1
|
Multi-target action of β-alanine protects cerebellar tissue from ischemic damage. Cell Death Dis 2022; 13:747. [PMID: 36038575 PMCID: PMC9424312 DOI: 10.1038/s41419-022-05159-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
Brain ischemic stroke is among the leading causes of death and long-term disability. New treatments that alleviate brain cell damage until blood supply is restored are urgently required. The emerging focus of anti-stroke strategies has been on blood-brain-barrier permeable drugs that exhibit multiple sites of action. Here, we combine single-cell electrophysiology with live-cell imaging to find that β-Alanine (β-Ala) protects key physiological functions of brain cells that are exposed to acute stroke-mimicking conditions in ex vivo brain preparations. β-Ala exerts its neuroprotective action through several distinct pharmacological mechanisms, none of which alone could reproduce the neuroprotective effect. Since β-Ala crosses the blood-brain barrier and is part of a normal human diet, we suggest that it has a strong potential for acute stroke treatment and facilitation of recovery.
Collapse
|
2
|
Xie X, Li M, Zhou M, Chow SF, Tsang CK. Pharmacological preconditioning by TERT inhibitor BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming. J Neurochem 2021; 159:690-709. [PMID: 34532857 DOI: 10.1111/jnc.15515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
After a sublethal ischemic preconditioning (IPC) stimulus, the brain has a remarkable capability of acquiring tolerance to subsequent ischemic insult by establishing precautionary self-protective mechanism. Understanding this endogenous mechanism would reveal novel and effective neuroprotective targets for ischemic brain injury. Our previous study has implied that telomerase reverse transcriptase (TERT) is associated with IPC-induced tolerance. Here, we investigated the mechanism of TERT-mediated ischemic tolerance. Preconditioning was modeled by oxygen-glucose deprivation (OGD) and by TERT inhibitor BIBR1532 in primary neurons. We found that ischemic tolerance was conferred by BIBR1532 preconditioning. We used the Cleavage-Under-Targets-And-Tagmentation approach, a recently developed method with superior signal-to-noise ratio, to comprehensively map the genomic binding sites of TERT in primary neurons, and showed that more than 50% of TERT-binding sites were located at the promoter regions. Mechanistically, we demonstrated that under normal conditions TERT physically bound to many previously unknown genomic loci in neurons, whereas BIBR1532 preconditioning significantly altered TERT-chromatin-binding profile. Intriguingly, we found that BIBR1532-preconditioned neurons showed significant up-regulation of promoter binding of TERT to the mitochondrial anti-oxidant genes, which were correlated with their elevated expression. Functional analysis further indicated that BIBR1532-preconditioning significantly reduced ROS levels and enhanced tolerance to severe ischemia-induced mitochondrial oxidative stress in neurons in a TERT-dependent manner. Together, these results demonstrate that BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming for up-regulation of mitochondrial anti-oxidation gene expression, suggesting the translational potential of BIBR1532 as a therapeutic agent for the treatment of cerebral ischemic injury and oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mingxi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mengyao Zhou
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Core Research Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Ryanodine receptors contribute to the induction of ischemic tolerance. Brain Res Bull 2016; 122:45-53. [DOI: 10.1016/j.brainresbull.2016.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 02/24/2016] [Indexed: 11/21/2022]
|
6
|
Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. A simple method to obtain pure cultures of multiciliated ependymal cells from adult rodents. Histochem Cell Biol 2012; 139:205-20. [PMID: 22878526 DOI: 10.1007/s00418-012-1008-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
Ependymal cells form an epithelium lining the ventricular cavities of the vertebrate brain. Numerous methods to obtain primary culture ependymal cells have been developed. Most of them use foetal or neonatal rat brain and the few that utilize adult brain hardly achieve purity. Here, we describe a simple and novel method to obtain a pure non-adherent ependymal cell culture from explants of the striatal and septal walls of the lateral ventricles. The combination of a low incubation temperature followed by a gentle enzymatic digestion allows the detachment of most of the ependymal cells from the ventricular wall in a period of 6 h. Along with ependymal cells, a low percentage (less than 6 %) of non-ependymal cells also detaches. However, they do not survive under two restrictive culture conditions: (1) a simple medium (alpha-MEM with glucose) without any supplement; and (2) a low density of 1 cell/µl. This purification method strategy does not require cell labelling with antibodies and cell sorting, which makes it a simpler and cheaper procedure than other methods previously described. After a period of 48 h, only ependymal cells survive such conditions, revealing the remarkable survival capacity of ependymal cells. Ependymal cells can be maintained in culture for up to 7-10 days, with the best survival rates obtained in Neurobasal supplemented with B27 among the tested media. After 7 days in culture, ependymal cells lose most of the cilia and therefore the mobility, while acquiring radial glial cell markers (GFAP, BLBP, GLAST). This interesting fact might indicate a reprogramming of the cell identity.
