1
|
Horváth K, Juhász B, Kuti D, Ferenczi S, Kovács KJ. Recruitment of Corticotropin-Releasing Hormone (CRH) Neurons in Categorically Distinct Stress Reactions in the Mouse Brain. Int J Mol Sci 2023; 24:11736. [PMID: 37511494 PMCID: PMC10380650 DOI: 10.3390/ijms241411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.
Collapse
Affiliation(s)
- Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Eötvös Loránd Research Network, 1083 Budapest, Hungary
| |
Collapse
|
2
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2018; 6:45-53. [PMID: 31211281 PMCID: PMC6562194 DOI: 10.1016/j.ibror.2018.11.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
There are no specific structural neuropathological hallmarks found in the brain of mood disorders. Instead, there are molecular, functional and structural alterations reported in many brain areas. The neurodevelopmental underpinning indicated the presence of various genetic and developmental risk factors. The effect of genetic polymorphisms and developmental sequalae, some of which may start in the womb, result in functional changes in a network mediated by neurotransmitters and neuropeptides, which make the emotion- and stress-related brain systems more vulnerable to stressful events. This network of stress-related neurocircuits consists of, for instance, brainstem nuclei, the amygdala, habenula, prefrontal cortex and hypothalamus. Various nuclei of the hypothalamus form indeed one of the crucial hubs in this network. This structure concerns not only the hypothalamo-pituitary-adrenal (HPA) axis that integrate the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of depression, such as disordered day-night rhythm, lack of reward feelings, disturbed eating, sex, and disturbed cognitive functions. The present review will focus on the changes in the human hypothalamus in depression, with the HPA axis in the center. We will discuss the inordinate network of neurotransmitters and neuropeptides involved, with the hope to find the most vulnerable neurobiological systems and the possible development of tailor-made treatments for mood disorders in the future.
Collapse
Affiliation(s)
- Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick F Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Lee RJ, Hempel J, TenHarmsel A, Liu T, Mathé AA, Klock A. The neuroendocrinology of childhood trauma in personality disorder. Psychoneuroendocrinology 2012; 37:78-86. [PMID: 21641725 PMCID: PMC3178739 DOI: 10.1016/j.psyneuen.2011.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Childhood trauma has been associated with elevated central corticotropin releasing hormone (CRH) drive in adults meeting general DSM-IV criteria for personality disorder. It is not clear how this may be related to pituitary or adrenal responsiveness in personality disorder. It was hypothesized that high levels of childhood trauma would be associated with blunted cortisol and adrenocorticotropin releasing hormone (ACTH) response to the combined dexamethasone(DEX)/CRH test in adults meeting general DSM-IV criteria for personality disorder. METHOD 24 healthy, medication free adults with personality disorder (N=16) and a group of healthy controls (N=8) underwent semi-structured diagnostic interviews and completed the Childhood Trauma Questionnaire (CTQ). Across two separate study sessions separated by at least a week, cerebrospinal fluid (CSF) was sampled by lumbar puncture for measurement of CRH concentration (N=17), and peripheral blood cortisol and ACTH levels were measured after challenge with DEX/CRH (N=24). RESULTS As hypothesized, high CTQ score was associated with a blunted cortisol and ACTH response to DEX/CRH challenge. Indices of cortisol and ACTH response (peak level and area under the curve (AUC)) to DEX/CRH were in turn significantly negatively correlated with CSF CRH concentration. CONCLUSION Childhood trauma in adults with personality disorder is associated with blunted cortisol and ACTH secretion following DEX/CRH challenge. These effects are independent of depression or posttraumatic stress disorder. Previous work would suggest that blunted pituitary-adrenal response is related to elevated central CRH drive. Corroborating this, CSF CRH levels were significantly and negatively correlated with peak level and AUC of both cortisol and ACTH.
