1
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Porcine Fetal Ventral Mesencephalic Cells are Targets for Primed Xenoreactive Human T Cells. Cell Transplant 2017; 15:381-7. [PMID: 16970280 DOI: 10.3727/000000006783981846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xenotransplantation of porcine fetal ventral mesencephalic (pfVM) cells to overcome the dopamine shortage in the striatum of patients with Parkinson's disease seems a viable alternative to allotransplantion of human fetal donor tissue, especially because the latter is complicated by both practical and ethical issues. There is, however, little known about the xenospecific immune responses involved in such an intracerebral xenotransplantation. The aim of our study was to investigate whether 1) naive human peripheral blood mononuclear cells (PMBC) display cytotoxicity against pfVM cells of E28 pig fetuses, and 2) priming of human PBMC by xenogeneic antigen presenting cells (APC) modulates pfVM-directed cellular cytotoxicity. For this purpose fresh PMBC from nine individual donors were primed by incubation with either irradiated pfVM cells or porcine spleen cells (PSC) as APC in the presence of IL-2 for 1 week before assessing cytotoxicity in a 51Cr release assay. Also, direct NK reactivity and antibody-dependent cellular cytotoxicity (ADCC) of fresh PMBC against pfVM cells was assessed. No direct cytotoxicity of naive cells (either NK reactivity or ADCC) against pfVM cells could be determined. Only PMBC primed with PSC were capable of lysing pfVM cells. PBMC primed with pfVM cells did not show cytolytic capacity towards pfVM. Interestingly, large differences in xenospecific T-cell responses exist between individual donor PBMC. Thus, human T cells are capable of killing pfVM cells in a xenoreactive response, but only after priming by donor APC. The large interindividual differences between human donors in their xenoreactive response may influence patient selection for xenotransplantation and chances of graft survival for individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Pre-immunization with an intramuscular injection of AAV9-human erythropoietin vectors reduces the vector-mediated transduction following re-administration in rat brain. PLoS One 2013; 8:e63876. [PMID: 23667683 PMCID: PMC3648480 DOI: 10.1371/journal.pone.0063876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/08/2013] [Indexed: 12/22/2022] Open
Abstract
We have recently demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated human erythropoietin (hEPO) gene delivery into the brain protects dopaminergic (DA) neurons in the substantia nigra in a rat model of Parkinson's disease. In the present study, we examined whether pre-exposure to AAV9-hEPO vectors with an intramuscular or intrastriatal injection would reduce AAV9-mediated hEPO transduction in rat brain. We first characterized transgene expression and immune responses against AAV9-hEPO vectors in rat striatum at 4 days, 3 weeks and 6 months, and with doses ranging from 1011 to 1013 viral genomes. To sensitize immune system, rats received an injection of AAV9-hEPO into either the muscle or the left striatum, and then sequentially an injection of AAV9-hEPO into the right striatum 3 weeks later. We observed that transgene expression exhibited in a time course and dose dependent manner, and inflammatory and immune responses displayed in a time course manner. Intramuscular, but not intrastriatal injections of AAV9-hEPO resulted in reduced levels of hEPO transduction and increased levels of the major histocompatibility complex (MHC) class I and class II antigen expression in the striatum following AAV9-hEPO re-administration. There were infiltration of the cluster of differentiation 4 (CD4)-and CD8-lymphacytes, and accumulation of activated microglial cells and astrocytes in the virally injected striatum. In addition, the sera from the rats with intramuscular injections of AAV9-hEPO contained greater levels of antibodies against both AAV9 capsid protein and hEPO protein than the other treatment groups. hEPO gene expression was negatively correlated with the levels of circulating antibodies against AAV9 capsid protein. Intramuscular and intrastriatal re-administration of AAV9-hEPO led to increased numbers of red blood cells in peripheral blood. Our results suggest that pre-immunization with an intramuscular injection can lead to the reduction of transgene expression in the striatal re-administration.