Collapse
Affiliation(s)
- J M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
7
|
Tauskela JS, Aylsworth A, Hewitt M, Brunette E, Mealing GAR. Preconditioning induces tolerance by suppressing glutamate release in neuron culture ischemia models. J Neurochem 2012; 122:470-81. [DOI: 10.1111/j.1471-4159.2012.07791.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Liu YX, Zhang M, Liu LZ, Cui X, Hu YY, Li WB. The role of glutamate transporter-1a in the induction of brain ischemic tolerance in rats. Glia 2011; 60:112-24. [PMID: 21971915 DOI: 10.1002/glia.21252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 09/12/2011] [Indexed: 01/04/2023]
Abstract
This study was undertaken to determine the role of glutamate transporter-1a (GLT-1a), one of the splice variants of glutamate transporter-1, in the induction of brain ischemic tolerance by cerebral ischemic preconditioning (CIP). We used a rat global cerebral ischemic model and assessed changes by neuropathological evaluation, Western blot analysis, immunohistochemistry, real-time PCR, in vivo brain microdialysis, and high performance liquid chromatography. We found that CIP induced a significant upregulation of GLT-1a expression in the CA1 hippocampus in a time course corresponding to that of neuroprotection of CIP against brain ischemia. Severe brain ischemia for 8 min induced delayed downregulation of GLT-1a, an obvious increase in glutamate concentration and delayed neuronal death of the pyramidal neurons in the CA1 hippocampus. When the animals were pretreated with CIP before the severe ischemia, the above changes normally induced by the severe ischemia were effectively prevented. Importantly, such a preventive effect of CIP on these changes was significantly inhibited by intracerebroventricular administration of GLT-1a antisense oligodeoxynucleotides, which have been proven to specifically inhibit the expression of GLT-1a protein and mRNA, and had no effect on the expression of GLT-1b. In addition, the concentration of aspartate was also elevated after severe brain ischemic insult. However, CIP had no effect on the elevated aspartate concentrations. These results indicate that GLT-1a participated in the brain ischemic tolerance induced by CIP in rats.
Collapse
Affiliation(s)
- Yi-Xian Liu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Hogins J, Crawford DC, Jiang X, Mennerick S. Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 2011; 43:516-25. [PMID: 21605675 DOI: 10.1016/j.nbd.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate release is a root cause of acute and delayed neuronal damage in response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the postsynaptic compartment have been disappointing clinically. Here we explored whether presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our evidence suggests that strong depolarization, previously shown to mute glutamate synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity in response to exogenous glutamate treatment were unaffected by depolarization preconditioning. These features strongly suggest that reduced glutamate release explains preconditioning protection. We addressed whether hypoxic depolarization itself induces presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. Indeed, we found that the hypoxic insult increased the percentage of mute glutamate synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In total our results suggest that presynaptic silencing is an endogenous neuroprotective mechanism that could be exploited to reduce damage from insults involving excess synaptic glutamate release.
Collapse
Affiliation(s)
- Joshua Hogins
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
10
|
Neuronal plasticity after ischemic preconditioning and TIA-like preconditioning ischemic periods. Acta Neuropathol 2009; 117:511-23. [PMID: 19084975 DOI: 10.1007/s00401-008-0473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/29/2008] [Accepted: 12/06/2008] [Indexed: 01/10/2023]
Abstract
Transient ischemic attacks (TIAs) have recently become the center of attention since they are thought to share some characteristics with experimental ischemic preconditioning (IPC). This phenomenon describes the situation that a brief, per se harmless, cerebral ischemic period renders the brain resistant to a subsequent severe and normally damaging ischemia. Preconditioning (PC) is not restricted to the brain but also occurs in other organs. Furthermore, apart from a short ischemia, the PC event may comprise nearly any noxious stimulus which, however, must not exceed the threshold to tissue damage. In the last two decades, our knowledge concerning the underlying molecular basis of PC has substantially grown and there is hope to potentially imitate the induction of an endogenous neuroprotective state in patients with a high risk of cerebral ischemia. While, at present, there is virtually no neuropathological data on changes after TIAs or TIA-like PC ischemic periods in human brains, the following review will briefly summarize the current knowledge of plastic neuronal changes after PC in animal models, still awaiting their detection in the human brain.
