1
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
2
|
Ma Y, Giardino WJ. Neural circuit mechanisms of the cholecystokinin (CCK) neuropeptide system in addiction. ADDICTION NEUROSCIENCE 2022; 3:100024. [PMID: 35983578 PMCID: PMC9380858 DOI: 10.1016/j.addicn.2022.100024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given historical focus on the roles for cholecystokinin (CCK) as a peripheral hormone controlling gastrointestinal processes and a brainstem peptide regulating food intake, the study of CCK as a limbic neuromodulator coordinating reward-seeking and emotional behavior remains underappreciated. Furthermore, localization of CCK to specialized interneurons throughout the hippocampus and cortex relegated CCK to being examined primarily as a static cell type marker rather than a dynamic functional neuromodulator. Yet, over three decades of literature have been generated by efforts to delineate the central mechanisms of addiction-related behaviors mediated by the CCK system across the striatum, amygdala, hypothalamus, and midbrain. Here, we cover fundamental findings that implicate CCK neuron activity and CCK receptor signaling in modulating drug intake and drug-seeking (focusing on psychostimulants, opioids, and alcohol). In doing so, we highlight the few studies that indicate sex differences in CCK expression and corresponding drug effects, emphasizing the importance of examining hormonal influences and sex as a biological variable in translating basic science discoveries to effective treatments for substance use disorders in human patients. Finally, we point toward understudied subcortical sources of endogenous CCK and describe how continued neurotechnology advancements can be leveraged to modernize understanding of the neural circuit mechanisms underlying CCK release and signaling in addiction-relevant behaviors.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Psychiatry & Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William J. Giardino
- Department of Psychiatry & Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Worth AA, Shoop R, Tye K, Feetham CH, D'Agostino G, Dodd GT, Reimann F, Gribble FM, Beebe EC, Dunbar JD, Alexander-Chacko JT, Sindelar DK, Coskun T, Emmerson PJ, Luckman SM. The cytokine GDF15 signals through a population of brainstem cholecystokinin neurons to mediate anorectic signalling. eLife 2020; 9:55164. [PMID: 32723474 PMCID: PMC7410488 DOI: 10.7554/elife.55164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/26/2020] [Indexed: 02/02/2023] Open
Abstract
The cytokine, GDF15, is produced in pathological states which cause cellular stress, including cancer. When over expressed, it causes dramatic weight reduction, suggesting a role in disease-related anorexia. Here, we demonstrate that the GDF15 receptor, GFRAL, is located in a subset of cholecystokinin neurons which span the area postrema and the nucleus of the tractus solitarius of the mouse. GDF15 activates GFRALAP/NTS neurons and supports conditioned taste and place aversions, while the anorexia it causes can be blocked by a monoclonal antibody directed at GFRAL or by disrupting CCK neuronal signalling. The cancer-therapeutic drug, cisplatin, induces the release of GDF15 and activates GFRALAP/NTS neurons, as well as causing significant reductions in food intake and body weight in mice. These metabolic effects of cisplatin are abolished by pre-treatment with the GFRAL monoclonal antibody. Our results suggest that GFRAL neutralising antibodies or antagonists may provide a co-treatment opportunity for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Amy A Worth
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom
| | - Rosemary Shoop
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom
| | - Katie Tye
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom
| | - Claire H Feetham
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom,Rowett Institute, University of AberdeenAberdeenUnited Kingdom
| | - Garron T Dodd
- School of Biomedical Sciences, The University of MelbourneVictoriaAustralia
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Fiona M Gribble
- Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Emily C Beebe
- Lilly Research Laboratories, Eli Lilly & CompanyIndianapolisUnited States
| | - James D Dunbar
- Lilly Research Laboratories, Eli Lilly & CompanyIndianapolisUnited States
| | | | - Dana K Sindelar
- Lilly Research Laboratories, Eli Lilly & CompanyIndianapolisUnited States
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly & CompanyIndianapolisUnited States
| | - Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly & CompanyIndianapolisUnited States
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, The University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
4
|
Tschumi CW, Beckstead MJ. Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci 2018; 49:784-793. [PMID: 29405480 DOI: 10.1111/ejn.13858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is expressed throughout the central nervous system and is implicated in the etiology of multiple diseases and disorders. Many primary investigations of NT-induced modulation of neuronal excitability at the level of the synapse have been conducted, but they have not been summarized in review form in nearly 30 years. Therefore, the goal of this review is to discuss the many actions of NT on neuronal excitability across brain regions as well as NT circuit architecture. In the basal ganglia as well as other brain nuclei, NT can act through diverse intracellular signaling cascades to enhance or depress neuronal activity by modulating activity of ion channels, ionotropic and metabotropic neurotransmitter receptors, and presynaptic release of neurotransmitters. Further, NT can produce indirect effects by evoking endocannabinoid release, and recently has itself been identified as a putative retrograde messenger. In the basal ganglia, the diverse actions and circuit architecture of NT signaling allow for input-specific control of reward-related behaviors.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| |
Collapse
|
5
|
Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci 2017; 28:573-585. [DOI: 10.1515/revneuro-2016-0088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
AbstractThe CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose y Proyecto Yachay s/n, San Miguel de Urcuquí 100119, Ecuador
| |
Collapse
|
6
|
Neurotensin: revealing a novel neuromodulator circuit in the nucleus accumbens–parabrachial nucleus projection of the domestic chick. Brain Struct Funct 2014; 221:605-16. [DOI: 10.1007/s00429-014-0928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
|
7
|
Richard MJP, Connell BJ, Khan BV, Saleh TM. Cellular mechanisms by which lipoic acid confers protection during the early stages of cerebral ischemia: a possible role for calcium. Neurosci Res 2010; 69:299-307. [PMID: 21185885 DOI: 10.1016/j.neures.2010.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023]
Abstract
Lipoic acid (LA) is a naturally occurring compound and dietary supplement with powerful antioxidant properties. Although LA is neuroprotective in models of stroke, little is known about the cellular mechanisms by which it confers protection during the early stages of ischemia. Here, using a rat model of permanent middle cerebral artery occlusion (MCAO), we demonstrated that administration of LA 30 min prior to stroke, reduces infarct volume in a dose dependent manner. Whole-cell patch clamp techniques in rat brain slices were used to determine if LA causes any electrophysiological alterations in either healthy neurons or neurons exposed to oxygen and glucose deprivation (OGD). In healthy neurons, LA (0.005 mg/ml and 0.05 mg/ml) did not significantly change resting membrane potential, threshold or frequency of action potentials or synaptic transmission, as determined by amplitude of excitatory post synaptic currents (EPSCs). Similarly, in neurons exposed to OGD, LA did not alter the time course to loss of EPSCs. However, there was a significant delay the onset of anoxic depolarization as well as in the time course of the depolarization. Next, intracellular calcium (Ca(2+)) levels were monitored in isolated neurons using fura-2. Pretreatment with 0.005 mg/ml and 0.05 mg/ml LA for 30 min and 6 h did not significantly alter resting Ca(2+) levels or Ca(2+) response to glutamate (250 μM). However, pretreatment with 0.5 mg/ml LA for 6 h significantly increased resting Ca(2+) levels and significantly decreased the Ca(2+) response to glutamate. In summary, these findings suggest that LA does not affect neuronal physiology under normal conditions, but can protect cells from an ischemic event.
