1
|
Targosova K, Kucera M, Kilianova Z, Slobodova L, Szmicsekova K, Hrabovska A. Cardiac nicotinic receptors show β-subunit-dependent compensatory changes. Am J Physiol Heart Circ Physiol 2021; 320:H1975-H1984. [PMID: 33769917 DOI: 10.1152/ajpheart.00995.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotinic receptors (NRs) play an important role in the cholinergic regulation of heart functions, and converging evidence suggests a diverse repertoire of NR subunits in the heart. A recent hypothesis about the plasticity of β NR subunits suggests that β2-subunits and β4-subunits may substitute for each other. In our study, we assessed the hypothetical β-subunit interchangeability in the heart at the level of mRNA. Using two mutant mice strains lacking β2 or β4 NR subunits, we examined the relative expression of NR subunits and other key cholinergic molecules. We investigated the physiology of isolated hearts perfused by Langendorff's method at basal conditions and after cholinergic and/or adrenergic stimulation. Lack of β2 NR subunit was accompanied with decreased relative expression of β4-subunits and α3-subunits. No other cholinergic changes were observed at the level of mRNA, except for increased M3 and decreased M4 muscarinic receptors. Isolated hearts lacking β2 NR subunit showed different dynamics in heart rate response to indirect cholinergic stimulation. In hearts lacking β4 NR subunit, increased levels of β2-subunits were observed together with decreased mRNA for acetylcholine-synthetizing enzyme and M1 and M4 muscarinic receptors. Changes in the expression levels in β4-/- hearts were associated with increased basal heart rate and impaired response to a high dose of acetylcholine upon adrenergic stimulation. In support of the proposed plasticity of cardiac NRs, our results confirmed subunit-dependent compensatory changes to missing cardiac NRs subunits with consequences on isolated heart physiology.NEW & NOTEWORTHY In the present study, we observed an increase in mRNA levels of the β2 NR subunit in β4-/- hearts but not vice versa, thus supporting the hypothesis of β NR subunit plasticity that depends on the specific type of missing β-subunit. This was accompanied with specific cholinergic adaptations. Nevertheless, isolated hearts of β4-/- mice showed increased basal heart rate and a higher sensitivity to a high dose of acetylcholine upon adrenergic stimulation.
Collapse
Affiliation(s)
- Katarina Targosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Matej Kucera
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Lubica Slobodova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Kristina Szmicsekova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Anna Hrabovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
3
|
Acon-Chen C, Koenig JA, Smith GR, Truitt AR, Thomas TP, Shih TM. Evaluation of acetylcholine, seizure activity and neuropathology following high-dose nerve agent exposure and delayed neuroprotective treatment drugs in freely moving rats. Toxicol Mech Methods 2016; 26:378-88. [PMID: 27329284 DOI: 10.1080/15376516.2016.1197992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organophosphorus nerve agents such as soman (GD) inhibit acetylcholinesterase, producing an excess of acetylcholine (ACh), which results in respiratory distress, convulsions and status epilepticus that leads to neuropathology. Several drugs (topiramate, clobazam, pregnanolone, allopregnanolone, UBP 302, cyclopentyladenosine [CPA], ketamine, midazolam and scopolamine) have been identified as potential neuroprotectants that may terminate seizures and reduce brain damage. To systematically evaluate their efficacy, this study employed in vivo striatal microdialysis and liquid chromatography to respectively collect and analyze extracellular ACh in freely moving rats treated with these drugs 20 min after seizure onset induced by a high dose of GD. Along with microdialysis, EEG activity was recorded and neuropathology assessed at 24 h. GD induced a marked increase of ACh, which peaked at 30 min post-exposure to 800% of control levels and then steadily decreased toward baseline levels. Approximately 40 min after treatment, only midazolam (10 mg/kg) and CPA (60 mg/kg) caused a significant reduction of ACh levels, with CPA reducing ACh levels more rapidly than midazolam. Both drugs facilitated a return to baseline levels at least 55 min after treatment. At 24 h, only animals treated with CPA (67%), midazolam (18%) and scopolamine (27%) exhibited seizure termination. While all treatments except for topiramate reduced neuropathology, CPA, midazolam and scopolamine showed the greatest reduction in pathology. Our results suggest that delayed treatment with CPA, midazolam, or scopolamine is effective at reducing GD-induced seizure activity and neuropathology, with CPA and midazolam capable of facilitating a reduction in GD-induced ACh elevation.