Collapse
|
3
|
Piquet AL, Venkiteswaran K, Marupudi NI, Berk M, Subramanian T. The immunological challenges of cell transplantation for the treatment of Parkinson's disease. Brain Res Bull 2012; 88:320-31. [PMID: 22521427 DOI: 10.1016/j.brainresbull.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future.
Collapse
Affiliation(s)
- Amanda L Piquet
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, United States
| | | | | | | | | |
Collapse
|
4
|
Krause M, Ganser C, Kobayashi E, Papazoglou A, Nikkhah G. The Lewis GFP transgenic rat strain is a useful cell donor for neural transplantation. Cell Transplant 2012; 21:1837-51. [PMID: 22405077 DOI: 10.3727/096368911x627426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic approach in neurodegenerative diseases. Studying graft survival and development has important implications for the further development of experimental and clinical transplantation protocols. Cellular elements in neural transplants are sometimes difficult to identify. The existing labeling methods cannot reliably provide stably labeled cells that can be detected in long-term experiments. Transgenic (tg) Lewis rats ubiquitously expressing green fluorescent protein (GFP) provide an ideal donor source. The aim of this project was to investigate the potential of GFP-tg Lewis rats to serve as donor tissue for neural stem cell transplantation. Ventral mesencephalon (VM) GFP-tg E14.5-derived cells were compared to wild-type (wt) in vitro and in vivo. Firstly, cells from GFP and non-GFP VM tissue were compared with regard to their proliferation and response towards 6-OHDA-toxicity in culture. Secondly, 6-OHDA-lesioned hemiparkinsonian Sprague-Dawley/Crl:CD(SD) rats received intrastriatal grafts derived from VM of E14.5 GFP-tg rats. Due to the fact that donor and recipient belong to two different rat strains, we focused on graft survival in correlation with immunosuppression and graft GFP and tyrosine hydroxylase (TH) expression. In summary, in vitro tg cells exhibited 98% GFP expression and did not differ from wt cells in any of the measured parameters. In vivo, all experimental groups showed a significant compensation in rotation behavior after transplantation. Furthermore, there was no difference on rotation behavior or graft morphology and survival pattern as well as GFP expression between immunosuppressed and nonimmunosuppressed animals. The GFP-positive population of the graft was composed of 13.3% GFAP-positive, 56.1% NeuN-positive, and 1.9% TH-positive cells. Analysis of graft subpopulations manifested that 70.6% of GFAP-positive, 86.9% of NeuN-positive, and 80.1% of TH-positive cells coexpressed GFP. In conclusion, our data show that the Lewis GFP-tg rats serve as an excellent cell source for studying primary neural precursor cells in the transplantation paradigm.
Collapse
Affiliation(s)
- Martin Krause
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Soderstrom KE, Meredith G, Freeman TB, McGuire SO, Collier TJ, Sortwell CE, Wu Q, Steece-Collier K. The synaptic impact of the host immune response in a parkinsonian allograft rat model: Influence on graft-derived aberrant behaviors. Neurobiol Dis 2008; 32:229-42. [PMID: 18672063 PMCID: PMC2886670 DOI: 10.1016/j.nbd.2008.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 01/22/2023] Open
Abstract
Graft-induced dyskinesias (GIDs), side-effects found in clinical grafting trials for Parkinson's disease (PD), may be associated with the withdrawal of immunosuppression. The goal of this study was to determine the role of the immune response in GIDs. We examined levodopa-induced dyskinesias (LIDs), GID-like behaviors, and synaptic ultrastructure in levodopa-treated, grafted, parkinsonian rats with mild (sham), moderate (allografts) or high (allografts plus peripheral spleen cell injections) immune activation. Grafts attenuated amphetamine-induced rotations and LIDs, but two abnormal motor syndromes (tapping stereotypy, litter retrieval/chewing) emerged and increased with escalating immune activation. Immunohistochemical analyses confirmed immune activation and graft survival. Ultrastructural analyses showed increases in tyrosine hydroxylase-positive (TH+) axo-dendritic synapses, TH+ asymmetric specializations, and non-TH+ perforated synapses in grafted, compared to intact, striata. These features were exacerbated in rats with the highest immune activation and correlated statistically with GID-like behaviors, suggesting that immune-mediated aberrant synaptology may contribute to graft-induced aberrant behaviors.