Collapse
|
11
|
A new model for the study of high-K+-induced preconditioning in cultured neurones: Role of N-methyl-d-aspartate and α7-nicotinic acetylcholine receptors. J Neurosci Methods 2009; 177:311-6. [DOI: 10.1016/j.jneumeth.2008.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022]
|
12
|
Prentice HM. The major contribution of brain GABAergic function to anoxic survival. Physiol Genomics 2009; 36:59-60. [DOI: 10.1152/physiolgenomics.90380.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Howard M. Prentice
- College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
13
|
Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res 2008; 1211:22-9. [DOI: 10.1016/j.brainres.2005.04.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 04/10/2005] [Accepted: 04/13/2005] [Indexed: 11/18/2022]
|
14
|
Bigdeli MR, Hajizadeh S, Froozandeh M, Heidarianpour A, Rasoulian B, Asgari AR, Pourkhalili K, Khoshbaten A. Normobaric hyperoxia induces ischemic tolerance and upregulation of glutamate transporters in the rat brain and serum TNF-alpha level. Exp Neurol 2008; 212:298-306. [PMID: 18538765 DOI: 10.1016/j.expneurol.2008.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 01/13/2023]
Abstract
Recent studies suggest that intermittent and prolonged normobaric hyperoxia (HO) results in ischemic tolerance to reduce ischemic brain injury. In this research, we attempted to see changes in excitatory amino acid transporters (EAATs) and TNF-alpha levels following prolonged and intermittent hyperoxia preconditioning. Rats were divided into four experimental groups, each of 21 animals. The first two were exposed to 95% inspired HO for 4 h/day for 6 consecutive days (intermittent HO, InHO) or for 24 continuous hours (prolonged HO, PrHO). The second two groups acted as controls, and were exposed to 21% oxygen in the same chamber. Each main group was subdivided to middle cerebral artery occlusion (MCAO-operated), sham-operated (without MCAO), and intact (without any surgery) subgroups. After 24 h from pretreatment, MCAO-operated subgroups were subjected to 60 min of right MCAO. After 24 h reperfusion, neurologic deficit score (NDS) and infarct volume were measured in MCAO-operated subgroups. EAATs expression and serum TNF-alpha levels were assessed in sham-operated and intact subgroups. Preconditioning with prolonged and intermittent HO decreased NDS and upregulated EAAT1, EAAT2, and EAAT3 and increased serum TNF-alpha levels significantly. Although further studies are needed to clarify the mechanisms of ischemic tolerance, the intermittent and prolonged HO seems to partly exert their effects via increase serum TNF-alpha levels and upregulation of EAATs.
Collapse
|
15
|
Bigdeli MR, Khoshbaten A. In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-alpha converting enzyme/tumor necrosis factor-alpha/nuclear factor-kappaB. Neuroscience 2008; 153:671-8. [PMID: 18423996 DOI: 10.1016/j.neuroscience.2008.02.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 01/03/2023]
Abstract
Recent studies suggest that intermittent and prolonged normobaric hyperoxia (HO) results in brain ischemic tolerance (BIT), reducing ischemic brain injury. We have attempted to determine the time course of HO-induced BIT, and to explore the putative roles of tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE), TNF-alpha, and nuclear factor-kappaB (NF-kappaB) activation in mediating this effect. Two core experimental protocols were applied to rats (experiments 1 [E1] and 2 [E2] respectively). E1 rodents comprised six subgroups, breathing room air (RA; O(2)=21%), or 95% oxygen (HO) for 4, 8, 16 h (4RA, 8RA, 16RA and 4HO, 8HO, 16HO respectively). E2 rodents were divided into subgroups, exposed to 95% inspired HO for 4 h/day for six consecutive days (intermittent hyperoxia, InHO) or for 24 continuous hours (prolonged hyperoxia, PrHO). Each of these had a control group exposed to 21% oxygen in the same chamber. Twenty-four hours after pretreatment, each group was randomly divided to receive 60 min right middle cerebral artery occlusion (MCAO-operated), sham-operation (without MCAO), or no operation (intact). After 24 h reperfusion, neurologic deficit score (NDS), brain water content, Evans Blue extravasation (as a marker of blood-brain barrier permeability), TACE expression, serum TNF-alpha, and phosphor- kappaBalpha levels were assessed in all animals, and infarct volume in the MCAO-operated subgroups. E1: Compared with the control (RA) group, infarct volume was reduced by 58.6% and 64.4% in 16 h and 24 h respectively. NDS and Evans Blue extravasation was also reduced in 16 h and 24 h. There was no statistical difference among 4 h and 8 h. E2: Preconditioning with prolonged and intermittent HO decreased NDS, infarct volume and upregulated TACE and increased phosphor-kappaBalpha and serum TNF-alpha level significantly. Although further studies are needed to clarify the mechanisms of brain ischemic tolerance, InHO and PrHO may partly exert their effects via triggering TACE/TNF-alpha/NF-kappaB.
Collapse
Affiliation(s)
- M R Bigdeli
- Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.