Collapse
Affiliation(s)
- Marc J P Richard
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | | | | | | |
Collapse
|
8
|
A novel method for inducing focal ischemia in vitro. J Neurosci Methods 2010; 190:20-7. [PMID: 20417233 DOI: 10.1016/j.jneumeth.2010.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 11/23/2022]
Abstract
Current in vitro models of stroke involve applying oxygen-glucose deprived (OGD) media over an entire brain slice or plate of cultured neurons. Thus, these models fail to mimic the focal nature of stroke as observed clinically and with in vivo rodent models of stroke. Our aim was to develop a novel in vitro brain slice model of stroke that would mimic focal ischemia and thus allow for the investigation of events occurring in the penumbra. This was accomplished by focally applying OGD medium to a small portion of a brain slice while bathing the remainder of the slice with normal oxygenated media. This technique produced a focal infarct on the brain slice that increased as a function of time. Electrophysiological recordings made within the flow of the OGD solution ("core") revealed that neurons rapidly depolarized (anoxic depolarization; AD) in a manner similar to that observed in other stroke models. Edaravone, a known neuroprotectant, significantly delayed this onset of AD. Electrophysiological recordings made outside the flow of the OGD solution ("penumbra") revealed that neurons within this region progressively depolarized throughout the 75 min of OGD application. Edaravone attenuated this depolarization and doubled neuronal survival. Finally, synaptic transmission in the penumbra was abolished within 50 min of focal OGD application. These results suggest that this in vitro model mimics events that occur during focal ischemia in vivo and can be used to determine the efficacy of therapeutics that target neuronal survival in the core and/or penumbra.
Collapse
|
9
|
Mitchell VA, Kawahara H, Vaughan CW. Neurotensin inhibition of GABAergic transmission via mGluR-induced endocannabinoid signalling in rat periaqueductal grey. J Physiol 2009; 587:2511-20. [PMID: 19359367 DOI: 10.1113/jphysiol.2008.167429] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurotensin modulates pain via its actions within descending analgesic pathways which include brain regions such as the midbrain periaqueductal grey (PAG). The aim of this study was to examine the cellular actions of neurotensin on PAG neurons. Whole cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of neurotensin and its effects on GABA(A) mediated inhibitory postsynaptic currents (IPSCs). Neurotensin (100-300 nM) produced an inward current in subpopulations of opioid sensitive and insensitive PAG neurons which did not reverse over membrane potentials between -50 and -130 mV. The neurotensin induced current was abolished by the NTS1 and NTS1/2 antagonists SR48692 (300 nM) and SR142948A (300 nM). Neurotensin also produced a reduction in the amplitude of evoked IPSCs, but had no effect on the rate and amplitude of TTX-resistant miniature IPSCs. The neurotensin induced inhibition of evoked IPSCs was reduced by the mGluR5 antagonist MPEP (5microM) and abolished by the cannabinoid CB(1) receptor antagonist AM251 (3 microM). These results suggest that neurotensin produces direct neuronal depolarisation via NTS1 receptors and inhibits GABAergic synaptic transmission within the PAG. The inhibition of synaptic transmission is mediated by neuronal excitation and action potential dependent release of glutamate, leading to mGluR5 mediated production of endocannabinoids which activate presynaptic CB(1) receptors. Thus, neurotensin has cellular actions within the PAG which are consistent with both algesic and analgesic activity, some of which are mediated via the endocannabinoid system.
Collapse
Affiliation(s)
- V A Mitchell
- Pain Management Research Institute, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | |
Collapse
|
10
|
Lundy RF. Gustatory hedonic value: potential function for forebrain control of brainstem taste processing. Neurosci Biobehav Rev 2008; 32:1601-6. [PMID: 18675299 DOI: 10.1016/j.neubiorev.2008.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/29/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Among well-nourished populations, eating beyond homeostatic needs when presented with caloric-dense palatable food evidences the assertion that an increasing proportion of consumption is driven by pleasure, not just by the need for calories. This presents a major health crisis because the affective component of foods constitutes a behavioral risk factor that promotes over consumption [Sorensen, L.B., Moller, P., Flint, A., Martens, M., Raben, A., 2003. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int. J. Obes. Relat. Metab. Disord. 27, 1152-1166; Yeomans, M.R., Blundell, J.E., Leshem, M., 2004. Palatability: response to nutritional need or need-free stimulation of appetite? Br. J. Nutr. 92 (Suppl. 1), S3-S14]. Overweight or obese individuals have an increased risk of developing hypertension, stroke, heart disease, chronic musculoskeletal problems, type-2 diabetes, and certain types of cancers [Hill, J.O., Catenacci, V., Wyatt, H.R., 2005. Obesity: overview of an epidemic. Psychiatr. Clin. N. Am. 28, 1-23, vii]. The etiology of obesity is complex involving genetic, metabolic, and behavioral factors, but ultimately results from long-term energy imbalance. Evidence indicates that learned and some forms of unlearned control of ingestive behavior driven by palatability (i.e. hedonic value) are critically dependent on reciprocal interactions between brainstem gustatory nuclei and the ventral forebrain. This review discusses the current understanding of centrifugal control of taste processing in subcortical gustatory nuclei and the potential role of such modulation in hedonic responding.