Collapse
|
5
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
6
|
Qi C, Roseboom PH, Nanda SA, Lane JC, Speers JM, Kalin NH. Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. GENES BRAIN AND BEHAVIOR 2011; 9:974-84. [PMID: 20738409 DOI: 10.1111/j.1601-183x.2010.00636.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioral inhibition (BI) is an adaptive defensive response to threat; however, children who display extreme BI as a stable trait are at risk for development of anxiety disorders and depression. The present study validates a rodent model of BI based on an ethologically relevant predator exposure paradigm. We show that individual differences in rat BI are stable and trait-like from adolescence into adulthood. Using in situ hybridization to quantify expression of the immediate early genes homer1a and fos as measures of neuronal activation, we show that individual differences in BI are correlated with the activation of various stress-responsive brain regions that include the paraventricular nucleus of the hypothalamus and CA3 region of the hippocampus. Further supporting the concept that threat-induced BI in rodents reflects levels of anxiety, we also show that BI is decreased by administration of the anxiolytic, diazepam. Finally, we developed criteria for identifying extreme BI animals that are stable in their expression of high levels of BI and also show that high BI (HBI) individuals exhibit maladaptive appetitive responses following stress exposure. These findings support the use of predator threat as a stimulus and HBI rats as a model to study mechanisms underlying extreme and stable BI in humans.
Collapse
Affiliation(s)
- C Qi
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53719-1176, USA
| | | | | | | | | | | |
Collapse
|
7
|
Scherer IJ, Holmes PV, Harris RBS. The importance of corticosterone in mediating restraint-induced weight loss in rats. Physiol Behav 2010; 102:225-33. [PMID: 21092743 DOI: 10.1016/j.physbeh.2010.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
I. J. Scherer, P. V. Holmes, R. B.S. Harris. The importance of corticosterone in mediating restraint-induced weight loss in rats. PHYSIOL BEHAV 00 (0) 000-000, 2010. Rats restrained for 3 h/day for 3d ays (RR) lose weight and do not return to the weight of non-restrained controls once restraint has ended. This study tested the importance of restraint-induced corticosterone release in mediating the change in body weight by injecting ADX rats with 2.0mg corticosterone/kg before each restraint to replicate the restraint-induced surge in circulating corticosterone. Restrained adrenalectomized (ADX) rats injected with corticosterone had the same initial weight loss as intact restrained rats, whereas corticosterone injection in non-restrained ADX rats and restraint of ADX rats injected with saline each produced only half as much initial weight loss. Sustained weight loss, measured for 14 days after the end of RR, was the same for restrained intact rats and restrained ADX rats injected with corticosterone whereas restrained ADX rats injected with saline achieved the same weight gain as their controls. Corticosterone injections had no effect on weight gain of non-restrained intact rats. In situ hybridization showed that corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) was increased by the same degree in ADX rats and restrained intact rats and was not modified by corticosterone injections. There was no significant effect of restraint, ADX or corticosterone injection on PVN arginine vasopressin (AVP) mRNA expression. These data indicate that a surge in corticosterone causes sustained weight loss in ADX rats through a mechanism that can be compensated for in intact rats and is independent of changes in PVN CRF or AVP mRNA expression.
Collapse
Affiliation(s)
- Isabell J Scherer
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, United States
| | | | | |
Collapse
|
8
|
Sano K, Koushi E, Irie K, Higuchi S, Tsuchihashi R, Kinjo J, Egashira N, Oishi R, Uchida N, Nagai H, Nishimura R, Tanaka H, Morimoto S, Mishima K, Iwasaki K, Fujiwara M. Delta(9)-tetrahydrocannabinol enhances an increase of plasma corticosterone levels induced by forced swim-stress. Biol Pharm Bull 2010; 32:2065-7. [PMID: 19952430 DOI: 10.1248/bpb.32.2065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to determine the effect of delta(9)-tetrahydrocannabinol (THC) on susceptibility to stress. We reported that THC significantly prolonged the immobility time during the forced swim-stress. The selective cannabinoid CB(1) receptor antagonist O-2050 significantly reduced the enhancement of immobility by THC. We investigated the effect of THC on levels of stress hormone corticosterone under non-stress and forced swim-stress conditions. THC did not affect plasma corticosterone levels under non-stress conditions. However, THC, together with forced swim-stress, significantly increased plasma corticosterone levels. This effect was inhibited by O-2050. This evidence suggests that THC, under stressful conditions, enhances the susceptibility of the hypothalamus-pituitary-adrenal-axis to stress via the CB(1) receptor, thereby increasing the risk of depression.