| | | |
Collapse
|
16
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
17
|
Protective effects of paeonol on cultured rat hippocampal neurons against oxygen–glucose deprivation-induced injury. J Neurol Sci 2008; 264:50-5. [DOI: 10.1016/j.jns.2007.06.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/17/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022]
|
18
|
Thompson JW, Prentice HM, Lutz PL. Regulation of extracellular glutamate levels in the long-term anoxic turtle striatum: coordinated activity of glutamate transporters, adenosine, K (ATP) (+) channels and GABA. J Biomed Sci 2007; 14:809-17. [PMID: 17629717 DOI: 10.1007/s11373-007-9190-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 05/10/2007] [Indexed: 11/28/2022] Open
Abstract
Early in anoxia the mammalian brain experiences an uncontrolled release of glutamate, which combined with the failure of glutamate reuptake mechanisms, leads to massive neurotoxic increases in extracellular glutamate. By contrast, the anoxia tolerant turtle (Trachemys scripta) shows no increase in extracellular glutamate levels over many hours of anoxia. During the first hours of anoxia extracellular glutamate levels are maintained by a reduction in glutamate release (mainly due to the inhibition of neuronal vesicular glutamate release), combined with continued uptake by still active glutamate transporters. The early down-regulation in glutamate release is modulated by adenosine receptors and K (ATP) (+) channels, but is not affected by GABA(A )receptors. During long-term anoxia there is a further reduction in the rate of glutamate release, reaching 30% of normoxic control values at 5 h of anoxia. Adenosine and GABA(A) receptors but not K (ATP) (+) channels regulate this reduction in glutamate release. We conclude that the reduction in glutamate release during progressive anoxia is a dynamic process requiring continuous but changing synergistic activity of K (ATP) (+) channels, adenosine and GABA(A) receptors. The fact that there is a still active glutamate release and uptake in prolonged anoxia suggests that extracellular glutamate has a vital function in the deeply hypometabolic brain.
Collapse
Affiliation(s)
- John W Thompson
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|
19
|
Milton SL, Prentice HM. Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:277-90. [PMID: 17049896 PMCID: PMC1975785 DOI: 10.1016/j.cbpa.2006.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
The freshwater turtle Trachemys scripta is among the most anoxia-tolerant of vertebrates, a true facultative anaerobe able to survive without oxygen for days at room temperature to weeks or months during winter hibernation. Our good friend and colleague Peter Lutz devoted nearly 25 years to the study of the physiology of anoxia tolerance in these and other model organisms, promoting not just the basic science but also the idea that understanding the physiology and molecular mechanisms behind anoxia tolerance provides insights into critical survival pathways that may be applicable to the hypoxic/ischemic mammalian brain. Work by Peter and his colleagues focused on the factors which enable the turtle to enter a deep hypometabolic state, including decreases in ion flux ("channel arrest"), increases in inhibitory neuromodulators like adenosine and GABA, and the maintenance of low extracellular levels of excitatory compounds such as dopamine and glutamate. Our attention has recently turned to molecular mechanisms of anoxia tolerance, including the upregulation of such protective factors as heat shock proteins (Hsp72, Hsc73), the reversible downregulation of voltage gated potassium channels, and the modulation of MAP kinase pathways. In this review we discuss three phases of anoxia tolerance, including the initial metabolic downregulation over the first several hours, the long-term maintenance of neuronal function over days to weeks of anoxia, and finally recovery upon reoxygenation, with necessary defenses against reactive oxygen stress.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
20
|
Abstract
Adaptation is one of physiology's fundamental tenets, operating not only at the level of species, as Darwin proposed, but also at the level of tissues, cells, molecules and, perhaps, genes. During recent years, stroke neurobiologists have advanced a considerable body of evidence supporting the hypothesis that, with experimental coaxing, the mammalian brain can adapt to injurious insults such as cerebral ischaemia to promote cell survival in the face of subsequent injury. Establishing this protective phenotype in response to stress depends on a coordinated response at the genomic, molecular, cellular and tissue levels. Here, I summarize our current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance'.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
21
|
Jia YH, Zhu X, Li SY, Ni JH, Jia HT. Kainate exposure suppresses activation of GluR2 subunit promoter in primary cultured cerebral cortical neurons through induction of RE1-silencing transcription factor. Neurosci Lett 2006; 403:103-8. [PMID: 16701950 DOI: 10.1016/j.neulet.2006.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/24/2022]
Abstract
The AMPA receptor subunit GluR2 is downregulated in neurons following a wide range of neurological insults. Here we report that suppression of GluR2 gene promoter activity is associated with kainate (KA)-induced downregulation of GluR2 subunit levels in primary cultured cortical neurons. RT-PCR and Northern blotting showed a significant decrease in GluR2 mRNA in cultured neurons after KA exposure. Transfection of cultured neurons with an expression vector pGL3-GluR2(-298/+283), where the reporter gene firefly luciferase was driven by the GluR2 promoter, revealed that KA exposure suppressed the transcriptional activation of the GluR2 promoter. Furthermore, the expression of the RE1-silencing transcription factor (REST) was increased in KA-exposed cortical neurons; enhanced binding of REST to RE1-like silencer element in the proximal promoter of the GluR2 subunit gene was evidenced by electrophoresis mobility shift assay. Chromatin immunoprecipitation showed that suppressed activity of the GluR2 promoter in cultured neurons after KA exposure was related to deacetylation of histone H4. These results indicate that REST as a crucial factor binds to RE1-like silencer element in the GluR2 promoter, suppressing transcription of the GluR2 subunit gene during KA exposure. Our data suggest that transcriptional suppression of the GluR2 subunit gene may contribute at least in part to downregulation of GluR2 subunit protein in neurons during KA exposure. Because our experiments showed a reduction of glutamate release in KA-exposed cortical neurons, REST may play a latent role in delayed neuronal death or in seizure-induced tolerance.