Collapse
Affiliation(s)
- Robert F Lundy
- University of Louisville School of Medicine, Department of Anatomical Sciences and Neurobiology, 500 South Preston Street, Louisville, KY 40292, United States.
| |
Collapse
|
11
|
Wan S, Coleman FH, Travagli RA. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am J Physiol Gastrointest Liver Physiol 2007; 293:G484-92. [PMID: 17569742 DOI: 10.1152/ajpgi.00116.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is known that cholecystokinin (CCK) acts in a paracrine fashion to increase pancreatic exocrine secretion via vagal circuits. Recent evidence, however, suggests that CCK-8s actions are not restricted to afferent vagal fibers, but also affect brain stem structures directly. Within the brain stem, preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) send efferent fibers to subdiaphragmatic viscera, including the pancreas. Our aims were to investigate whether DMV neurons responded to exogenously applied CCK-8s and, if so, the mechanism of action. Using whole cell patch-clamp recordings we show that perfusion with CCK-8s induced a concentration-dependent excitation in approximately 60% of identified pancreas-projecting DMV neurons. The depolarization was significantly reduced by tetrodotoxin, suggesting both direct (on the DMV membrane) and indirect (on local synaptic circuits) effects. Indeed, CCK-8s increased the frequency of miniature excitatory currents onto DMV neurons. The CCK-A antagonist, lorglumide, prevented the CCK-8s-mediated excitation whereas the CCK-B preferring agonist, CCK-nonsulfated, had no effect, suggesting the involvement of CCK-A receptors only. In voltage clamp, the CCK-8s-induced inward current reversed at -106 +/- 3 mV and the input resistance increased by 150 +/- 15%, suggesting an effect mediated by the closure of a potassium conductance. Indeed, CCK-8s reduced both the amplitude and the time constant of decay of a calcium-dependent potassium conductance. When tested with pancreatic polypeptide (which reduces pancreatic exocrine secretion), cells that responded to CCK-8s with an excitation were, instead, inhibited by pancreatic polypeptide. These data indicate that CCK-8s may control pancreas-exocrine secretion also via an effect on pancreas-projecting DMV neurons.
Collapse
Affiliation(s)
- Shuxia Wan
- Department of Neuroscience, Pennington Biomedical Research Center-Louisiana State University System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
12
|
Tallent MK. Presynaptic inhibition of glutamate release by neuropeptides: use-dependent synaptic modification. Results Probl Cell Differ 2007; 44:177-200. [PMID: 17554500 DOI: 10.1007/400_2007_037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropeptides are signaling molecules that interact with G-protein coupled receptors located both pre- and postsynaptically. Presynaptically, these receptors are localized in axons and terminals away from presynaptic specializations. Neuropeptides are stored in dense core vesicles that are distinct from the clear synaptic vesicles containing classic neurotransmitters such as glutamate and GABA. Because they require a stronger Ca(2+) signal than synaptic vesicles, dense core vesicles do not release neuropeptides with single action potentials but rather require high-frequency trains. Thus, neuropeptides only modulate strongly stimulated synapses, providing negative or positive feedback. Many neuropeptides have been found to inhibit glutamate release from presynaptic terminals, and the major mechanism is likely direct interaction of betagamma G-protein subunits with presynaptic proteins such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). The use of mouse genetic models and specific receptor antagonists are beginning to unravel the function of inhibitory neuropeptides. The opioid receptors kappa and mu, which are activated by endogenous opioid peptides such as dynorphin, enkephalin, and possibly the endomorphins, are important in modulating pain transmission. Dynorphin, nociceptin/orphanin FQ, and somatostatin and its related peptide cortistatin appear to play a role in modulation of learning and memory. Neuropeptide Y has important functions in ingestive behavior and also in entraining circadian rhythms. The existence of neuropeptides greatly expands the computational ability of the brain by providing additional levels of modulation.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Philadelphia, PA 19102, USA.
| |
Collapse
|
13
|
Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. ACTA ACUST UNITED AC 2007; 55:144-54. [PMID: 17448541 DOI: 10.1016/j.brainresrev.2007.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Fatehi M, Zidichouski JA, Kombian SB, Saleh TM. 17beta-estradiol attenuates excitatory neurotransmission and enhances the excitability of rat parabrachial neurons in vitro. J Neurosci Res 2006; 84:666-74. [PMID: 16773648 DOI: 10.1002/jnr.20959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The steroid hormone 17beta-estradiol and its respective receptors have been found in several cardiovascular nuclei in the central nervous system including the parabrachial nucleus. In a previous study, we provided evidence that 17beta-estradiol attenuated an outward potassium conductance in parabrachial neurons of male rats, using an in vitro slice preparation. In this study we sought to enhance the comprehensive information provided previously on estradiol's postsynaptic effects in the parabrachial nucleus by directly examining whether 17beta-estradiol application will modulate excitatory synaptic neurotransmission. Using a pontine slice preparation and whole-cell patch-clamp recording, bath application of either 17beta-estradiol (20-100 muM) or BSA-17beta-estradiol (50 muM) decreased the amplitude of evoked excitatory postsynaptic currents (from 30-60% of control) recorded from neurons in the parabrachial nucleus. The paired pulse ratio was not significantly affected and suggests a post-synaptic site of action. The inhibitory effect on the synaptic current was relatively long-lasting (non-reversible) and was blocked by the selective estrogen receptor antagonist, ICI 182,780. Furthermore, 17beta-estradiol reduced the maximum current elicited by a ramp protocol, increased the input resistance measured between resting membrane potential and action potential threshold and caused an increase in the firing frequency of the cells under current-clamp. In summary, 17beta-estradiol caused 3 effects: first, a depolarization; second, a reduction in evoked excitatory postsynaptic potentials; and third, an enhancement of action potential firing frequency in neurons of the parabrachial nucleus. These observations are consistent with our previous findings and support a role for estrogen in modulating neurotransmission in this nucleus.