Collapse
Affiliation(s)
- Cindy Acon-Chen
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| | - Jeffrey A Koenig
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| | - Garrett R Smith
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| | - Amber R Truitt
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| | - Thaddeus P Thomas
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| | - Tsung-Ming Shih
- a Pharmacology Branch, Research Division , US Army Medical Research Institute of Chemical Defense , MD , USA
| |
Collapse
|
4
|
Mohr F, Krejci E, Zimmermann M, Klein J. Dysfunctional Presynaptic M2 Receptors in the Presence of Chronically High Acetylcholine Levels: Data from the PRiMA Knockout Mouse. PLoS One 2015; 10:e0141136. [PMID: 26506622 PMCID: PMC4624712 DOI: 10.1371/journal.pone.0141136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
The muscarinic M2 receptor (M2R) acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh) release, especially when ACh levels are increased because acetylcholinesterase (AChE) activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia.
Collapse
Affiliation(s)
- Franziska Mohr
- Department of Pharmacology, School of Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Eric Krejci
- Centre d'Etude de la Sensorimotricité, Université Paris Descartes, CNRS UMR 8194, Paris, France
| | - Martina Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University, Frankfurt am Main, Germany; Centre for the Humanities and Health, Department of English, King´s College, London, United Kingdom
| | - Jochen Klein
- Department of Pharmacology, School of Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Noori HR, Fliegel S, Brand I, Spanagel R. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: A meta-analysis. Synapse 2012; 66:893-901. [DOI: 10.1002/syn.21581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
|
6
|
O’Donnell JC, Acon-Chen C, McDonough JH, Shih TM. Comparison of extracellular striatal acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs. Toxicol Mech Methods 2010; 20:600-8. [DOI: 10.3109/15376516.2010.521208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
O’Donnell JC, McDonough JH, Shih TM. Changes in extracellular striatal acetylcholine and brain seizure activity following acute exposure to nerve agents in freely moving guinea pigs. Toxicol Mech Methods 2010; 20:143-52. [DOI: 10.3109/15376511003657439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Mørk A, Witten LM, Arnt J. Effect of sertindole on extracellular dopamine, acetylcholine, and glutamate in the medial prefrontal cortex of conscious rats: a comparison with risperidone and exploration of mechanisms involved. Psychopharmacology (Berl) 2009; 206:39-49. [PMID: 19506838 DOI: 10.1007/s00213-009-1578-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Second-generation antipsychotics have some beneficial effect on cognition. Recent studies, furthermore, indicate differential effects of second-generation antipsychotics on impairment in executive cognitive function. OBJECTIVE We evaluated the effect of the second-generation antipsychotic drug, sertindole, on extracellular levels of dopamine (DA), acetylcholine (ACh), and glutamate (Glu) in the rat medial prefrontal cortex (mPFC). Risperidone was studied for comparison. Moreover, selective serotonin 5-HT(2A), 5-HT(2C), and 5-HT(6) receptor antagonists were used, given alone and in combination with the preferential DA D(2) receptor antagonist, haloperidol, to further clarify the action of the two drugs. MATERIALS AND METHODS Rats were treated acutely with vehicle or drugs, and extracellular levels of neurotransmitters were assessed by microdialysis in freely moving animals. RESULTS Sertindole and risperidone significantly increased extracellular levels of DA. Haloperidol; the 5-HT(2A) receptor antagonist, M100907; the 5-HT(2C) receptor antagonist, SB242084; and the 5-HT(6) receptor antagonist, GSK-742457, induced minor increases in levels of DA, but the three latter compounds raised the DA levels notably in combination with haloperidol. Sertindole and risperidone significantly increased the extracellular levels of ACh but only sertindole raised the extracellular levels of Glu. The selective 5-HT(6) receptor antagonist, SB-271046, significantly increased the extracellular levels of Glu. CONCLUSION Sertindole and risperidone markedly increased extracellular levels of DA in mPFC. The built-in 5-HT(2A)/5-HT(2C)/D(2) receptor antagonism of the two drugs might be involved in this action. Both drugs increased the extracellular levels of ACh but only sertindole enhanced Glu levels. The high affinity of sertindole for the 5-HT(6) receptor compared to risperidone may differentiate sertindole from risperidone.