Collapse
MESH Headings
- Acetylation
- Animals
- Blotting, Northern
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Chromatin Immunoprecipitation
- Down-Regulation
- Electrophoretic Mobility Shift Assay
- Genes, Reporter
- Histones/metabolism
- Kainic Acid/metabolism
- Kainic Acid/toxicity
- Luciferases, Firefly/antagonists & inhibitors
- Luciferases, Firefly/genetics
- Neurons/drug effects
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- RNA, Messenger/antagonists & inhibitors
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/genetics
- Repressor Proteins/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Silencer Elements, Transcriptional
- Transcription Factors/biosynthesis
Collapse
Affiliation(s)
- Yu-Hong Jia
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100083, PR China
| | | | | | | | | |
Collapse
|
22
|
Lizasoain I, Cárdenas A, Hurtado O, Romera C, Mallolas J, Lorenzo P, Castillo J, Moro MA. Targets of cytoprotection in acute ischemic stroke: present and future. Cerebrovasc Dis 2006; 21 Suppl 2:1-8. [PMID: 16651809 DOI: 10.1159/000091698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the management of stroke has improved remarkably over the last decade due mainly to the advent of thrombolysis, most neuroprotective agents, although successful in animal studies, have failed in humans. Our increasing knowledge concerning the ischemic cascade is leading to a considerable development of pharmacological tools suggesting that each step of this cascade might be a target for cytoprotection. Glutamate has long been recognized to play key roles in the pathophysiology of ischemia. However, although some trials are still ongoing, the results from several completed trials with drugs interfering with the glutamatergic pathway have been disappointing. Regarding the inhibition of glutamate release as a possible target for cytoprotection, it might be afforded either by decreasing glutamate efflux or by increasing glutamate uptake. In this context, it has been shown that glutamate transport is the primary and only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. This transport is executed by the five high-affinity, sodium-dependent plasma membrane glutamate transporters. Among them, the transporter EAAT2 is responsible for up to 90% of all glutamate transport. We will discuss the effect of different neuroprotective tools (membrane stabilizers or endogenous neuroprotection) affecting glutamate efflux and/or expression of EAAT2. We will also describe the finding of a novel polymorphism in the EAAT2 promoter region which could be responsible for differences in both gene function and regulation under pathological conditions such as cerebral ischemia, and which might well account for the failure of glutamate antagonists in the clinical practice. These results may possess important therapeutic implications in the management of patients at risk of ischemic events, since it has been demonstrated that those patients with progressing stroke have higher plasma concentrations of glutamate which remain elevated up to 24 h when compared to the levels in patients without neurological deterioration.
Collapse
Affiliation(s)
- I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, Pérez-Pinzón MA. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 2006; 82:665-73. [PMID: 16247804 DOI: 10.1002/jnr.20674] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxicity is recognized to play a major role in cerebral ischemia-induced cell death. The main goal of the present study was to define whether our model of ischemic preconditioning (IPC) promotes a shift from excitatory to inhibitory neurotransmission during the test ischemia to diminish metabolic demand during the reperfusion phase. We also determined whether gamma-aminobutyric acid (GABA) played a role in IPC-induced neuroprotection. Ten minutes of cerebral ischemia was produced by tightening the carotid ligatures bilaterally following hypotension. Samples of microdialysis perfusate, representing extracellular fluid, were analyzed for amino acid content by HPLC. IPC promoted a robust release of GABA after lethal ischemia compared with control rats. We also observed that the activity of glutamate decarboxylase (the predominant pathway of GABA synthesis in the brain) was higher in the IPC group compared with control and ischemic groups. Because GABAA receptor up-regulation has been shown to occur following IPC, and GABAA receptor activation has been implicated in neuroprotection against ischemic insults, we tested the hypothesis that GABAA or GABAB receptor activation was neuroprotective during ischemia or early reperfusion by using an in vitro model (organotypic hippocampal slice culture). Administration of the GABAB agonist baclofen during test ischemia and for 1 hr of reperfusion provided significant neuroprotection. We concluded that increased GABA release in preconditioned animals after ischemia might be one of the factors responsible for IPC neuroprotection. Specific activation of GABAB receptor contributes significantly to neuroprotection against ischemia in organotypic hippocampal slices.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Pradillo JM, Hurtado O, Romera C, Cárdenas A, Fernández-Tomé P, Alonso-Escolano D, Lorenzo P, Moro MA, Lizasoain I. TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning. Neuroscience 2006; 138:1171-8. [PMID: 16442237 DOI: 10.1016/j.neuroscience.2005.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 12/20/2022]
Abstract
A short ischemic event (ischemic preconditioning) can result in subsequent resistance to severe ischemic injury (ischemic tolerance). Glutamate is released after ischemia and produces cell death. It has been described that after ischemic preconditioning, the release of glutamate is reduced. We have shown that an in vitro model of ischemic preconditioning produces upregulation of glutamate transporters which mediates brain tolerance. We have now decided to investigate whether ischemic preconditioning-induced glutamate transporter upregulation takes also place in vivo, its cellular localization and the mechanisms by which this upregulation is controlled. A period of 10 min of temporary middle cerebral artery occlusion was used as a model of ischemic preconditioning in rat. EAAT1, EAAT2 and EAAT3 glutamate transporters were found in brain from control animals. Ischemic preconditioning produced an up-regulation of EAAT2 and EAAT3 but not of EAAT1 expression. Ischemic preconditioning-induced increase in EAAT3 expression was reduced by the TNF-alpha converting enzyme inhibitor BB1101. Intracerebral administration of either anti-TNF-alpha antibody or of a TNFR1 antisense oligodeoxynucleotide also inhibited ischemic preconditioning-induced EAAT3 up-regulation. Immunohistochemical studies suggest that, whereas the expression of EAAT3 is located in both neuronal cytoplasm and plasma membrane, ischemic preconditioning-induced up-regulation of EAAT3 is mainly localized at the plasma membrane level. In summary, these results demonstrate that in vivo ischemic preconditioning increases the expression of EAAT2 and EAAT3 glutamate transporters the upregulation of the latter being at least partly mediated by TNF-alpha converting enzyme/TNF-alpha/TNFR1 pathway.