Collapse
Affiliation(s)
- Kazunori Sano
- Advanced Materials Institute, Fukuoka University, 8-19-1 Nanakuma, Fukuoka, 814-0180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bao AM, Swaab DF. Corticotropin-Releasing Hormone and Arginine Vasopressin in Depression. HORMONES OF THE LIMBIC SYSTEM 2010; 82:339-65. [DOI: 10.1016/s0083-6729(10)82018-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Bethea CL, Centeno ML, Cameron JL. Neurobiology of stress-induced reproductive dysfunction in female macaques. Mol Neurobiol 2008; 38:199-230. [PMID: 18931961 PMCID: PMC3266127 DOI: 10.1007/s12035-008-8042-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
Abstract
It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
11
|
Nanda SA, Qi C, Roseboom PH, Kalin NH. Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. GENES BRAIN AND BEHAVIOR 2008; 7:639-48. [PMID: 18363859 DOI: 10.1111/j.1601-183x.2008.00401.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Psychological stressors precipitate and maintain stress-induced psychopathology, and it is likely that altered amygdala function underlies some of the deleterious effects of psychological stress. To understand the mechanisms underlying the linkage between the response to psychological stressors and maladaptive or psychopathological responses, we have focused on amygdala responsivity in animal models employing species-specific psychological stressors. In the present study, we characterized the effects of a 15-min exposure to a natural predator, the ferret, on rat behavior and the expression of the somatostatin family of genes in the amygdala. We examined the somatostatin family of genes because substantial evidence shows that central somatostatin systems are altered in various neuropsychiatric illnesses. We report that rats respond to acute ferret exposure with a significant increase in fearful and anxious behaviors that is accompanied by robust amygdala activation and an increase in somatostatin receptor 2 (sst2) messenger RNA expression within the amygdala and anterior cingulate cortex. These studies are the first to show stress-induced changes in amygdala sst2 expression and may represent one mechanism by which psychological stress is linked to adaptive and maladaptive behavioral responses.
Collapse
Affiliation(s)
- S A Nanda
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA.
| | | | | | | |
Collapse
|
12
|
Chandrasekar G, Lauter G, Hauptmann G. Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J Comp Neurol 2007; 505:337-51. [PMID: 17912740 DOI: 10.1002/cne.21496] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Corticotropin-releasing hormone (CRH) plays a central role in the physiological regulation of the hypothalamus-pituitary-adrenal/interrenal axis mediating endocrine, behavioral, autonomic, and immune responses to stress. Despite the wealth of knowledge about the physiological roles of CRH, the genetic mechanisms by which CRH neurons arise during development are poorly understood. As a first step toward analyzing the molecular and genetic pathways involved in CRH lineage specification, we describe the developmental distribution of CRH neurons in the embryonic zebrafish, a model organism for functional genomics and developmental biology. We searched available zebrafish expressed sequence tag (EST) databases for CRH-like sequences and identified one EST that contained the complete zebrafish CRH open reading frame (ORF). The CRH precursor sequence contained a signal peptide, the CRH peptide, and a cryptic peptide with a conserved sequence motif. RT-PCR analysis showed crh expression in a wide range of adult tissues as well as during embryonic and larval stages. By whole-mount in situ hybridization histochemistry, discrete crh-expressing cell clusters were found in different parts of the embryonic zebrafish brain, including telencephalon, preoptic region, hypothalamus, posterior tuberculum, thalamus, epiphysis, midbrain tegmentum, and rostral hindbrain and in the neural retina. The localization of crh mRNA within the preoptic region is consistent with the central role of CRH in the teleost stress response through activation of the hypothalamic-pituitary-interrenal axis. The widespread distribution of CRH-synthesizing cells outside the preoptic region suggests additional functions of CRH in the embryonic zebrafish brain.