Collapse
Affiliation(s)
- Arne Mørk
- Department of Neurophysiology, Discovery Pharmacology Research, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Copenhagen, Denmark.
| | | | | |
Collapse
|
9
|
Nanda B, Galvan A, Smith Y, Wichmann T. Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. Eur J Neurosci 2009; 29:588-98. [PMID: 19175404 DOI: 10.1111/j.1460-9568.2008.06598.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the existence of a massive projection from the caudal intralaminar nuclei of the thalamus [i.e. the centromedian (CM) and parafascicular nuclei] to the striatum is well documented, the effects of CM activation upon striatal cells remain poorly understood. Therefore, we studied the effects of electrical stimulation of CM on the electrophysiological activity of striatal neurons, and on striatal levels of gamma-aminobutyric acid (GABA) and acetylcholine in rhesus monkeys. Striatal cells did not respond to single-pulse stimulation (bipolar biphasic stimulation, 175-500 muA), but the large majority of recorded neurons responded to burst stimulation (100 Hz, 1 s, 150-175 muA) of CM, often with a delay of tens of milliseconds. Striatal phasically active neurons, which likely correspond to projection neurons, responded mainly with increases in firing (13/28 cells), while tonically active neurons (likely cholinergic interneurons) often showed combinations of increases and decreases in firing (24/46 cells). In microdialysis studies, CM stimulation led to a reduction of striatal acetylcholine levels. This effect was prevented by addition of the GABA-A receptor antagonist gabazine to the microdialysis fluid. We conclude that CM stimulation frequently results in striatal response patterns with excitatory and inhibitory components. Under the conditions chosen here, the specific patterns of striatal responses to CM stimulation are likely the result of striatal processing of thalamic inputs. Through these indirect effects, local CM stimulation may engage large portions of the striatum. These effects may be relevant in the interpretation of the therapeutic effects of CM stimulation for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Bijli Nanda
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
10
|
Hsieh BC, Matsumoto K, Cheng TJ, Yuu G, Chen RLC. Choline biosensor constructed with chitinous membrane from soldier crab and its application in measuring cholinesterase inhibitory activities. J Pharm Biomed Anal 2007; 45:673-8. [PMID: 17329059 DOI: 10.1016/j.jpba.2007.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
An amperometric flow-injection choline biosensor was assembled utilizing natural chitinous membrane as the supporting material for biocatalyst immobilization, and the membrane was purified from Taiwanese soldier crab, Mictyris brevidactylus. The chitinous membrane (<50.0 microm in thickness) was covalently immobilized with choline oxidase (EC 3.1.1.17 from Alcaligenes sp.) and then attached onto the platinum electrode of an amperometric flow cell. The flow cell served as the choline sensing device of the proposed FIA system. The sensor signal (peak height of the FIAgram) was linearly related to choline concentration (r=0.999 for choline up to 5.0mM) with low detection limit (S/N>3 for 10.0 microM choline) and high reproducibility (CV<3% for 1.0mM choline, n=7). The system was proved to be useful in measuring cholinesterase inhibitory activities of synthetic chemicals or natural products.