Collapse
MESH Headings
- ADAM Proteins/antagonists & inhibitors
- ADAM Proteins/metabolism
- ADAM17 Protein
- Animals
- Antibodies/pharmacology
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cell Membrane/metabolism
- Cerebral Cortex/blood supply
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Transporter 2/metabolism
- Excitatory Amino Acid Transporter 3/metabolism
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/physiopathology
- Ischemic Preconditioning
- Male
- Neurons/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Rats
- Rats, Inbred F344
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/physiology
Collapse
Affiliation(s)
- J M Pradillo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Ischaemic preconditioning (IPC), also known as ischaemic tolerance (IT), is a phenomenon whereby tissue is exposed to a brief, sublethal period of ischaemia, which activates endogenous protective mechanisms, thereby reducing cellular injury that may be caused by subsequent lethal ischaemic events. The first description of this phenomenon was in the heart, which was reported by Murry and co-workers in 1986. Subsequent studies demonstrated IPC in lung, kidney and liver tissue, whereas more recent studies have concentrated on the brain. The cellular mechanisms underlying the beneficial effects of IPC remain largely unknown. This phenomenon, which has been demonstrated by using various injury paradigms in both cultured neurons and animal brain tissue, may be utilised to identify and characterise therapeutic targets for small-molecule, antibody, or protein intervention. This review will examine the experimental evidence demonstrating the phenomenon termed IPC in models of cerebral ischaemia, the cellular mechanisms that may be involved and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Kevin Pong
- Wyeth Research, Department of Neuroscience, Princeton, NJ 08543, USA.
| |
Collapse
|
26
|
Vollenweider F, Bendfeldt K, Maetzler W, Otten U, Nitsch C. GABA(B) receptor expression and cellular localization in gerbil hippocampus after transient global ischemia. Neurosci Lett 2005; 395:118-23. [PMID: 16298486 DOI: 10.1016/j.neulet.2005.10.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/06/2005] [Accepted: 10/26/2005] [Indexed: 11/19/2022]
Abstract
Using in situ hybridization, the expression of the GABA receptor subtype B subunit 1 (GABA(B) R1) and subunit 2 (GABA(B) R2) following transient global ischemia in the gerbil hippocampus was investigated. In sham-operated animals, mRNAs of both subunits were mainly detected in hippocampal pyramidal cells and interneurons with lower expression levels of the GABA(B) R2 in the CA1 field. Four days after transient cerebral ischemia, neuronal message decreased in conjunction with neuronal death and both receptor subunits disappeared from the pyramidal cell layer. However, GABA(B) R1 and GABA(B) R2 were still expressed in a few cells. In situ hybridization of the GABA synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) remained unchanged after the ischemic insult. Double-labeling experiments revealed that in the postischemic hippocampus GABA(B) R1 and GABA(B) R2 were not present in GFAP-reactive astrocytes, but that the surviving parvalbumin-containing interneurons possessed GABA(B) R1 and GABA(B) R2 mRNA.