Collapse
|
13
|
Stoeter P, Bauermann T, Nickel R, Corluka L, Gawehn J, Vucurevic G, Vossel G, Egle UT. Cerebral activation in patients with somatoform pain disorder exposed to pain and stress: An fMRI study. Neuroimage 2007; 36:418-30. [PMID: 17428684 DOI: 10.1016/j.neuroimage.2007.01.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 01/25/2007] [Accepted: 01/25/2007] [Indexed: 11/20/2022] Open
Abstract
Patients with somatoform pain disorders are supposed to suffer from an early acquired defect in stress regulation. In order to look for common alterations of the pain- and stress-responsive cortical areas, we prospectively recorded cerebral activations induced by pin-prick pain, by cognitive stress and emotional stress using functional magnetic resonance imaging (fMRI) in a group of 17 patients and an age-matched control group. In addition, the hippocampal volumes of both groups were measured. Patients showed increased activations of the known pain-processing areas (thalamus, basal ganglia, operculo-insular cortex), but also of some prefrontal, temporal and parietal regions during first pain exposure and of temporal and parietal areas during cognitive stress, but reduced activations during emotional stress. In contrast to these functional differences, hippocampal volume was not significantly reduced in patients. Although the superior temporal gyrus was the only common area of an "overactivation" in patients in the pain and stress condition, findings of our study support the current concept of mechanisms involved in somatoform pain disorders: central processing of pain and of cognitive stress is increased in patients possibly due to exaggerated memory and/or anticipation of pain exposure and to a disturbance of stress-regulating systems which has to be worked out on a cortical level in more detail. Our finding of a reduced responsiveness to emotional stress is surprising, but not contradictive to these results because some sort of neglect or coping mechanisms may have developed over time as a response to early adversities.
Collapse
Affiliation(s)
- P Stoeter
- Institute of Neuroradiology, University Clinic Mainz, Langenbeckstr. 1, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Centeno ML, Sanchez RL, Reddy AP, Cameron JL, Bethea CL. Corticotropin-releasing hormone and pro-opiomelanocortin gene expression in female monkeys with differences in sensitivity to stress. Neuroendocrinology 2007; 86:277-88. [PMID: 17934253 DOI: 10.1159/000109877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 07/14/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The expressions of corticotropin-releasing hormone (CRH) and pro-opiomelanocortin (POMC) were assessed in brain tissue collected from nonstressed female cynomolgus monkeys previously categorized as highly stress resilient (HSR), medium stress resilient (MSR), or stress sensitive (SS) with respect to stress-induced anovulation. METHODS In situ hybridization and quantitative image analysis was used to measure mRNAs coding for CRH in the hypothalamic paraventricular nucleus (PVN) and thalamic center median-subfascicular complex (CM-Sf). Then, CRH neurons in the PVN were immunostained and the area of immunostaining was measured. Also, CRH fibers were immunostained in the central nucleus of the amygdala and the area of immunostaining was obtained. Finally, POMC mRNA expression was characterized in the hypothalamic infundibular nucleus. The groups were compared with ANOVA and Student-Newman-Keul's (SNK) post hoc comparison. RESULTS CRH mRNA was significantly elevated in the caudal PVN in the MSR and SS animals compared to HSR animals (p < 0.05, SNK). There was a significant increase in average and total CRH-positive area in the MSR and SS groups compared to the HSR group (p < 0.05, SNK). There was also a significant increase in CRH volume in the MSR and SS groups compared to the HSR group (p < 0.05, SNK). In the CM-Sf, the average CRH optical density was significantly higher in the MSR and SS groups than in the HSR group (p < 0.05, SNK). In the central nucleus of the amygdala, the area of CRH fiber staining was significantly higher in the SS group than in the MSR or HSR groups (p < 0.05, SNK). There was no difference between the groups in POMC mRNA expression in the mediobasal hypothalamus. CONCLUSION Macaques that exhibit immediate suppression of reproductive function upon stress are considered stress sensitive. These animals have elevated CRH in the hypothalamus and limbic structures, which may play a role in suppressing the hypothalamic-gonadal axis upon stress initiation.
