density of midline crossing fibers to the axotomized left RN in response to transplants and neurotrophins. Transplants plus NT-3, but not BDNF, significantly increased the amount of spared corticospinal fibers in the left dorsolateral funiculus at the spinal level both rostral and caudal to the lesion. These results suggest that corticofugal projections retain the capacity until at least two weeks after injury to undergo extensive reorganization along the entire neuraxis in response to transplants and neurotrophins. Targeting anatomical plasticity of corticofugal projections may be a promising strategy to enhance functional recovery following incomplete SCI.
Collapse
Affiliation(s)
- Dmitri E Iarikov
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Functional recovery after spinal cord injury might be improved by enhancing the extent of innervation through stimulation of collateral sprouting, which is the growth of a new axon along the shaft of a non-injured axon. This review discusses (1) the spontaneous collateral sprouting of uninjured motor and sensory systems that has been shown after spinal cord injury in animal models, (2) experimental treatment strategies that are being developed to enhance collateral sprouting in motor systems and to reduce sensory sprouting which is associated with autonomic dysreflexia and pain, and (3) cell-surface and intracellular signaling mechanisms that are known to regulate axonal branching. The conclusion is that relatively little is known about collateral sprouting in adult mammals after spinal cord injury but that it may contribute to spontaneous functional motor recovery and causes sensory dysfunction. There is some promising data in rodents that collateral sprouting can be modulated for improved function, but the applicability to primates and relevance to human spinal cord injury remains to be determined.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
11
|
Hendriks WTJ, Eggers R, Ruitenberg MJ, Blits B, Hamers FPT, Verhaagen J, Boer GJ. Profound Differences in Spontaneous Long-Term Functional Recovery after Defined Spinal Tract Lesions in the Rat. J Neurotrauma 2006; 23:18-35. [PMID: 16430370 DOI: 10.1089/neu.2006.23.18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or the complete dorsal half of the spinal cord (Hx) at thoracic level T8. Functional recovery was monitored for 31 weeks. We found no recovery of consistent inter limb coordination in any experimental group over time using the BBB locomotor rating scale. Quantitative CatWalk analysis revealed significant differences between experimental groups for inter limb coordination (RI). RSTx and Hx animals showed a significant decrease in the RI, and only in the RSTx group did the RI improve from 6 weeks post-lesion onward. Significant differences between experimental groups in step sequence patterns and base of support were also observed. In the rope test all experimental groups had significantly higher error percentages compared to control animals. Tracing of the CST revealed enhanced collateral formation rostral to the lesion in the CSTx group, not in other groups. The results presented here show that locomotor function in all, but CSTx groups gradually improved over time. This is important for studies that employ pharmacological, cell-, and/or gene therapy- based interventions to improve axonal regeneration and functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- William T J Hendriks
- Department of Neuroregeneration, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Hagg T, Baker KA, Emsley JG, Tetzlaff W. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Neuroscience 2005; 130:875-87. [PMID: 15652986 DOI: 10.1016/j.neuroscience.2004.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2004] [Indexed: 01/24/2023]
Abstract
The corticospinal tract is widely used to study regeneration and is essential for voluntary movements in humans. In young rats, corticospinal axons on the uninjured side sprout and grow into the denervated side. Neurotrophin-3 (NT-3) induces such crossed collateral sprouting in adults. We investigated whether local intraspinal NT-3 infusions would promote collateral sprouting of spared corticospinal terminals from within a partially denervated side, as this would be more appropriate for enhancing function of unilateral and specific movements. Adult rats received a partial bilateral transection of the pyramids, leaving approximately 40% of each tract intact. Vehicle or vehicle plus NT-3 (3 or 10 microg/day) was infused for 14 days into the left side of the cervical (C5/6) or lumbar (L2) cord. The corticospinal processes on the left side were anterogradely traced with cholera toxin B (CTB; which labeled gray matter processes more robustly than biotinylated dextran amine) injected into the front or hind limb area of the right sensorimotor cortex, respectively, 3 days before analysis. Unexpectedly, approximately 40% fewer CTB-labeled corticospinal processes were detectable in the cervical or lumbar gray matter of NT-3-treated rats than in vehicle-infused ones. Vehicle-infused injured rats had more corticospinal processes in the center of the cord than normal rats, evidence for lesion-induced collateral sprouting. NT-3 caused sprouting of local calcitonin gene-related peptide-positive fibers. These results suggest that NT-3 reduces collateral sprouting of spared corticospinal axons from within the denervated regions, possibly because of the injury environment or by increasing sprouting of local afferents. They identify an unexpected context-dependent outgrowth inhibitory effect of NT-3.