Collapse
Affiliation(s)
- KE Soderstrom
- Department of Neurological Sciences, Rush University, Chicago, IL
| | - G Meredith
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL
| | - TB Freeman
- Department of Neurosurgery, University of South Florida, Tampa, FL
| | - SO McGuire
- Department of Pathology, Loyola University Medical School, Loyola University Chicago, Maywood, IL
| | - TJ Collier
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | - CE Sortwell
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | - Qun Wu
- Department of Psychiatry, Maine Medical Center, Portland, MA
| | - K Steece-Collier
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
6
|
Human umbilical cord blood-derived non-hematopoietic stem cells suppress lymphocyte proliferation and CD4, CD8 expression. J Neuroimmunol 2008; 197:99-109. [DOI: 10.1016/j.jneuroim.2008.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 01/11/2023]
|
7
|
Hall VJ, Li JY, Brundin P. Restorative cell therapy for Parkinson's disease: A quest for the perfect cell. Semin Cell Dev Biol 2007; 18:859-69. [DOI: 10.1016/j.semcdb.2007.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 09/05/2007] [Indexed: 12/09/2022]
|
8
|
Syková E, Jendelová P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 2007; 14:1336-42. [PMID: 17396130 DOI: 10.1038/sj.cdd.4402140] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells have been intensively studied for their potential use in cell therapies for neurodegenerative diseases, ischemia and traumatic injuries. One of the most promising cell sources for autologous cell transplantation is bone marrow, containing a heterogenous cell population that can be roughly divided into hematopoietic stem and progenitor cells and mesenchymal stem cells (MSCs). MSCs are multipotent progenitor cells that, in the case of severe tissue ischemia or damage, can be attracted to the lesion site, where they can secrete bioactive molecules, either naturally or through genetic engineering. They can also serve as vehicles for delivering therapeutic agents. Mobilized from the marrow, sorted or expanded in culture, MSCs can be delivered to the damaged site by direct or systemic application. In addition, MSCs can be labeled with superparamagnetic nanoparticles that allow in vivo cell imaging. Magnetic resonance imaging (MRI) is thus a suitable method for in vivo cell tracking of transplanted cells in the host organism. This review will focus on cell labeling for MRI and the use of MSCs in experimental and clinical studies for the treatment of brain and spinal cord injuries.
Collapse
Affiliation(s)
- E Syková
- Department of Neuroscience, Institute of Experimental Medicine ASCR, Prague, Czech Republic.
| | | |
Collapse
|
9
|
Kuan WL, Barker RA. New therapeutic approaches to Parkinson's disease including neural transplants. Neurorehabil Neural Repair 2005; 19:155-81. [PMID: 16093408 DOI: 10.1177/1545968305277219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of the brain and typically presents with a disorder of movement. The core pathological event underlying the condition is the loss of the dopaminergic nigrostriatal pathway with the formation of alpha-synuclein positive Lewy bodies. As a result, drugs that target the degenerating dopaminergic network within the brain work well at least in the early stages of the disease. Unfortunately, with time these therapies fail and produce their own unique side-effect profile, and this, coupled with the more diffuse pathological and clinical findings in advancing disease, has led to a search for more effective therapies. In this review, the authors will briefly discuss the emerging new drug therapies in PD before concentrating on a more detailed discussion on the state of cell therapies to cure PD.
Collapse
Affiliation(s)
- W-L Kuan
- Cambridge Centre for Brain Repair, Cambridge University, UK
| | | |
Collapse
|
10
|
Odeberg J, Piao JH, Samuelsson EB, Falci S, Akesson E. Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression. J Neuroimmunol 2005; 161:1-11. [PMID: 15748938 DOI: 10.1016/j.jneuroim.2004.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 09/09/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
The ability to expand human neural precursor cells in vitro offers new possibilities for future cell therapies. However, concern over immunologically based rejection of in vitro-expanded human neural cells confounds their use as donor cells. Here, we demonstrate that the expression of human leukocyte antigen (HLA) class I and II molecules, but not the co-stimulatory proteins CD40, CD80 and CD86, substantially increase during expansion of neurospheres. Furthermore, peripheral lymphocytes were unresponsive when co-cultured with in vitro-expanded neural cells. Taken together, these results suggest a low immunogenicity of these cultured human neural cells despite HLA incompatibility and high HLA expression.