Collapse
Affiliation(s)
- Maria Luisa Centeno
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
15
|
Chauveau F, Célérier A, Ognard R, Pierard C, Béracochéa D. Effects of ibotenic acid lesions of the mediodorsal thalamus on memory: relationship with emotional processes in mice. Behav Brain Res 2005; 156:215-23. [PMID: 15582107 DOI: 10.1016/j.bbr.2004.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
The effects of ibotenic acid lesions of the mediodorsal nucleus of the thalamus (MD) on memory and fear reactivity in mice were studied. In the first experiment, MD subjects were submitted to a behavioral design allowing to study the relationship between memory and anxiety [Krazem A, Borde N, Beracochea D. Effects of diazepam and beta-CCM on working memory in mice: relationship with emotional reactivity. Pharmacol Biochem Behav 2001;68:235-44; Beracochea D, Krazem A, Jaffard R. Methyl beta carboline-3-carboxylate reverses the working memory deficits induced either by chronic alcohol consumption or mammillary body lesions in mice. Psychobiology 1995;23:52-8]. In a second experiment, MD-lesioned subjects were submitted to a GO/NOGO temporal alternation task involving two intertrial intervals (ITIs: 0 and 30 s). Lesioned subjects exhibited large bilateral mediodorsal thalamic lesions with small damage into the centromedial thalamic nucleus. In the first experiment, MD-lesioned animals performed normally a sequential alternation task involving fixed ITIs over seven successive trials (5 or 30 s); in contrast, MD-lesioned subjects exhibited deficits in the sequential task involving the same but mixed ITIs (30-5 s versus 5-30 s) the deficit being observed for the last trials of the series, regardless the ITIs used. MD lesions increased fear reactivity in an elevated-plus maze, and scores of anxiety were negatively correlated with performance in the mixed alternation schedule. The second experiment involving non spatial information extended results of the first experiment in showing that the deficit of MD-lesioned animals was not dependent on the ITIs separating trials. Overall, our data show that MD-lesioned subjects exhibit a cognitive impairment characterized by a difficulty to maintain an alternation rule in situations involving procedural variance, and this deficit could stem primarily from an increase of fear reactivity.
Collapse
Affiliation(s)
- Frederic Chauveau
- Laboratoire de Neurosciences Cognitives, UMR CNRS 5106, Universite de Bordeaux 1, Bat Biologie Animale, Avenue des Facultés, 33405 Talence Cédex, France
| | | | | | | | | |
Collapse
|
16
|
Heilbronner U, van Kampen M, Flügge G. The alpha-2B adrenoceptor in the paraventricular thalamic nucleus is persistently upregulated by chronic psychosocial stress. Cell Mol Neurobiol 2004; 24:815-31. [PMID: 15672682 PMCID: PMC11529960 DOI: 10.1007/s10571-004-6921-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stress has been reported to regulate adrenergic receptors but it is not known whether it has an impact on the alpha-2 adrenoceptor subtype B that is strongly expressed in distinct nuclei of the thalamus. So far little is known about effects of stress on the thalamus. Using the chronic psychosocial stress paradigm in male tree shrews, we analyzed alpha-2B adrenoceptor expression in the paraventricular and the anteroventral nucleus of the thalamus after a six-week period of daily social stress and after a 10-day post-stress recovery period. In situ hybridization with a specific alpha-2B adrenoceptor probe was performed to quantify receptor gene expression in single neurons, and receptor binding was determined by in vitro receptor autoradiography using the radioligand [3H]RX821002. To determine the stress level in the animals, we measured urinary cortisol excretion and body weight. In the neurons of the paraventricular thalamic nucleus, expression of the alpha-2B adrenoceptor transcript was increased after both the six-week chronic-stress period and the post-stress recovery period. Combination of in situ hybridization and immunocytochemistry revealed expression of alpha-2B adrenoceptor transcript in neurons that were stained with an antibody against glutamate but not in neurons immunoreactive for GABA. Alpha-2 adrenoceptor radioligand binding was also increased after both time periods in the paraventricular thalamic nucleus. No significant effects of stress and recovery were observed in the anteroventral thalamic nucleus. Urinary cortisol excretion was increased during the stress period but normalized thereafter. Body weight was reduced during weeks 1 to 3 of stress and then normalized. These data show that long-term chronic psychosocial stress has an impact on alpha-2B adrenoceptor expression in the thalamus and that the effect persists throughout a post-stress recovery period though activity of the hypothalamic pituitary adrenal axis normalizes after stress. Upregulation of the receptor probably alters neurotransmission in the paraventricular thalamic nucleus and may thus influence information transfer to limbic and cortical brain areas.