Collapse
Affiliation(s)
- Mohammad Fatehi
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | |
Collapse
|
15
|
Chen L, Yung KKL, Yung WH. Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience 2006; 141:1871-8. [PMID: 16814931 DOI: 10.1016/j.neuroscience.2006.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/26/2022]
Abstract
The tridecapeptide neurotensin has been demonstrated to modulate neurotransmission in a number of brain regions. There is evidence that neurotensin receptors exist in globus pallidus presynaptically and postsynaptically. Whole-cell patch-clamp recordings were used to investigate the modulatory effects of neurotensin on glutamate and GABA transmission in this basal ganglia nucleus in rats. Neurotensin at 1 microM significantly increased the frequency of glutamate receptor-mediated miniature excitatory postsynaptic currents. In contrast, neurotensin had no effect on GABA(A) receptor-mediated miniature inhibitory postsynaptic currents. The presynaptic facilitation of neurotensin on glutamatergic transmission could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). The selective neurotensin type-1 receptor antagonist, SR48692 {2-[(1-(7-chloro-4-quinolinyl)-5-2(2,6-dimethoxyphenyl)pyrazol-3-yl)carbonylamino]-tricyclo(3.3.1.1.(3.7))-decan-2-carboxylic acid}, blocked this facilitatory effect of neurotensin, and which itself had no effect on miniature excitatory postsynaptic currents. The specific phospholipase C inhibitor, U73122 {1-[6-[[17beta-3-methoyyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione}, significantly inhibit neurotensin-induced facilitation on glutamate release. Taken together with the reported postsynaptic depolarization of neurotensin in globus pallidus, it is suggested that neurotensin excites the globus pallidus neurons by multiple mechanisms which may provide a rationale for further investigations into its involvement in motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | |
Collapse
|
16
|
Tsitolovsky LE. Protection from neuronal damage evoked by a motivational excitation is a driving force of intentional actions. ACTA ACUST UNITED AC 2005; 49:566-94. [PMID: 16269320 DOI: 10.1016/j.brainresrev.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 02/25/2005] [Indexed: 01/13/2023]
Abstract
Motivation may be understood as an organism's subjective attitude to its current physiological state, which somehow modulates generation of actions until the organism attains an optimal state. How does this subjective attitude arise and how does it modulate generation of actions? Diverse lines of evidence suggest that elemental motivational states (hunger, thirst, fear, drug-dependence, etc.) arise as the result of metabolic disturbances and are related to transient injury, while rewards (food, water, avoidance, drugs, etc.) are associated with the recovery of specific neurons. Just as motivation and the very life of an organism depend on homeostasis, i.e., maintenance of optimum performance, so a neuron's behavior depends on neuronal (i.e., ion) homeostasis. During motivational excitation, the conventional properties of a neuron, such as maintenance of membrane potential and spike generation, are disturbed. Instrumental actions may originate as a consequence of the compensational recovery of neuronal excitability after the excitotoxic damage induced by a motivation. When the extent of neuronal actions is proportional to a metabolic disturbance, the neuron theoretically may choose a beneficial behavior even, if at each instant, it acts by chance. Homeostasis supposedly may be directed to anticipating compensation of the factors that lead to a disturbance of the homeostasis and, as a result, participates in the plasticity of motivational behavior. Following this line of thought, I suggest that voluntary actions arise from the interaction between endogenous compensational mechanisms and excitotoxic damage of specific neurons, and thus anticipate the exogenous compensation evoked by a reward.
Collapse
Affiliation(s)
- Lev E Tsitolovsky
- Department of Life Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
17
|
Cooper SJ. Palatability-dependent appetite and benzodiazepines: new directions from the pharmacology of GABA(A) receptor subtypes. Appetite 2005; 44:133-50. [PMID: 15808888 DOI: 10.1016/j.appet.2005.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/08/2004] [Accepted: 01/20/2005] [Indexed: 01/22/2023]
Abstract
This paper updates an early review on benzodiazepine-enhanced food intake, published in the first issue of Appetite, and describes the considerable advances since then in the pharmacology of benzodiazepines, their sites and mechanisms of action, and in understanding the psychological processes leading to the increase in food consumption. A great diversity of benzodiazepine receptor ligands have been developed, many of which affect food intake. Agonists can be divided into full agonists (which produce the full spectrum of benzodiazepine effects) and partial agonists (which are more selective in their effects). In addition, inverse agonists have been identified, with high affinity for benzodiazepine receptors but having negative efficacy: these drugs exhibit anorectic properties. Benzodiazepine receptors are part of GABA(A) receptor complexes, and ligands thereby modulate inhibitory neurotransmission in the brain. Molecular approaches have identified a palette of receptor subunits from which GABA(A) receptors are assembled. In all likelihood, benzodiazepine-induced hyperphagia is mediated by the alpha2/alpha3 subtype not the alpha1 subtype. Novel alpha2/alpha3 selective compounds will test this hypothesis. A probable site of action in the caudal brainstem for benzodiazepines is the parabrachial nucleus. Behavioural evidence strongly indicates that a primary action of benzodiazepines is to enhance the positive hedonic evaluation (palatability) of tastes and foodstuffs. This generates the increased food intake and instrumental responding for food rewards. Therapeutic applications may derive from the actions of benzodiazepine agonists and inverse agonists on food procurement and ingestion.
Collapse
Affiliation(s)
- Steven J Cooper
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool L69 7ZA, UK.
| |
Collapse
|
18
|
Zheng Z, Lewis MW, Travagli RA. In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1066-73. [PMID: 15591159 PMCID: PMC3062480 DOI: 10.1152/ajpgi.00497.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using whole cell patch clamp in thin brain stem slices, we tested the effects of cholecystokinin (CCK) on identified gastric-projecting neurons of the rat dorsal motor nucleus of the vagus (DMV). Perfusion with the sulfated form of CCK octapeptide (CCK8s, 30 pM-300 nM, EC50 approximately 4 nM) induced a concentration-dependent inward current in 35 and 41% of corpus- and antrum/pylorus-projecting DMV neurons, respectively. Conversely, none of the fundus-projecting DMV neurons responded to perfusion with CCK8s. The CCK8s-induced inward current was accompanied by a 65 +/- 17% increase in membrane input resistance and reversed at 90 +/- 4 mV, indicating that the excitatory effects of CCK8s were mediated by the closure of a potassium conductance. Pretreatment with the synaptic blocker TTX (0.3-1 microM) reduced the CCK8s-induced current, suggesting that a portion of the CCK8s-induced current was mediated indirectly via an action on presynaptic neurons apposing the DMV membrane. Pretreatment with the selective CCK-A receptor antagonist lorglumide (0.3-3 microM) attenuated the CCK8s-induced inward current in a concentration-dependent manner, with a maximum inhibition of 69 +/- 12% obtained with 3 microM lorglumide. Conversely, pretreatment with the selective CCK-B antagonist triglumide did not attenuate the CCK8s-induced inward current; pretreatment with triglumide (3 microM) and lorglumide (1 microM) attenuated the CCK8s-induced current to the same extent as pretreatment with lorglumide alone. Immunohistochemical experiments showed that CCK-A receptors were localized on the membrane of 34, 65, and 60% of fundus-, corpus-, and antrum/pylorus-projecting DMV neurons, respectively. Our data indicate that CCK-A receptors are present on a subpopulation of gastric-projecting neurons and that their activation leads to excitation of the DMV membrane.