Collapse
Affiliation(s)
- Bo-Chuan Hsieh
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Road, Taipei City 106, Taiwan, ROC
| | | | | | | | | |
Collapse
|
11
|
Sato M, Ago Y, Koda K, Nakamura S, Kawasaki T, Baba A, Matsuda T. Role of postsynaptic serotonin1A receptors in risperidone-induced increase in acetylcholine release in rat prefrontal cortex. Eur J Pharmacol 2007; 559:155-60. [PMID: 17258195 DOI: 10.1016/j.ejphar.2006.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/29/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Most atypical antipsychotic drugs increase acetylcholine release in the prefrontal cortex, but the detailed mechanism is still unknown. The present study examined the role of serotonin (5-HT)1A receptors in risperidone-induced increases in acetylcholine release in rat prefrontal cortex. Systemic administration of risperidone at doses of 1 and 2 mg/kg increased acetylcholine release in the prefrontal cortex in a dose-dependent manner. This increase was antagonized by systemic administration of high doses (1 and 3 mg/kg) of N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635), a 5-HT1A receptor antagonist/dopamine D4 receptor agonist, but not by a low dose (0.1 mg/kg) of the antagonist which antagonizes preferentially presynaptic 5-HT1A autoreceptors. Furthermore, local application of WAY100635 into the prefrontal cortex also attenuated risperidone-induced increases in acetylcholine release. WAY100635 alone did not affect acetylcholine release in the prefrontal cortex. On the other hand, local application of risperidone (3 and 10 microM), the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (1 and 10 microM), and the dopamine D4 receptor antagonist 3-(4-(4-iodophenyl)piperazine-1-yl)methyl-1H-pyrrolo[2,3-b]pyridine (1 and 10 microM) into the cortex did not affect acetylcholine release in the prefrontal cortex. These results suggest that risperidone increases acetylcholine release in the prefrontal cortex through a complex mechanism which is enhanced by prefrontal 5-HT1A receptor activation.
Collapse
Affiliation(s)
- Maiko Sato
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang MY, Hughes ZA, Kerns EH, Lin Q, Beyer CE. Development of a liquid chromatography/tandem mass spectrometry method for the quantitation of acetylcholine and related neurotransmitters in brain microdialysis samples. J Pharm Biomed Anal 2007; 44:586-93. [PMID: 17383138 DOI: 10.1016/j.jpba.2007.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/17/2022]
Abstract
Monitoring concentrations of acetylcholine (ACh) in specific brain regions is important in understanding disease pathology, as well as in designing and evaluating novel disease-modifying treatments where cholinergic dysfunction is a hallmark feature. We have developed a sensitive and quantitative liquid chromatography/tandem mass spectrometry method to analyze the extracellular concentrations of ACh, choline (Ch) and (3-carboxylpropyl)-trimethylammonium (iso-ACh) in brain microdialysis samples of freely moving animals. One immediate advantage of this new method is the ability to monitor ACh in its free form without having to use a cholinesterase inhibitor in the perfusate. The separation of ACh, Ch, iso-ACh and related endogenous compounds was carried out based on cation exchange chromatography with a volatile elution buffer consisting of ammonium formate, ammonium acetate and acetonitrile. An unknown interference of ACh, which was observed in brain microdialysates from many studies, was well separated from ACh to ensure the accuracy of the measurement. Optimization of electrospray ionization conditions for these quaternary ammonium compounds achieved the limits of detection (S/N=3) of 0.2 fmol for ACh, 2 fmol for Ch and 0.6 fmol for iso-ACh using a benchtop tandem quadrupole mass spectrometer with moderate sensitivity. The limit of quantitation (S/N=10) was 1 fmol for ACh, 3 fmol for iso-ACh and 10 fmol for Ch. This method was selective, precise (<10% R.S.D.), and sensitive over a range of 0.05-10nM for ACh, 0.25-50 nM for iso-ACh and 15-3000 nM for Ch. To demonstrate that the developed method can be applied to monitoring changes in ACh concentrations in vivo, reference agents that have previously been shown to influence ACh levels were studied in rat dorsal hippocampus. This includes the 5-HT6 receptor antagonist, SB-271046, and the cholinesterase inhibitor, donepezil. Moreover, levels of ACh were demonstrated to be sensitive to infusion of tetrodotoxin (TTX) suggesting that the ACh being measured in vivo was of neuronal origin. Collectively, these biological data provided in vivo validation of this analytical method.