Collapse
Affiliation(s)
- Jenny Odeberg
- Neurotec Department, Division of Experimental Geriatrics, Karolinska Institutet, Karolinska University Hospital, KFC, 4th floor, Novum, SE-141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 2005; 190:32-41. [PMID: 15473978 DOI: 10.1016/j.expneurol.2004.06.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 05/04/2004] [Accepted: 06/07/2004] [Indexed: 12/24/2022]
Abstract
Previous work indicated that pig umbilical cord matrix (pUCM) cells are a type of primitive stem cell and that these cells could be recovered after central or peripheral injection into rats that did not receive immune suppression therapy. To determine the safety and proliferation potential of pUCM cells after brain transplantation, approximately 150 pUCM cells were transplanted into the brains of rats that previously received a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). The pUCM cells were previously engineered to express enhanced green fluorescent protein (eGFP); in this way, the graft cells were identified. The rats did not receive immune suppression therapy. There were no postsurgical complications and the animals thrived following transplantation. At 2, 4, 6, and 8 weeks after transplantation, two rats were sacrificed and the morphology, size and number of graft cells, and the percentage of tyrosine hydroxylase (TH)-positive graft cells were determined. The size distribution of the grafted pUCM cells was unimodal and normal, and the average size increased significantly over the 2- to 8-week survival period. The number of pUCM cells increased from approximately 5400 cells at the 2-week survival period post-transplantation to approximately 20,000 cells at the 8-week survival period. There was an increase in the percentage of TH-positive pUCM cells from approximately 1% at the 2-week survival period to approximately 6% at the 8-week survival period. There was no evidence of a significant host immune response at any time; for example, no accumulation of CD-4, CD-8, CD-11b, CD-161 cells in the transplantation site. These results suggest that pUCM cells engraft and proliferate without requiring immune suppression. These findings also suggest that a subset of pUCM cells can differentiate into TH-positive cells within 8 weeks after transplantation into the 6-OHDA lesioned rat brain.
Collapse
Affiliation(s)
- S Medicetty
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5602, USA
| | | | | | | | | |
Collapse
|
12
|
Wennberg L, Czech KA, Larsson LC, Mirza B, Bennet W, Song Z, Widner H. Effects of immunosuppressive treatment on host responses against intracerebral porcine neural tissue xenografts in rats. Transplantation 2001; 71:1797-806. [PMID: 11455261 DOI: 10.1097/00007890-200106270-00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Embryonic xenogeneic neural tissue is an alternative for transplantation in Parkinson's disease, but immune responses limit the application. The aims of this study were to enhance the in vitro viability rates by donor tissue pretreatment; to compare the efficacy of cyclosporine A (CsA) and tacrolimus (FK) in inhibiting xenograft rejection in rats; to evaluate additional inductive therapy with prednisolone (PRE) or mycophenolate mofetil (MMF). METHODS Tirilazad (a lipid peroxidase inhibitor) or FK and acYVAD-cmk (a caspase inhibitor), were added to embryonic porcine ventral mesencephalic tissue and viability was assessed in vitro. Tirilazad-treated tissue was grafted to the striatum of rats that were either left untreated or immunosuppressed with FK (1 mg/kg) or CsA (15 mg/kg) alone or in combination with a 2-week PRE (20 mg/kg) or MMF (40 mg/kg) induction course. Xenograft survival and host responses were determined using immunohistochemistry. RESULTS Pretreatment with tirilazad enhanced tissue survival in vitro. After transplantation into untreated controls, there was no graft survival at twelve weeks. Neural cell counts were significantly improved in immunosuppressed recipients, but there were no differences between the treatment groups. Additional inductive treatment reduced the infiltration with CD4+ and CD8+ cells, and macrophage infiltration was reduced compared with animals given CsA or FK alone. CONCLUSION Pretreatment of the donor tissue with free-radical scavengers reduces cell loss caused by tissue trauma. Porcine neural tissue xenografts survive significantly better in animals immunosuppressed with either FK or CsA. Additional inductive treatment with PRE or MMF reduced the infiltration of host cells into the xenografts.