Collapse
Affiliation(s)
- Zhongling Zheng
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, Louisiana 70808, USA
| | | | | |
Collapse
|
19
|
Ogawa WN, Baptista V, Aguiar JF, Varanda WA. Neurotensin modulates synaptic transmission in the nucleus of the solitary tract of the rat. Neuroscience 2005; 130:309-15. [PMID: 15664687 DOI: 10.1016/j.neuroscience.2004.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Whole-cell patch clamp recordings were made from neurons of the rat subpostremal region of the nucleus tractus solitarius (NTS) in transverse brainstem slices. Neurotensin (NT) enhanced the firing rate of action potentials from 0.8 +/- 0.4 Hz in control to 1.9 +/- 1.3 Hz (n = 9) and increased their decay time. The peak amplitude of the after-hyperpolarization was decreased by 34+/-5% (n = 9). These effects were associated with a depolarization of 4 +/- 1 mV (n = 10) in the resting membrane potential and an increase in the input resistance (from 768 +/- 220 MOmega to 986+/-220 MOmega; n = 5) and were compensated by manually hyperpolarizing the cell to control values. In voltage clamp experiments NT decreased an outward current (from 488 +/- 161 to 340 +/- 96 pA at +40 mV; n = 5) which reversed near the potassium equilibrium potential. In addition, NT increased the frequency of both excitatory and inhibitory spontaneous synaptic currents, an effect blocked by tetrodotoxin, and did not change the evoked excitatory or inhibitory postsynaptic currents. The selective NTR1 receptor antagonist SR48692 reversibly blocked the effects of NT on both action potentials and spontaneous synaptic currents. Our results suggest that NTR1 receptors can modulate post-synaptic responses in neurons of the subpostremal NTS by increasing cell excitability as a result of blockade of a potassium conductance.
Collapse
Affiliation(s)
- W N Ogawa
- University of Tocantins, Porto Nacional/TO, Brazil
| | | | | | | |
Collapse
|
20
|
Chen L, Yung KKL, Yung WH. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience 2004; 125:853-9. [PMID: 15120846 DOI: 10.1016/j.neuroscience.2004.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The globus pallidus is a major component in the indirect pathway of the basal ganglia. There is evidence that neurotensin receptors exist in this nucleus. To determine the electrophysiological effects of neurotensin on pallidal neurons, whole-cell patch-clamp recordings were performed in the acutely prepared brain slices. Under current-clamp recordings, neurotensin at 1 microM depolarized pallidal neurons. Voltage-clamp recordings also showed an inward current induced by neurotensin. The depolarizing effect of neurotensin could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). Both SR 142948A, a non-selective neurotensin receptor type-1 and type-2 antagonist, and SR 48692, a selective type-1 receptor antagonist, blocked the depolarizing effect of neurotensin, and which themselves had no effect on membrane potential. Thus, neurotensin type-1 receptors appear to mediate the effect of neurotensin. The depolarization evoked by neurotensin persisted in the presence of tetrodotoxin, ionotropic and metabotropic glutamate and GABA receptor antagonists, indicating that neurotensin excited the pallidal neurons by activating the receptor expressed on the neurons recorded. Current-voltage relationship revealed that both the suppression of a potassium conductance and the activation of a cationic conductance are involved in the neurotensin-induced depolarization. Based on the action of neurotensin in the globus pallidus we hypothesize that alterations of the striatopallidal neurotensin system contribute to symptoms of basal ganglia motor disorders.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
21
|
Bourgeais L, Gauriau C, Monconduit L, Villanueva L, Bernard JF. Dendritic domains of nociceptive-responsive parabrachial neurons match terminal fields of lamina I neurons in the rat. J Comp Neurol 2003; 464:238-56. [PMID: 12898615 DOI: 10.1002/cne.10793] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigates, in the anesthetized rat, the dendritic extent of parabrachial (PB) neurons whose nociceptive response to noxious stimuli has been previously recorded with an extracellular micropipette. The PB neurons were then injected with biocytin through the recording micropipette, via a juxtacellular technique. The dendritic arborization of individual PB neurons was carefully compared with the projections of medullary (trigeminal) and spinal lamina I neurons. The latter projections were labeled in separate animals that received injections of Phaseolus vulgaris-leucoagglutinin restricted to the superficial layers of spinal or medullary dorsal horn. We report here that: 1) PB neurons excited chiefly by noxious stimulation of the face have their dendritic tree located primarily within the field of lamina I trigeminal projections, i.e., in the caudal portion of PB area, around the external medial and the caudal part of the external lateral subnuclei; and 2) PB neurons excited chiefly by noxious stimulation of the paw or the tail have their dendritic tree located primarily within the field of lamina I spinal projections, i.e., in PB mid-extent, around the borderline between the external lateral and both the lateral crescent and the superior lateral subnuclei. Our results suggest the presence of an extensive excitatory axodendritic link between lamina I projections and PB nociceptive neurons around the lateral crescent and the external medial subnuclei. These findings strengthen the possibility of involvement of a subgroup of PB neurons in nociceptive processes.
Collapse
Affiliation(s)
- Laurence Bourgeais
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U-161, F-75014 Paris, France
| | | | | | | | | |
Collapse
|
22
|
Legault M, Congar P, Michel FJ, Trudeau LE. Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience 2002; 111:177-87. [PMID: 11955721 DOI: 10.1016/s0306-4522(01)00614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine-containing neurones of the ventral tegmental area express neurotensin receptors which are involved in regulating cell firing and dopamine release. Although indirect evidence suggests that some neurotensin receptors may be localised on the nerve terminals of dopaminergic neurones in the striatum and thus locally regulate dopamine release, a clear demonstration of such a mechanism is lacking and a number of indirect sites of action are possible. We have taken advantage of a simplified preparation in which cultured rat ventral tegmental area dopaminergic neurones establish nerve terminals that co-release glutamate to determine whether neurotensin can act at presynaptic sites. We recorded glutamate-mediated synaptic currents that were generated by dopaminergic nerve terminals as an index of presynaptic function. The neurotensin receptor agonist NT(8-13) caused an inward current and an enhancement of the firing rate of dopaminergic neurones together with an increase in the frequency of spontaneous glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). Incompatible with a direct excitatory action on nerve terminals, NT(8-13) failed to change the amplitude of individual action potential-evoked EPSCs or the frequency of miniature EPSCs recorded in the presence of tetrodotoxin. However, NT(8-13) reduced the ability of terminal D2 dopamine receptors to inhibit action potential-evoked EPSCs in isolated dopaminergic neurones. Taken together, our results suggest that in addition to its well-known somatodendritic excitatory effect leading to an increase in firing rate, neurotensin also acts on nerve terminals. The main effect of neurotensin on nerve terminals is not to produce a direct excitation, but rather to decrease the effectiveness of D2 receptor-mediated presynaptic inhibition.