Collapse
Affiliation(s)
- Mei-Yi Zhang
- Chemical and Screening Sciences, Princeton, Wyeth Research, NJ 08543, USA.
| | | | | | | | | |
Collapse
|
13
|
Calandreau L, Trifilieff P, Mons N, Costes L, Marien M, Marighetto A, Micheau J, Jaffard R, Desmedt A. Extracellular hippocampal acetylcholine level controls amygdala function and promotes adaptive conditioned emotional response. J Neurosci 2007; 26:13556-66. [PMID: 17192439 PMCID: PMC6674713 DOI: 10.1523/jneurosci.3713-06.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ample data indicate that tone and contextual fear conditioning differentially require the amygdala and the hippocampus. However, mechanisms subserving the adaptive selection among environmental stimuli (discrete tone vs context) of those that best predict an aversive event are still elusive. Because the hippocampal cholinergic neurotransmission is thought to play a critical role in the coordination between different memory systems leading to the selection of appropriate behavioral strategies, we hypothesized that this cholinergic signal may control the competing acquisition of amygdala-mediated tone and contextual conditioning. Using pavlovian fear conditioning in mice, we first show a higher level of hippocampal acetylcholine release and a specific pattern of extracellular signal-regulated kinase 1/2 (ERK1/2) activation within the lateral (LA) and basolateral (BLA) amygdala under conditions in which the context is a better predictor than a discrete tone stimulus. Second, we demonstrate that levels of hippocampal cholinergic neurotransmission are causally related to the patterns of ERK1/2 activation in amygdala nuclei and actually determine the selection among the context or the simple tone the stimulus that best predicts the aversive event. Specifically, decreasing the hippocampal cholinergic signal not only impaired contextual conditioning but also mimicked conditioning to the discrete tone, both in terms of the behavioral outcome and the LA/BLA ERK1/2 activation pattern. Conversely, increasing this cholinergic signal not only disrupted tone conditioning but also promoted contextual fear conditioning. Hence, these findings highlight that hippocampal cholinergic neurotransmission controls amygdala function, thereby leading to the selection of relevant emotional information.
Collapse
Affiliation(s)
- Ludovic Calandreau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Pierre Trifilieff
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Nicole Mons
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Laurence Costes
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1244, Institut François Magendie, 33077 Bordeaux cedex, France, and
| | - Marc Marien
- Centre de Recherche Pierre Fabre, Division de Neurobiologie I, 81106 Castres, France
| | - Aline Marighetto
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Jacques Micheau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Robert Jaffard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| | - Aline Desmedt
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, 33405 Talence, France
| |
Collapse
|
14
|
Wang L, Albrecht MA, Wurtman RJ. Dietary supplementation with uridine-5'-monophosphate (UMP), a membrane phosphatide precursor, increases acetylcholine level and release in striatum of aged rat. Brain Res 2006; 1133:42-8. [PMID: 17184749 PMCID: PMC1852434 DOI: 10.1016/j.brainres.2006.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/06/2006] [Accepted: 11/16/2006] [Indexed: 11/24/2022]
Abstract
The biosynthesis of brain membrane phosphatides, e.g., phosphatidylcholine (PtdCho), may utilize three circulating compounds: choline, uridine (a precursor for UTP, CTP, and CDP-choline), and a PUFA (e.g., docosahexaenoic acid); moreover, oral administration of the uridine source uridine-5'-monophosphate (UMP) can significantly increase levels of the phosphatides throughout the rodent brain. Since PtdCho can provide choline for acetylcholine (ACh) synthesis, we determined whether UMP administration also affects ACh levels in striatum and striatal extracellular fluid, in aged and young rats. Among aged animals consuming a UMP-containing diet (2.5%, w/w) for 1 or 6 weeks, baseline ACh levels in striatal dialysates rose from 73 fmol/min to 148 or 197 fmol/min (P<0.05). Consuming a lower dose (0.5%) for 1 week produced a smaller but still significant increase (from 75 to 92 fmol/min, P<0.05), and elevated striatal ACh content (by 16%; P<0.05). Dietary UMP (0.5%, 1 week) also amplified the increase in ACh caused by giving atropine (10 microM in the aCSF); atropine alone increased ACh concentrations from 81 to 386 fmol/min in control rats and from 137 to 680 fmol/min in those consuming UMP (P<0.05). Young rats eating the UMP-containing diet exhibited similar increases in basal ECF ACh (from 105 to 118 fmol/min) and in the increase produced by atropine (from 489 to 560 fmol/min; P<0.05). These data suggest that giving a uridine source may enhance some cholinergic functions, perhaps by increasing brain phosphatide levels.