Collapse
Affiliation(s)
- L Wennberg
- Department of Transplantation Surgery, Karolinska Institute, B56, Huddinge University Hospital, 141 86 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rémy S, Canova C, Daguin-Nerrière V, Martin C, Melchior B, Neveu I, Charreau B, Soulillou JP, Brachet P. Different mechanisms mediate the rejection of porcine neurons and endothelial cells transplanted into the rat brain. Xenotransplantation 2001; 8:136-48. [PMID: 11328584 DOI: 10.1034/j.1399-3089.2001.00076.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to investigate the early cellular responses mediating xenograft rejection in the brain, porcine aortic endothelial cells (PAEC) or porcine fetal mesencephalic neurons (PNEU) were transplanted into the striatum of LEW.1A rats. PAEC were detected with a specific anti-beta1 integrin antibody, and PNEU with an anti-porcine neurofilament antibody, or an antibody recognizing the NeuN antigen. PAEC grafts were massively infiltrated within 24 h by OX42-positive cells, which may correspond to polymorphonuclear (PMN) cells or macrophages. At that moment, the graft contained numerous cells expressing the inducible isoform of NO-synthase (iNOS). Infiltration by ED1-positive macrophages was effective after three days. The beta1-integrin labeling decreased from that time-point to day 7 post-implantation, and vanished after 11 days. Although some OX8-positive cells were present around the graft as soon as 3 days after transplantation, cells expressing the T-cell receptor (TCR)-beta chain infiltrated the graft after 7 days and their number remained low. A strong, diffuse OX8-and ED1-positive immunoreactive material remained in the scar up to the third week. In striking contrast, PNEU grafts remained poorly infiltrated by OX42- or ED1-positive cells during the first two weeks. A massive infiltration by macrophages and TCRbeta-positive lymphocytes occurred after 3 weeks. Natural killer (NK) cells were more scarce. The inflammation territory enlarged, and blood vessels were overloaded with macrophages or lymphocytes. Nevertheless, the graft contained NeuN-positive nuclei and neurites harbouring the porcine neurofilament protein. Hence, rejection was not completed at this time-point. These results suggest that the rapid rejection of PAEC is mainly driven by macrophages and possibly PMN cells, unlike PNEU, whose rejection is delayed and also involves lymphocytes. Differences in immunogenicity of grafted cells and/or patterns of production of pro-inflammatory cytokines may account for these contrasted rejection kinetics.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Blood Proteins
- Brain Tissue Transplantation/adverse effects
- Brain Tissue Transplantation/immunology
- Corpus Striatum/surgery
- Endothelium, Vascular/transplantation
- Graft Rejection/etiology
- Graft Rejection/immunology
- Graft Rejection/pathology
- Lymphocytes/immunology
- Macrophages/immunology
- Male
- Membrane Glycoproteins/metabolism
- Neurons/radiation effects
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Swine
- Transplantation, Heterologous/adverse effects
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- S Rémy
- Institut National de la Santé et de la Recherche Médicale, Unité 437, Center Hospitalier Universitaire de Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Akesson E, Markling L, Kjaeldgaard A, Falci S, Ringdén O. MHC antigen expression in human first trimester spinal cord with implications for clinical transplantation procedures. J Neuroimmunol 2000; 111:210-4. [PMID: 11063840 DOI: 10.1016/s0165-5728(00)00383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report human leukocyte antigen (HLA) class I expression in 5-17% and class II in 0-9% of first trimester human spinal cord cells. After 8 days in culture with gamma-interferon, >87% of the spinal cord cells expressed HLA class II. However, mixed cultures of adult human peripheral lymphocytes and immature human spinal cord cells, showed no induction of lymphocyte proliferation prior to or after gamma-interferon exposure in culture. In conclusion, we report non-immunogenic expression of HLA antigens in the human first trimester spinal cord.