Collapse
Affiliation(s)
- M Legault
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
23
|
Cope DW, Maccaferri G, Márton LF, Roberts JDB, Cobden PM, Somogyi P. Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 2002; 109:63-80. [PMID: 11784700 DOI: 10.1016/s0306-4522(01)00440-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two types of GABAergic interneurone are known to express cholecystokinin-related peptides in the isocortex: basket cells, which preferentially innervate the somata and proximal dendrites of pyramidal cells; and double bouquet cells, which innervate distal dendrites and dendritic spines. In the hippocampus, cholecystokinin immunoreactivity has only been reported in basket cells. However, at least eight distinct GABAergic interneurone types terminate in the dendritic domain of CA1 pyramidal cells, some of them with as yet undetermined neurochemical characteristics. In order to establish whether more than one population of cholecystokinin-expressing interneurone exist in the hippocampus, we have performed whole-cell current clamp recordings from interneurones located in the stratum radiatum of the hippocampal CA1 region of developing rats. Recorded neurones were filled with biocytin to reveal their axonal targets, and were tested for the presence of pro-cholecystokinin immunoreactivity. The results show that two populations of cholecystokinin-immunoreactive interneurones exist in the CA1 area (n=15 positive cells). Cholecystokinin-positive basket cells (53%) preferentially innervate stratum pyramidale and adjacent strata oriens and radiatum. A second population of cholecystokinin-positive cells, previously described as Schaffer collateral-associated interneurones [Vida et al. (1998) J. Physiol. 506, 755-773], have axons that ramify almost exclusively in strata radiatum and oriens, overlapping with the Schaffer collateral/commissural pathway originating from CA3 pyramidal cells. Two of seven of the Schaffer collateral-associated cells were also immunopositive for calbindin. Soma position and orientation in stratum radiatum, the number and orientation of dendrites, and the passive and active membrane properties of the two cell populations are only slightly different. In addition, in stratum radiatum and its border with lacunosum of perfusion-fixed hippocampi, 31.6+/-3.8% (adult) or 26.8+/-2.9% (postnatal day 17-20) of cholecystokinin-positive cells were also immunoreactive for calbindin. Therefore, at least two populations of pro-cholecystokinin-immunopositive interneurones, basket and Schaffer collateral-associated cells, exist in the CA1 area of the hippocampus, and are probably homologous to cholecystokinin-immunopositive basket and double bouquet cells in the isocortex. It is not known if the GABAergic terminals of double bouquet cells are co-aligned with specific glutamatergic inputs. However, in the hippocampal CA1 area, it is clear that the terminals of Schaffer collateral-associated cells are co-stratified with the glutamatergic input from the CA3 area, with as yet unknown functional consequences. The division of the postsynaptic neuronal surface by two classes of GABAergic cell expressing cholecystokinin in both the hippocampus and isocortex provides further evidence for the uniform synaptic organisation of the cerebral cortex.
Collapse
Affiliation(s)
- D W Cope
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Drinking and eating are critically important motivated behaviors whose expression is usually tightly linked; under conditions of spontaneous intake, disruption of one usually disturbs the other. This characteristic is exemplified by dehydration-induced anorexia in which increasing plasma osmolality leads to a centrally generated reduction in food intake, which is then rapidly reversed as water is again made available. This review discusses, at a systems level, how the brain is organized to generate these behaviors and how dehydration affects the expression of neuropeptides in sets of anatomically defined forebrain circuits that contribute to the integration of motor outputs. These findings are then used to consider how altered neuropeptidergic signaling operates within motor drive networks and how these changes may impact the way neuroendocrine, autonomic, and behavioral motor systems respond to this fundamental homeostatic challenge.
Collapse
Affiliation(s)
- A G Watts
- The Neuroscience Program and the Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| |
Collapse
|
25
|
Coogan AN, Rawlings N, Luckman SM, Piggins HD. Effects of neurotensin on discharge rates of rat suprachiasmatic nucleus neurons in vitro. Neuroscience 2001; 103:663-72. [PMID: 11274786 DOI: 10.1016/s0306-4522(00)00583-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropeptide neurotensin and two classes of its receptors, the neurotensin receptor-1 and 2, are present in the suprachiasmatic nucleus of the mammalian hypothalamus. The suprachiasmatic nucleus houses the mammalian central circadian pacemaker, but the effects of neurotensin on cellular activity in this circadian pacemaker are unknown. In this study, we examined the effects of neurotensin on the spontaneous discharge rate of rat SCN cells in an in vitro slice preparation. Neurotensin (1-10 microM) increased cell firing rate in approximately 50% of cells tested, while approximately 10% of suprachiasmatic cells tested showed a decrease in firing rate in response to neurotensin. These effects of neurotensin were not altered by the GABA receptor antagonist bicuculline (20 microM) or the glutamate receptor antagonists, D-aminophosphopentanoic acid (50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). The neurotensin receptor selective antagonists SR48692 and SR142948a (10 microM) failed to antagonise neurotensin responses in the majority of cells examined. Compounds that function as agonists selective for the neurotensin-receptor subtypes 1 and 2, JMV-510 and JMV-431 respectively, elicited neurotensin-like responses in approximately 90% of cells tested. Six out of seven cells tested responded to both JMV-510 and JMV-431. Neuropeptide Y (100nM) treatment of suprachiasmatic nucleus slices was found to elicit profound suppression of neuronal firing rate. Co-application of neurotensin with neuropeptide Y significantly (P<0.05) reduced the duration of the response, as compared to that elicited with neuropeptide Y alone. Together, these results demonstrate for the first time the actions of neurotensin in the suprachiasmatic nucleus and raise the possibility that this neuropeptide may play a role in modulating circadian pacemaker function.