Collapse
Affiliation(s)
- Lei Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Chang Q, Savage LM, Gold PE. Microdialysis measures of functional increases in ACh release in the hippocampus with and without inclusion of acetylcholinesterase inhibitors in the perfusate. J Neurochem 2006; 97:697-706. [PMID: 16579834 DOI: 10.1111/j.1471-4159.2006.03765.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Because brain extracellular acetylcholine (ACh) levels are near detection limits in microdialysis samples, an acetylcholinesterase (AChE) inhibitor such as neostigmine is often added to microdialysis perfusates to increase ACh levels in the dialysate, a practice that raises concerns that the inhibitor might alter the results. Two experiments compared functional differences in ACh release with and without neostigmine. In the first experiment, 30-60% increases in extracellular ACh concentrations in the hippocampus were evident during food-rewarded T-maze training with 20-500 nm neostigmine in the perfusate but no increases were seen without neostigmine. In the second experiment, 78% increases in ACh release in the hippocampus were seen after injections of the GABA(A) receptor antagonist, bicuculline, into medial septum only if neostigmine (50 nm) was included in the perfusate. These findings suggest that, in the hippocampus, endogenous brain AChEs are very efficient at removing extracellular ACh, obscuring differences in ACh release in these experiments. Therefore, inclusion of AChE inhibitors in the microdialysis perfusate may be necessary under some conditions for observations of functional changes in release of ACh in the hippocampus.
Collapse
Affiliation(s)
- Qing Chang
- Department of Psychology and the Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| | | | | |
Collapse
|
16
|
Zhang MY, Beyer CE. Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography–mass spectrometry. J Pharm Biomed Anal 2006; 40:492-9. [PMID: 16125893 DOI: 10.1016/j.jpba.2005.07.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 11/22/2022]
Abstract
During the last three decades, a great deal of information has been discovered about chemical neurotransmission. However, the most important processes, namely the complex nature of neuronal circuitry, the "cross talk" between multiple neurotransmitter systems, and the varying effects neurochemicals have at different receptors, are still being explored. Techniques such as microdialysis are routinely employed to measure neurotransmitter levels in living tissue systems. Moreover, microdialysis studies have proven to be valuable in the investigation of neurodegenerative and psychiatric disease pathology, as well as in identifying novel drugs to treat such disorders. One particular challenge in performing these experiments is the requirement to couple microdialysis to sophisticated analytical equipment. Recently, considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate measurements of neurochemicals collected from in vivo microdialysis experiments. This review will provide a brief overview of the microdialysis technique, as well as how microdialysis and chromatography-mass spectrometry are being used to measure extracellular levels of neurotransmitters. The primary emphasis of this review will be on how these applications are used to measure levels of acetylcholine (ACh), dopamine, norepinephrine and gamma-aminobutyric acid (GABA).
Collapse
Affiliation(s)
- Mei-Yi Zhang
- Chemical and Screening Sciences, Wyeth Research, Princeton, NJ 08543, USA.
| | | |
Collapse
|
17
|
Ago Y, Sato M, Nakamura S, Baba A, Matsuda T. Lack of Enhanced Effect of Antipsychotics Combined With Fluvoxamine on Acetylcholine Release in Rat Prefrontal Cortex. J Pharmacol Sci 2006; 102:419-22. [PMID: 17130670 DOI: 10.1254/jphs.sc0060187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We have shown that coadministration of sulpiride and fluvoxamine preferentially increases the release of dopamine in the prefrontal cortex. To study the possible role of the cortical cholinergic system in this effect, we combined several other antipsychotic drugs with fluvoxamine and examined the effects on acetylcholine release in rat prefrontal cortex. Risperidone and clozapine significantly increased the release of acetylcholine but sulpiride did not, and fluvoxamine did not enhance the effects of the antipsychotics. These results further support the previous suggestion that the cortical dopamine system plays an important role in the effects of antipsychotic drugs administered in combination with fluvoxamine.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
18
|
Nair SG, Gudelsky GA. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat. Synapse 2004; 53:202-7. [PMID: 15266551 DOI: 10.1002/syn.20054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.