Collapse
Affiliation(s)
- E Akesson
- Department of NEUROTEC, Karolinska Institutet, Huddinge University Hospital, KFC 4th floor, S-141 86, Novum, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Duan WM, Widner H, Cameron RM, Brundin P. Quinolinic acid-induced inflammation in the striatum does not impair the survival of neural allografts in the rat. Eur J Neurosci 1998; 10:2595-606. [PMID: 9767390 DOI: 10.1046/j.1460-9568.1998.00279.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been suggested that inflammation related to intracerebral transplantation surgery can affect the survival of intrastriatal neural allografts. To test this hypothesis, we transplanted dissociated embryonic mesencephalic tissue from one of two rat strains, Lewis (allogeneic grafts) or Sprague-Dawley (syngeneic grafts), to the striatum of Sprague-Dawley rats. The target striatum was either intact or had received a local injection of quinolinic acid 9 days earlier, in order to induce a marked inflammation. At 6 or 12 weeks after transplantation, there was no significant difference between the different groups regarding the number of surviving grafted tyrosine hydroxylase immunoreactive neurons. However, the graft volume of both the syngeneic and allogeneic implants was significantly larger in the quinolinate-lesioned than in the intact striatum. There were dramatically increased levels of expression of major histocompatibility complex class I and II antigens, marked infiltrates of macrophages, activated microglia and astrocytes, and accumulation of large numbers of CD4 and CD8 positive T-lymphocytes in the quinolinate-lesioned striatum. In contrast, these immunological markers were much less abundant around both syngeneic and allogeneic grafts placed in intact striatum. We conclude that severe inflammation caused by quinolinic acid does not lead to rejection of intrastriatal neural allografts.
Collapse
Affiliation(s)
- W M Duan
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, S olvegatan 17, S-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
16
|
Duan WM, Cameron RM, Brundin P, Widner H. Rat intrastriatal neural allografts challenged with skin allografts at different time points. Exp Neurol 1997; 148:334-47. [PMID: 9398476 DOI: 10.1006/exnr.1997.6656] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study was designed to address two questions. First, can an intrastriatal neural allograft exhibit long-term survival (18 weeks) if the host is immunized by an orthotopic skin graft 6 weeks after neural transplantation (the 6w-Long group)? Second, can an intrastriatal neural allograft survive when the host is challenged by an orthotopic skin allograft either simultaneously (Sim) with the intracerebral graft surgery or 2 (2w) weeks later? Dissociated embryonic ventral mesencephalic tissue from Lewis rats was stereotaxically injected into the striatum of Sprague-Dawley rats with unilateral 6-hydroxydopamine lesions. Six weeks after neural grafting, no reduction in amphetamine-induced motor asymmetry was observed in the Sim and 2w groups. At 6 weeks after skin grafting, the mean motor asymmetry scores had returned to the initial pretransplantation levels in the 6w-Long group. All the neural allografts in the Sim group were completely rejected, and the mean number of tyrosine hydroxylase immunoreactivity neurons in the grafts was significantly reduced in the 2w and the 6w-Long group, when compared to the no-skin control group. There were very high levels of expression of MHC class I and II antigens, marked cellular infiltrates containing macrophages and T-lymphocytes, and several activated microglia and astrocytes in and around the surviving intracerebral transplants in the 2w and the 6w-Long groups. The results suggest that intrastriatal neural allografts are more likely to be rejected rapidly if the host is efficiently immunized with the same alloantigens simultaneously or soon after the neural transplantation than at a later time point. When established neural allografts are subjected to a strong immunological challenge, they undergo protracted rejection.
Collapse
Affiliation(s)
- W M Duan
- Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, Lund University Sölvegatan 17, Sweden
| | | | | | | |
Collapse
|