Collapse
Affiliation(s)
- T Hagg
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, 511 South Floyd Street, MDR Room 616, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
13
|
Conta AC, Stelzner DJ. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. J Comp Neurol 2005; 479:347-59. [PMID: 15514981 DOI: 10.1002/cne.20319] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The propriospinal system is important in mediating reflex control and in coordination during locomotion. Propriospinal neurons (PNs) present varied patterns of projections with ascending and/or descending fibers. Following spinal cord contusion injury (SCI) in the rat, certain supraspinal pathways, such as the corticospinal tract, appear to be completely abolished, whereas others, such as the rubrospinal and vestibuospinal tracts, are only partially damaged. The amount of damage to propriospinal axons following different severities of SCI is not fully known. In the present study retrograde and anterograde tracing techniques were used to assess the projection patterns of propriospinal neurons in order to determine how this system is affected following SCI. Our findings reveal that PNs have differential vulnerabilities to SCI. While short thoracic propriospinal axons are severely damaged after injury, 5-7% of long descending propriospinal tract (LDPT) projections survive following 50 and 12.5-mm weight drop contusion lesions, respectively, albeit with a reduced intensity of retrograde label. Even though the axons of short thoracic propriospinal cells are damaged, their cell bodies of origin remain intact 2 weeks after injury, indicating that they have not undergone postaxotomy retrograde cell death at this time point. Thus, short PNs may constitute a very attractive population of cells to study regenerative approaches, whereas LDPT neurons with spared axons could be targeted with therapeutic interventions, seeking to enhance recovery of function following incomplete lesions to the spinal cord.
Collapse
Affiliation(s)
- Amanda C Conta
- Neuroscience Program, College of Graduate Studies, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
14
|
MacDermid VE, McPhail LT, Tsang B, Rosenthal A, Davies A, Ramer MS. A soluble Nogo receptor differentially affects plasticity of spinally projecting axons. Eur J Neurosci 2005; 20:2567-79. [PMID: 15548200 DOI: 10.1111/j.1460-9568.2004.03715.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the central nervous system, regeneration of injured axons and sprouting of intact axons are suppressed by myelin-derived molecules that bind to the Nogo receptor (NgR). We used a soluble form of the NgR (sNgR), constructed as an IgG of the human NgR extracellular domain, to manipulate plasticity of uninjured primary afferent and descending monoaminergic projections to the rat spinal cord following dorsal rhizotomy. Rats with quadruple dorsal rhizotomies were treated with intrathecal sNgR or saline, or were left untreated for 2 weeks. Rhizotomy alone resulted in sprouting of serotonergic axons and to a lesser extent, tyrosine-hydroxylase (TH)-expressing axons, while axons expressing dopamine-beta-hydroxylase (DbetaH) were unaffected. Human IgG immunohistochemistry revealed that sNgR infused into the intrathecal space penetrated approximately 300 microm into spinal white and grey matter. Separate axonal populations differed in their responses to intrathecal sNgR: TH-expressing and DbetaH-expressing axons responded most and least vigorously, respectively. Serotonergic axons were identified by serotonin (5-HT) or serotonin transporter (SERT) immunohistochemistry. Interestingly, a large increase in 5-HT compared to SERT-positive axons density in both saline and sNgR-treated rats indicated that serotonergic axons both sprouted and increased their transmitter content in response to rhizotomy and sNgR treatment. Calcitonin gene-related peptide-positive axons were largely depleted ipsilaterally by rhizotomy, and sNgR increased axon density only in deeper contralateral laminae (III-V). GAP-43 immunohistochemistry revealed a small increase in axon density following dorsal rhizotomy that was further augmented by sNgR treatment. These results reveal a differential effect of myelin antagonism on distinct populations of spinally projecting axons.