Collapse
Affiliation(s)
- Sunila G Nair
- College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
19
|
Degroot A, Kornecook T, Quirion R, DeBow S, Parent MB. Glucose increases hippocampal extracellular acetylcholine levels upon activation of septal GABA receptors. Brain Res 2003; 979:71-7. [PMID: 12850573 DOI: 10.1016/s0006-8993(03)02868-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of septal GABA receptors impairs learning and memory and this effect likely involves an influence on the hippocampus. We found previously that the memory-impairing effects of septal infusions of the GABA agonist muscimol are reversed by hippocampal infusions of glucose and suggested that glucose reverses these deficits by increasing hippocampal acetylcholine (ACh). In this study, we report that septal infusions of muscimol produce dose-dependent decreases in ACh levels in hippocampal dialysates. Importantly, increasing glucose levels in the hippocampus elevates hippocampal extracellular ACh levels in rats given septal infusions of muscimol, but not in rats given vehicle. Thus, glucose increases hippocampal extracellular ACh levels when the ACh system is inhibited, an effect that likely contributes to the effects of glucose on memory.
Collapse
Affiliation(s)
- Aldemar Degroot
- Department of Psychology, University of Alberta, AB, Edmonton, Canada
| | | | | | | | | |
Collapse
|
20
|
Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG. Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 2003; 8:673-9. [PMID: 12874603 DOI: 10.1038/sj.mp.4001270] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among the five different muscarinic receptors that have been cloned and characterized, M2 and M4 receptors are localized both post- and presynaptically and are believed to have a pronounced autoreceptor role. The functional importance of these receptors in the regulation of acetylcholine release in the hippocampus and in cognitive processes was investigated by using M2 and M4 receptor single knockout (KO) as well as M2/M4 receptor double KO mice. We found profound alterations in acetylcholine homeostasis in the hippocampus of both M2- and M4-KO mice as well as of the combined M2/M4-KOs, as assessed by in vivo microdialysis. Basal acetylcholine efflux in the hippocampus was significantly increased in M4-KO and was elevated further in M2/M4-KOs. The increase in hippocampal acetylcholine induced by local administration of scopolamine was markedly reduced in M2-KO and completely abolished in M2/M4-KOs. In M2-KO and much more in M2/M4-KOs, the increase in hippocampal acetylcholine triggered by exposure to a novel environment was more pronounced both in amplitude and duration, with a similar trend observed for M4-KOs. Dysregulation of cholinergic function in the hippocampus, as it could result from perturbed autoreceptor function, may be associated with cognitive deficits. Importantly, M2- and M2/M4-KO, but not M4-KO, animals showed an impaired performance in the passive avoidance test. Together these results suggest a crucial role for muscarinic M2 and M4 receptors in the tonic and phasic regulation of acetylcholine efflux in the hippocampus as well as in cognitive processes.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Cognition/physiology
- Crosses, Genetic
- Environment
- Habituation, Psychophysiologic/physiology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiology
- Homeostasis
- Male
- Mice
- Mice, Knockout
- Microdialysis
- Muscarinic Antagonists/pharmacology
- Receptor, Muscarinic M2/deficiency
- Receptor, Muscarinic M2/drug effects
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M4/deficiency
- Receptor, Muscarinic M4/drug effects
- Receptor, Muscarinic M4/genetics
- Receptor, Muscarinic M4/physiology
- Scopolamine/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- E T Tzavara
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bueters TJH, van Helden HPM, IJzerman AP, Danhof M. Low efficacy adenosine A1 agonists inhibit striatal acetylcholine release in rats improving central selectivity of action. Neurosci Lett 2003; 343:57-61. [PMID: 12749997 DOI: 10.1016/s0304-3940(03)00311-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to characterize the effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) and its low efficacy derivatives 2'-deoxy-CPA (2DCPA), 3'-deoxy-CPA (3DCPA), 8-ethylamino-CPA (8ECPA) and 8-butylamino-CPA (8BCPA) on the release of acetylcholine (ACh) using intrastriatal microdialysis. These low efficacy agonists exhibited lower effects on the cardiovascular system than CPA. A concentration-dependent inhibition of ACh release was observed with a maximum of 60.5+/-2.4% for CPA, 42.5+/-2.3% for 2DCPA, 45.3+/-5.8% for 3DCPA, 57.1+/-1.4% for 8ECPA and 93.1+/-10.9% for 8BCPA, respectively. This effect was counteracted by the adenosine A(1) receptor antagonist 8-cyclopentyltheophylline. These findings show that low efficacy adenosine A(1) agonists inhibit striatal ACh release equally effective as CPA, suggesting that central nervous system-selective actions can be obtained with these compounds.