Collapse
Affiliation(s)
- A N Coogan
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
26
|
Chen X, Zidichouski JA, Harris KH, Jhamandas JH. Synaptic actions of neuropeptide FF in the rat parabrachial nucleus: interactions with opioid receptors. J Neurophysiol 2000; 84:744-51. [PMID: 10938301 DOI: 10.1152/jn.2000.84.2.744] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pontine parabrachial nucleus (PBN) receives both opioid and Neuropeptide FF (NPFF) projections from the lower brain stem and/or the spinal cord. Because of this anatomical convergence and previous evidence that NPFF displays both pro- and anti-opioid activities, this study examined the synaptic effects of NPFF in the PBN and the mechanisms underlying these effects using an in vitro brain slice preparation and the nystatin-perforated patch-clamp recording technique. Under voltage-clamp conditions, NPFF reversibly reduced the evoked excitatory postsynaptic currents (EPSCs) in a dose-dependent fashion. This effect was not accompanied by apparent changes in the holding current, the current-voltage relationship or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced inward currents in the PBN cells. When a paired-pulse protocol was used, NPFF increased the ratio of these synaptic currents. Analysis of miniature EPSCs showed that NPFF caused a rightward shift in the frequency-distribution curve, whereas the amplitude-distribution curve remained unchanged. Collectively, these experiments indicate that NPFF reduces the evoked EPSCs through a presynaptic mechanism of action. The synaptic effects induced by NPFF (5 microM) could not be blocked by the specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (1 microM), but application of delta-opioid receptor antagonist Tyr-Tic-Phe-Phe (5 microM) almost completely prevented effects of NPFF. Moreover, the delta-opioid receptor agonist, Deltorphin (1 microM), mimicked the effects as NPFF and also occluded NPFF's actions on synaptic currents. These results indicate that NPFF modulates excitatory synaptic transmission in the PBN through an interaction with presynaptic delta-opioid receptors. These observations provide a cellular basis for NPFF enhancement of the antinociceptive effects consequent to central activation of delta-opioid receptors.
Collapse
Affiliation(s)
- X Chen
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | |
Collapse
|
27
|
López Ordieres MG, Rodríguez de Lores Arnaiz G. Neurotensin inhibits neuronal Na+,K+-ATPase activity through high affinity peptide receptor. Peptides 2000; 21:571-6. [PMID: 10822114 DOI: 10.1016/s0196-9781(00)00183-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotensin is a peptide present in mammalian CNS and peripheral tissues, which may play a major role in neurotransmission or neuromodulation, subserving diverse physiological functions. We studied the effect of added neurotensin on ATPase activities in synaptosomal membranes isolated from rat cerebral cortex. Neurotensin at 3 x 10(-8)-3 x 10(-6) M concentration decreased 20-44% Na+,K+-ATPase activity but failed to modify Mg2+-ATPase activity; lower neurotensin concentrations (3 x 10(-14)-3 x 10(-10) M) had no effect on enzyme activities. This inhibitory effect was abolished by neurotensin heating, by enzyme preincubation with neurotensin during periods exceeding 10 min, or by adding 1 x 10(-6) M SR 48692, a high affinity neurotensin receptor antagonist. Levocabastine, which blocks low affinity neurotensin receptor, failed to alter enzyme inhibition by the peptide. It is suggested that the sodium pump may be a target for neurotensin effects at neuronal level involving the participation of high affinity neurotensin receptor.
Collapse
Affiliation(s)
- M G López Ordieres
- Instituto de Biología Celular y Neurociencias Prof. Eduardo De Robertis, Facultad de Medicina, PROBICENE-CONICET and Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | | |
Collapse
|
28
|
Chen X, Pittman QJ. Vasopressin and amastatin induce V(1)-receptor-mediated suppression of excitatory transmission in the rat parabrachial nucleus. J Neurophysiol 1999; 82:1689-96. [PMID: 10515959 DOI: 10.1152/jn.1999.82.4.1689] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined actions of arginine vasopressin (AVP) and amastatin (an inhibitor of the aminopeptidase that cleaves AVP) on synaptic currents in slices of rat parabrachial nucleus using the nystatin-perforated patch recording technique. AVP reversibly decreased the amplitude of the evoked, glutamate-mediated, excitatory postsynaptic current (EPSC) with an increase in paired-pulse ratio. No apparent changes in postsynaptic membrane properties were revealed by ramp protocols, and the inward current induced by a brief application of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid was unchanged after AVP. The reduction induced by 1 microM AVP could be blocked by a V(1) AVP receptor antagonist, [d(CH(2))(5)(1)-O-Me-Tyr(2)-Arg(8)]-vasopressin (Manning compound, 10 microM). Bath application of an aminopeptidase inhibitor, amastatin (10 microM), reduced the evoked EPSC, and AVP induced further synaptic depression in the presence of amastatin. Amastatin's effects also could be antagonized by the Manning compound. Corticotropin-releasing hormone slightly increased the EPSC at 1 microM, and coapplication with AVP attenuated the AVP response. Pretreatment of slices with 1 microg/ml cholera toxin or 0.5 microg/ml pertussis toxin for 20 h did not significantly affect AVP's synaptic action. The results suggest that AVP has suppressant effects on glutamatergic transmission by acting at V(1) AVP receptors, possibly through a presynaptic mechanism involving a pertussis-toxin- and cholera-toxin-resistant pathway.
Collapse
Affiliation(s)
- X Chen
- Neuroscience Research Group and Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
29
|
Chen X, Kombian SB, Zidichouski JA, Pittman QJ. Dopamine depresses glutamatergic synaptic transmission in the rat parabrachial nucleus in vitro. Neuroscience 1999; 90:457-68. [PMID: 10215151 DOI: 10.1016/s0306-4522(98)00594-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in membrane potential. In cells voltage-clamped at -65 mV, dopamine dose dependently and reversibly decreased evoked, pharmacologically isolated, excitatory postsynaptic currents with an EC50 of 31 microM. The reduction in excitatory postsynaptic current was accompanied by an increase in paired pulse ratio (a protocol used to detect presynaptic site of action) with no change in the holding current or in the decay of the evoked excitatory postsynaptic currents. In addition, dopamine altered neither postsynaptic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced currents, nor steady-state current voltage curves. Miniature excitatory postsynaptic current analysis revealed that dopamine caused a rightward shift of the frequency-distribution curve with no change in the amplitude-distribution curve, which is consistent with a presynaptic mechanism. The dopamine-induced attenuation of the excitatory postsynaptic current was almost completely blocked by the D1-like receptor antagonist SCH23390 (10 microM), although the D2-like antagonist sulpiride (10 microM) also partially blocked it. Combined application of both antagonists blocked all dopamine-induced synaptic effects. The synaptic effect of dopamine was mimicked by the D1-like agonist SKF38393 (50 microM), but the D2-1ike agonist quinpirole (50 microM) also had a small effect. Combined application of both agonists did not produce potentiated responses. Dopamine's effect on the excitatory postsynaptic current was independent of serotonin, GABA and adenosine receptors, but may have some interactions with adrenergic receptors. These results suggest that dopamine directly modulates excitatory synaptic events in the parabrachial nucleus predominantly via presynaptic D1-like receptors.