Collapse
Affiliation(s)
- U. Heilbronner
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - M. van Kampen
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - G. Flügge
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| |
Collapse
|
17
|
Taiwo OB, Kovács KJ, Sperry LC, Larson AA. Naloxone-induced morphine withdrawal increases the number and degranulation of mast cells in the thalamus of the mouse. Neuropharmacology 2004; 46:824-35. [PMID: 15033342 DOI: 10.1016/j.neuropharm.2003.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 09/22/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Naloxone-induced jumping in morphine-dependent mice is inhibited by cromolyn, a mast cell stabilizer, suggesting that this characteristic withdrawal behavior results from degranulation of mast cells. Because withdrawal is considered as a central phenomenon, degranulation of mast cells located within the CNS may influence aspects of opioid withdrawal. The present study evaluates histologically whether naloxone, injected into opioid dependent mice, induces degranulation of mast cells. Seventy-two hours after the s.c. implantation of a 75 mg morphine pellet, the number and degranulation of thalamic mast cells did not differ from those in placebo-implanted controls. However, two injections of 50 mg/kg of naloxone, 30 and 60 min before tissue collection, increased the number of degranulated mast cells compared to those in mice injected with saline. Analysis throughout the entire thalamus (90 40-micro sections) revealed increases in the total number of mast cells as well as the number that were degranulated, especially in sections 52-60, corresponding to Bregma -2.18 to 2.54. Here, mast cells were clustered in the IGL and VPL/VPM nuclei, and redistributed from the ventromedial to the dorsolateral aspects of the Po and PF nuclei during withdrawal. Degranulation was also greater throughout the LD, LP nuclei during withdrawal. These data reveal a novel neuroimmune reaction to opioid withdrawal in the CNS.
Collapse
Affiliation(s)
- Oludare B Taiwo
- Department of Veterinary Pathobiology, University of Minnesota, Room 295, Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
18
|
Hsu DT, Bakshi VP, Roseboom PH, Kalin NH. Diurnal changes in corticotropin-releasing hormone messenger RNA in the rat thalamus. Neurosci Lett 2003; 338:33-6. [PMID: 12565134 DOI: 10.1016/s0304-3940(02)01365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Corticotropin-releasing hormone (CRH) is critical for mediating the stress response. CRH messenger RNA (mRNA) is present in a variety of brain regions including the thalamus and thalamic CRH mRNA concentrations increase in response to stress exposure. The present study assessed changes in basal CRH mRNA concentrations in the rat thalamus during different times of the day. Using in situ hybridization, we demonstrated that thalamic CRH mRNA levels exhibited more than two-fold increases during the dark phase between 20:00 and 02:00 h, followed by a decrease at 08:00 and 14:00 h during the light phase. Dramatic changes in thalamic CRH mRNA levels may have important implications for the possible role of thalamic CRH systems in waking, arousal, and the stress response.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
19
|
Hsu DT, Lombardo KA, Bakshi VP, Balachandran JS, Roseboom PH, Kalin NH. Acute stress-induced increases in thalamic CRH mRNA are blocked by repeated stress exposure. Brain Res 2001; 915:18-24. [PMID: 11578616 DOI: 10.1016/s0006-8993(01)02807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corticotropin-releasing hormone (CRH) coordinates multiple aspects of the stress response. Recently, CRH mRNA has been identified in two regions of the thalamus: the posterior nuclear group (Po), and a region located at the interface of the central medial and ventral posteromedial nucleus (parvicellular part) (CM-VPMpc). Previous studies demonstrated that in both regions CRH mRNA increases following 1 h of restraint stress, suggesting involvement of thalamic CRH in processing somatosensory and visceral information related to stress. The current study was proposed to further understand the effects of repeated and acute restraint stress on levels of thalamic CRH mRNA. Adult male rats were assigned to one of four groups in a 2 (repeated stress, no repeated) x2 (acute, no acute) design. Brain sections were processed for CRH mRNA in situ hybridization. ANOVA revealed no main effects of acute or repeated stress in either thalamic region. However, significant interactions between acute and repeated stress for levels of CRH mRNA were found for both regions of the thalamus. Compared to the no stress condition, acute restraint significantly increased CRH mRNA in the Po (39%) and the CM-VPMpc (32%). Repeated restraint did not alter baseline CRH mRNA levels, but blocked the acute restraint-induced effects. Thus, while acute stress increases levels of thalamic CRH mRNA, repeated exposure to the same stressor is without effect and prevents the acute response. These findings add to data establishing a role for thalamic CRH in the stress response and suggest a mechanism that may underlie habituation to repeated stress exposure.
Collapse
Affiliation(s)
- D T Hsu
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd., Madison, WI 53719, USA.
| | | | | | | | | | | |
Collapse
|