Collapse
Affiliation(s)
- V E MacDermid
- International Collaboration on Repair Discoveries, University of British Columbia, 2469-6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
15
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
16
|
Tobias CA, Han SSW, Shumsky JS, Kim D, Tumolo M, Dhoot NO, Wheatley MA, Fischer I, Tessler A, Murray M. Alginate Encapsulated BDNF-Producing Fibroblast Grafts Permit Recovery of Function after Spinal Cord Injury in the Absence of Immune Suppression. J Neurotrauma 2005; 22:138-56. [PMID: 15665609 DOI: 10.1089/neu.2005.22.138] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Encapsulation of cells has the potential to provide a protective barrier against host immune cell interactions after grafting. Previously we have shown that alginate encapsulated BDNF-producing fibroblasts (Fb/BDNF) survived for one month in culture, made bioactive neurotrophins, survived transplantation into the injured spinal cord in the absence of immune suppression, and provided a permissive environment for host axon growth. We extend these studies by examining the effects of grafting encapsulated Fb/BDNF into a subtotal cervical hemisection on recovery of forelimb and hindlimb function and axonal growth in the absence of immune suppression. Grafting of encapsulated Fb/BDNF resulted in partial recovery of forelimb usage in a test of vertical exploration and of hindlimb function while crossing a horizontal rope. Recovery was significantly greater compared to animals that received unencapsulated Fb/BDNF without immune suppression, but similar to that of immune suppressed animals receiving unencapsulated Fb/BDNF. Immunocytochemical examination revealed neurofilament (RT-97), 5-HT, CGRP and GAP-43 containing axons surrounding encapsulated Fb/BDNF within the injury site, indicating axonal growth. BDA labeling however showed no evidence of regeneration of rubrospinal axons in recipients of encapsulated Fb/BDNF, presumably because the amounts of BDNF available from the encapsulated grafts are substantially less than those provided by the much larger numbers of Fb/BDNF grafted in a gelfoam matrix in the presence of immune suppression. These results suggest that plasticity elicited by the BDNF released from the encapsulated cells contributed to reorganization that led to behavioral recovery in these animals and that the behavioral recovery could proceed in the absence of rubrospinal tract regeneration. Alginate encapsulation is therefore a feasible strategy for delivery of therapeutic products produced by non-autologous engineered fibroblasts and provides an environment suitable for recovery of lost function in the injured spinal cord.
Collapse
Affiliation(s)
- Christopher A Tobias
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Scott ALM, Borisoff JF, Ramer MS. Deafferentation and neurotrophin-mediated intraspinal sprouting: a central role for the p75 neurotrophin receptor. Eur J Neurosci 2005; 21:81-92. [PMID: 15654845 DOI: 10.1111/j.1460-9568.2004.03838.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axonal plasticity in the adult spinal cord is governed by intrinsic neuronal growth potential and by extracellular cues. The p75 receptor (p75(NTR)) binds growth-promoting neurotrophins (NTs) as well as the common receptor for growth-inhibiting myelin-derived proteins (the Nogo receptor) and so is well situated to gauge the balance of positive and negative influences on axonal plasticity. Using transgenic mice lacking the extracellular NT-binding domain of p75(NTR) (p75-/- mice), we have examined the influence of p75(NTR) on changes in the density of primary afferent (calcitonin gene-related peptide-expressing) and descending monoaminergic (serotonin- and tyrosine hydroxylase-expressing) projections to the dorsal horn after dorsal rhizotomy, with and without concomitant application of exogenous nerve growth factor and NT-3. We found that, in intact p75-/- mice, the axon density of all populations was equal to or less than that in wild-type mice but that rhizotomy-induced intraspinal sprouting was significantly augmented. Monoaminergic axon sprouting was enhanced in both nerve growth factor- and NT-3-treated p75-/- mice compared with similarly treated wild-type mice. Primary afferent sprouting was particularly robust in NT-3-treated p75-/- mice. These in vivo results illustrate the interactions of p75(NTR) with NTs, with their respective tropomyosin-related kinase receptors and with inhibitory myelin-derived molecules. Our findings illustrate the pivotal role of p75(NTR) in spinal axonal plasticity and identify it as a potential therapeutic target for spinal cord injury.