Collapse
Affiliation(s)
- X Chen
- Neuroscience Research Group, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
30
|
Jassar BS, Harris KH, Ostashewski PM, Jhamandas JH. Ionic mechanisms of action of neurotensin in acutely dissociated neurons from the diagonal band of Broca of the rat. J Neurophysiol 1999; 81:234-46. [PMID: 9914284 DOI: 10.1152/jn.1999.81.1.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings were performed on acutely dissociated neurons from the horizontal limb of the diagonal band of Broca (hDBB) from rats to elucidate the ionic mechanisms of action of neurotensin. Neurotensin caused a decrease in whole cell voltage-activated outward currents and failed to elicit a response when Ca2+ influx was blocked by changing the external solution to the one containing 0 mM Ca2+ and 50 microM Cd2+, suggesting the involvement of Ca2+-dependent conductances. Charybdotoxin, a specific blocker of voltage-sensitive calcium-activated K+ channels (IC), caused a decrease in outward currents comparable with that caused by blocking calcium influx and occluded the neurotensin-induced decrease in outward currents. Similarly, 50 microM tetraethylammonium ions also blocked the neurotensin response. Also neurotensin reduced whole cell barium currents (IBa) and calcium currents (ICa). Amiloride and omega-conotoxin GVIA, but not nimodipine, were able to eliminate the neurotensin-induced decrease in IBa. Thus T- and N- but not L-type calcium channels are subject to modulation by neurotensin, and this may account for its effects on IC. The predicted changes in action potential as a result of the blockade of currents through calcium channels culminating into changes in IC were confirmed in the bridge current-clamp recordings. Specifically, neurotensin application led to depolarization of the resting membrane potential, broadening of spike and a decrease in afterhyperpolarization and accommodation. These alterations in action potential characteristics that resulted in increased firing rate and excitability of the hDBB neurons also were produced by application of charybdotoxin. Neurotensin effects on these properties were occluded by 2 - [(1 - 7 - chloro - 4 - quinolinyl) - 5 - (2, 6 - di - methoxyphenyl) pyrazol-3-yl) carbonylamino] tricyclo (3.3.1.1.)decan-2-carboxylic acid, a nonpeptide high-affinity neurotensin receptor antagonist. Neurotensin blockade of IC, possibly through ICa, is a potential physiological mechanism whereby this peptide may evoke alterations in the cortical arousal, sleep-wake cycle, and theta rhythm.
Collapse
Affiliation(s)
- B S Jassar
- Department of Medicine (Neurology) and Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | | | | | |
Collapse
|
31
|
Kobashi M, Bradley RM. Differences in the intrinsic membrane characteristics of parabrachial nucleus neurons processing gustatory and visceral information. Brain Res 1998; 781:218-26. [PMID: 9507138 DOI: 10.1016/s0006-8993(97)01248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Whole-cell current-clamp recordings were made from neurons in the rat parabrachial nucleus (PBN) in three rostro-caudal brain slices. During recording the neurons were located in one of four quadrants of the PBN. Successful recordings were obtained from neurons in three of these quadrants termed the dorsolateral (DL), dorsomedial (DM) and ventromedial (VM) quadrants. Recordings were made of the intrinsic membrane properties and repetitive discharge characteristics of 58 neurons in the DL, 60 neurons in the DM, and 54 neurons in the VM-quadrants. The input resistance of the neurons in the DL quadrant was significantly lower and the membrane time constant significantly shorter than that of the neurons in the DM- and VM-quadrants. The mean action potential duration of the VM-quadrant neurons was significantly longer than that of both DL- and DM-quadrant neurons. The discharge frequency in response to a 1500 ms 100 pA current pulse of the DL quadrant neurons was significantly lower than that of the neurons in the other two quadrants. The latency of action potential initiation following a 100 pA depolarizing current pulse was significantly longer for DL quadrant neurons compared to neurons in the other two quadrants. Neurons were divided into groups based on their response to a long depolarizing current pulse immediately preceded by a hyperpolarizing current pulse. In all three rostro-caudal slices of the PBN, the largest populations of neurons were in Group II and Group III. The results demonstrate that neurons in different locations in the PBN have different membrane and repetitive discharge properties. These different PBN locations receive inputs from the visceral and gustatory regions of the NST. It is possible therefore that the differences in properties of the PBN neurons may relate to the type of sensory information that they process.
Collapse
Affiliation(s)
- M Kobashi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-078, USA
| | | |
Collapse
|
32
|
Saleh TM. Visceral afferent stimulation-evoked changes in the release of peptides into the parabrachial nucleus in vivo. Brain Res 1997; 778:56-63. [PMID: 9462877 DOI: 10.1016/s0006-8993(97)00979-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous investigations have demonstrated that the peptides substance P (SP), calcitonin gene-related peptide (CGRP), cholecystokinin (CCK), neurotensin (NT) and somatostatin (SOM) significantly modulate the glutamate-mediated transmission of visceral information through the parabrachial nucleus (PBN) to the ventrobasal thalamus. In addition, we have shown that the staining intensity of SOM, CCK and NT in the PBN decreases significantly following 2 h of vagal stimulation as visualized using immunohistochemistry. As well, the staining intensity of both SP and CGRP in the PBN were shown to increase under similar conditions. The present investigation was done to determine whether the altered peptide staining intensity of these peptides observed following 2 h of vagal stimulation was the result of an altered peptide release from terminals within the PBN. Male Sprague-Dawley rats were anesthetized with sodium thiobutabarbitol and instrumented to record blood pressure and heart rate and for the stimulation of the cervical vagus nerve. A push-pull perfusion cannula was lowered into the region of the PBN for the continuous sampling of extracellular fluid. Radioenzymatic quantification of the perfusates for peptide content revealed that the extracellular fluid concentration of CGRP and SP increased significantly during the 2 h of vagal stimulation. When the vagal stimulation was terminated, the release of both CGRP and SP decreased significantly below prestimulated values for approximately 30 min before returning to prestimulated levels shortly thereafter. In contrast, there was a significant decrease in the release of CCK, SOM and NT into the PBN during the period of vagal stimulation. Extracellular perfusate levels of these peptides returned to normal upon termination of stimulation. These results demonstrate that terminal release of CGRP and SP is significantly increased and terminal release of CCK, SOM and NT is significantly decreased in the PBN during 2 h of vagal stimulation. These results are consistent with our previous finding that the immunohistochemical staining intensity of CGRP and SP is increased while that of CCK, SOM and NT is decreased following vagal stimulation.
Collapse
Affiliation(s)
- T M Saleh
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.
| |
Collapse
|