Collapse
Affiliation(s)
- F Vollenweider
- Functional Neuroanatomy, Institute of Anatomy, Basel University, Pestalozzistrasse 20, CH-4056 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Lange-Asschenfeldt C, Raval AP, Pérez-Pinzón MA. Ischemic tolerance induction in organotypic hippocampal slices: role for the GABA(A) receptor? Neurosci Lett 2005; 384:87-92. [PMID: 15908115 DOI: 10.1016/j.neulet.2005.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/30/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022]
Abstract
Ischemic preconditioning (IPC) refers to sublethal ischemic insults rendering brain tissue tolerant against subsequent ischemic insults. We investigated the role of the GABA(A) receptor (GABA(A)R) upon IPC induction. Rat organotypic hippocampal slices were subjected to IPC by 15 min of oxygen-glucose deprivation (OGD) followed by 40 min of OGD 48 h later, resulting in robust cell death reduction as assessed by the propidium iodide fluorescence method ('late' or 'second window' IPC). Superfusion with the GABA(A)R antagonist bicuculline during IPC ameliorated propidium iodide uptake at a high but not at low doses indicating that GABA(A)R activation may be assigned a limited role in neuroprotection. In previous studies, we found that increased neuronal excitability can promote IPC neuroprotection. We, therefore, tested the hypothesis that blockade of inhibitory GABAergic transmission conferred ischemic tolerance. However, temporary administration of bicuculline 48 h prior to ischemic challenge was not neuroprotective. In another approach, we tested whether preconditioning with the GABA(A)R agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) mediated ischemic tolerance and found no significant neuroprotection. The results are discussed in light of the intrinsic excitatory-inhibitory balance of glutamate and GABA.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
28
|
Hwang IK, Yoo KY, Kim DS, Eum WS, Park JK, Park J, Kwon OS, Kang TC, Choi SY, Won MH. Changes of pyridoxal kinase expression and activity in the gerbil hippocampus following transient forebrain ischemia. Neuroscience 2005; 128:511-8. [PMID: 15381280 DOI: 10.1016/j.neuroscience.2004.06.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2004] [Indexed: 11/29/2022]
Abstract
In the previous study, we observed chronological alterations of glutamic acid decarboxylase (GAD), which is the enzyme converting glutamate into GABA. GAD isoforms (GAD65 and GAD67) differ substantially in their interactions with cofactor pyridoxal 5'-phosphate, which is catalyzed by pyridoxal kinase (PLK). In the present study, we examined the chronological changes of PLK expression and activity in the hippocampus after 5 min transient forebrain ischemia in gerbils. PLK immunoreactivity in the sham-operated group was detected weakly in the hippocampus. Ischemia-related change of PLK immunoreactivity in the hippocampus was significant in the hippocampal cornu ammonis (CA1)region, not in the hippocampal CA2/3 region and dentate gyrus. PLK immunoreactivity was observed in non-pyramidal GABAergic neurons at 30 min to 3 h after ischemic insult. At 12 h after ischemic insult, PLK immunoreactivity was shown in many CA1 pyramidal cells as well as some non-pyramidal cells. At this time point, PLK immunoreactivity and protein content was highest after ischemia. Thereafter, PLK immunoreactivity and protein content is decreased time-dependently by 4 days after ischemic insult. Four days after ischemia, some astrocytes expressed PLK in the CA1 region. The specific PLK activity was not altered following ischemic insult up to 2 days after ischemic insult. Thereafter, the specific PLK activity decreased time-dependently. However, total activity of PLK was significantly increased 12-24 h after ischemic insult, and thereafter total activity of PLK decreased. Therefore, we suggest that the over-expression of PLK in the CA1 pyramidal cells at 12 h after ischemia may induce increase of GAD in the CA1 pyramidal cells, which plays an important role in delayed neuronal death via the increase of GABA or enhancement of GABA shunt pathway.
Collapse
Affiliation(s)
- I K Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tauskela JS, Morley P. On the role of Ca2+ in cerebral ischemic preconditioning. Cell Calcium 2005; 36:313-22. [PMID: 15261487 DOI: 10.1016/j.ceca.2004.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 01/15/2023]
Abstract
Cerebral ischemic preconditioning (IPC) represents a potent endogenous method of inducing tolerance to otherwise lethal ischemia, both in in vivo and in vitro models. Investigation into the mechanism of this phenomenon has yet again transformed the way that neuroscientists view Ca2+. Generally viewed as an agent of neuronal death, particularly within an excitotoxic setting of cerebral ischemia, Ca2+ is now regarded as a key mediator of IPC. Classification of the role of Ca2+ in IPC defies simple description, but seems to possess a stimulatory role during the tolerance-inducing ischemia and an inhibitory or modulatory role during or following the second normally lethal ischemia.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Montreal Road Campus, Building M-54, Ottawa, ON, Canada K1A 0R6.