Collapse
Affiliation(s)
- Angela L M Scott
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | | | | |
Collapse
|
18
|
Abstract
Spinal shock has been of interest to clinicians for over two centuries. Advances in our understanding of both the neurophysiology of the spinal cord and neuroplasticity following spinal cord injury have provided us with additional insight into the phenomena of spinal shock. In this review, we provide a historical background followed by a description of a novel four-phase model for understanding and describing spinal shock. Clinical implications of the model are discussed as well.
Collapse
Affiliation(s)
- J F Ditunno
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
19
|
Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 2004; 184:114-30. [PMID: 14637085 DOI: 10.1016/s0014-4886(03)00398-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Delivery of neurotrophic factors in acute models of spinal cord injury in adult rats can rescue axotomized neurons, promote axonal growth, and partially restore function. The extent to which repair and recovery of function can be achieved after chronic injury has received less attention. In the companion paper we show that transplanting fibroblasts genetically modified to produce neurotrophic factors into chronic (6-week) hemisection injuries results in sprouting, partial neuroprotection, but only limited regeneration. Here we describe functional consequences of this treatment using a series of behavioral tests. Adult rats received a complete unilateral C3/C4 hemisection and recovery from the injury was assessed over 5 weeks. At 6 weeks postoperative, the experimental group received grafts of a combination of fibroblasts modified to secrete BDNF or NT-3. The operated control groups received grafts of either gelfoam or gelfoam with fibroblasts expressing GFP into the lesion site. Behavioral recovery in the three groups was assessed over the next 10 weeks. Severe deficits with no recovery in any of the groups were observed in several tests (BBB, limb preference, narrow beam, horizontal rope test) that measure primarily motor function. Recovery was observed in the grid test, a measure of sensorimotor function, and the von Frey test, a measure of response to mechanical stimulation, but there were no differences between the operated control or experimental groups. Both groups also showed recovery from heat-induced hyperalgesia, with the experimental group exhibiting greater recovery than the operated control groups. In this test, delivery of neurotrophic factors from transplanted fibroblasts does not worsen responses to nociceptive stimuli and in fact appears to reduce hypersensitivity. Our data also demonstrate that additional damage to the spinal cord upon placement of a graft further compromises behavioral recovery for locomotor and postural function. Additional therapeutic interventions will be necessary to provide greater levels of recovery after chronic injuries.
Collapse
Affiliation(s)
- J S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Zhou L, Shine HD. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res 2003; 74:221-6. [PMID: 14515351 DOI: 10.1002/jnr.10718] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We reported recently that overexpression of neurotrophin-3 (NT-3) by motoneurons in the spinal cord of rats will induce sprouting of corticospinal tract (CST) axons (Zhou et al. [2003] J. Neurosci. 23:1424-1431). We now report that overexpression of brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF) in the rat sensorimotor cortex near the CST neuronal cell bodies together with overexpression of NT-3 in the lumbar spinal cord significantly increases axonal sprouting compared to that induced by NT-3 alone. Two weeks after unilaterally lesioning the CST at the level of the pyramids, we injected rats with saline or adenoviral vectors (Adv) carrying genes coding for BDNF (Adv.BDNF), GDNF (Adv.GDNF) or enhanced green fluorescent protein (Adv.EGFP) at six sites in the sensorimotor cortex, while delivering Adv.NT3 to motoneurons in each of these four groups on the lesioned side of the spinal cord by retrograde transport from the sciatic nerve. Four days later, biotinylated dextran amine (BDA) was injected into the sensorimotor cortex on the unlesioned side to mark CST axons in the spinal cord. Morphometric analysis of axonal sprouting 3 weeks after BDA injection showed that the number of CST axons crossing the midline in rats treated with Adv.BDNF or Adv.GDNF were 46% and 52% greater, respectively, than in rats treated with Adv.EGFP or PBS (P < 0.05). These data demonstrate that sustained local expression of neurotrophic factors in the sensorimotor cortex and spinal cord will promote increased axonal sprouting after spinal cord injury, providing a basis for continued development of neurotrophic factor therapy for central nervous system damage.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|