| | | |
Collapse
|
30
|
Troulinaki K, Tavernarakis N. Neurodegenerative conditions associated with ageing: a molecular interplay? Mech Ageing Dev 2005; 126:23-33. [PMID: 15610759 DOI: 10.1016/j.mad.2004.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ageing process precipitates dramatic alterations in the physiology of all organisms, including reduced cellular function, compromised resistance to stress and pathological agents, and increased likelihood of developing age-related diseases. Among the most characteristic pathologies associated with old age are numerous late-onset neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. In addition to stroke, which also inflicts loss of neuronal cells, these conditions account for ever-increasing debilitation among the elderly. Recent studies in model organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, which offer the prowess of sophisticated genetic approaches, have uncovered significant, novel aspects of the molecular mechanisms that underlie both neurodegeneration and the ageing process. These advances hold promise that the intimate link between the aged state and the manifestation of several neurodegenerative diseases will be deciphered. Here, we discuss the mechanisms by which ageing interfaces with, and influences, the progression of neurodegeneration.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
31
|
Romera C, Hurtado O, Botella SH, Lizasoain I, Cárdenas A, Fernández-Tomé P, Leza JC, Lorenzo P, Moro MA. In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 2004; 24:1350-7. [PMID: 14960606 PMCID: PMC6730348 DOI: 10.1523/jneurosci.1596-03.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A short ischemic event [ischemic preconditioning (IPC)] can result in a subsequent resistance to severe ischemic injury (ischemic tolerance). Although tumor necrosis factor-alpha (TNF-alpha) contributes to the brain damage found after cerebral ischemia, its expression and neuroprotective role in models of IPC have also been described. Regarding the role of TNF-alpha convertase (TACE/ADAM17), we have recently shown its upregulation in rat brain after IPC induced by transient middle cerebral artery occlusion and that subsequent TNF-alpha release accounts for at least part of the neuroprotection found in this model. We have now used an in vitro model of IPC using rat cortical cultures exposed to sublethal oxygen-glucose deprivation (OGD) to investigate TACE expression and activity after IPC and the subsequent mechanisms of ischemic tolerance. OGD-induced cell death was significantly reduced in cells exposed to IPC by sublethal OGD 24 hr before, an effect that was inhibited by the TACE inhibitor BB3103 (1 microm) and anti-TNF-alpha antibody (2 microg/ml) and that was mimicked by TNF-alpha (10 pg/ml) preincubation. Western blot analysis showed that TACE expression is increased after IPC. IPC caused TNF-alpha release, an effect that was blocked by the selective TACE inhibitor BB-3103. In addition, IPC diminished the increase in extracellular glutamate caused by OGD and increased cellular glutamate uptake and expression of EAAT2 and EAAT3 glutamate transporters; however, only EAAT3 upregulation was mediated by increased TNF-alpha. These data demonstrate that neuroprotection induced by IPC involves upregulation of glutamate uptake partly mediated by TACE overexpression.
Collapse
Affiliation(s)
- Cristina Romera
- Departamento de Farmacología, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tauskela JS, Brunette E, Monette R, Comas T, Morley P. Preconditioning of cortical neurons by oxygen-glucose deprivation: tolerance induction through abbreviated neurotoxic signaling. Am J Physiol Cell Physiol 2003; 285:C899-911. [PMID: 12814913 DOI: 10.1152/ajpcell.00110.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient exposure of rat cortical cultures to nonlethal oxygen-glucose deprivation (OGD preconditioning) induces tolerance to otherwise lethal oxygen-glucose deprivation (OGD) or N-methyl-D-aspartate 24 h later. This study evaluates the role of cytosolic and mitochondrial Ca2+-dependent cellular signaling. Mechanistic findings are placed in context with other models of ischemic preconditioning or known neurotoxic pathways within cortical neurons. Tolerance to otherwise lethal OGD is suppressed by performing OGD preconditioning in the presence of the broad-scope catalytic antioxidants Mn(III)tetra(4-carboxyphenyl)porphyrin (MnTBAP) or Zn(II)tetra(4-carboxyphenyl)porphyrin [Zn(II)TBAP], but not by a less active analog, Mn(III)tetra(4-sulfonatophenyl)porphyrin, or a potent superoxide scavenger, Mn(III)tetra(N-ethyl-2-pyridyl)porphyrin chloride. Inhibitors of adenosine A1 receptors, nitric oxide synthase, mitogen-activated protein kinase, and poly(ADP-ribose) polymerase fail to suppress OGD preconditioning despite possible links with reactive oxygen species in other models of ischemic preconditioning. Preconditioning is suppressed by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which has been ascribed elsewhere to inhibition of superoxide transport to the cytosol through mitochondrial anion channels. However, although it induces mitochondrial Ca2+ uptake, neuronal preconditioning is largely insensitive to mitochondrial uncoupling with carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone or 2,4-dinitrophenol. Un-couplers will prevent production of mitochondrial reactive oxygen species, implying nonmitochondrial targets by MnTBAP, Zn(II)TBAP, and DIDS. Emphasizing the importance of an increase in cytosolic Ca2+ during preconditioning, a Ca2+/calmodulin-dependent protein kinase II inhibitor, KN-62, suppresses development of subsequent tolerance. Summarizing, only those cellular transduction pathways that have the potential to be neurotoxic may be activated by preconditioning in cortical neurons. Finally, a marked decrease in extracellular glutamate is observed during otherwise lethal OGD in preconditioned cultures, suggesting that this end effector may represent a point of convergence across different preconditioning models.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Montreal Road Campus, Bldg. M-54, Ottawa, ON, Canada K1A 0R6.
| | | | | | | | | |
Collapse
|
33
|
Syntichaki P, Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 2003; 4:672-84. [PMID: 12894242 DOI: 10.1038/nrn1174] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|