Collapse
Affiliation(s)
- Tjerk J H Bueters
- Research Group Pharmacology, TNO Prins Maurits Laboratory, Lange Kleiweg 137, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
22
|
Desvignes C, Rouquier L, Souilhac J, Mons G, Rodier D, Soubrié P, Steinberg R. Control by tachykinin NK(2) receptors of CRF(1) receptor-mediated activation of hippocampal acetylcholine release in the rat and guinea-pig. Neuropeptides 2003; 37:89-97. [PMID: 12747940 DOI: 10.1016/s0143-4179(03)00019-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo microdialysis was employed to explore the effects of different selective non-peptides NK(1),NK(2) and NK(3) receptor antagonists on the corticotropin releasing factor (CRF)-induced release of acetylcholine (ACh) in the hippocampus of rats and guinea-pigs. In both species, the intracerebroventricular (i.c.v.) administration of CRF produced a time- and dose-dependent increase in hippocampal ACh release that was totally suppressed by an intraperitoneally (i.p.) pretreatment with the selective non-peptide CRF(1) receptor antagonist antalarmin (30 mg/kg). Pretreatment with the selective NK(2) receptor antagonist SR48968 (1mg/kg, i.p.) significantly reduced the increase of ACh induced by CRF. In contrast, its low-affinity enantiomer SR48965 (1mg/kg, i.p.) or the NK(1) receptor antagonist, GR205171 (1mg/kg, i.p.) did not exert any antagonist effect. Moreover, administration of the selective NK(3) receptor antagonist SR142801 (1mg/kg, i.p.) did not significantly reduce the CRF-induced hippocampal ACh release in guinea-pigs (the only species studied). The selective activity of SR48968 versus GR205171 or SR142801 indicates that NK(2) receptors play a major role in the control of CRF-induced hippocampal ACh release. Moreover, in freely moving rats, two sessions of stroking of the neck and back of the rat for 30 min, at 90 min intervals, known to be a stressful stimulus, produced a marked and reproducible increase in hippocampal ACh release. This effect was prevented by the administration of the two selective non-peptide CRF1 and NK(2) receptor antagonists antalarmin (30 mg/kg, i.p.) and SR48968 (1mg/kg, i.p.), respectively. This suggests that stress-induced activation of the hippocampal ACh system may be under the control of both endogenously released CRF and NKA, and opens the possibility of the existence of a functional interplay between the pathways containing these peptides as we observed in our experiments on anaesthetized animals.
Collapse
Affiliation(s)
- C Desvignes
- Central Nervous System Research Department, 371 rue du Professeur Blayac, 34184 04, Montpellier Cédex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 2003; 138:544-53. [PMID: 12598408 PMCID: PMC1573706 DOI: 10.1038/sj.bjp.0705100] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Revised: 11/07/2002] [Accepted: 11/13/2002] [Indexed: 11/09/2022] Open
Abstract
1. In order to explore potential therapeutic implications of cannabinoid antagonists, the effects of the prototypical cannabinoid antagonist SR141716A on monoamine efflux from the medial prefrontal cortex and the nucleus accumbens of the rat were investigated by in vivo microdialysis. 2. SR141716A moderately increased serotonin efflux and concentrations of its metabolite 5-HIAA, both in the medial prefrontal cortex and the nucleus accumbens, and increased norepinephrine, dopamine and their metabolites in the medial prefrontal cortex. In contrast, it had no effect on norepinephrine, dopamine and their metabolites in the nucleus accumbens. 3. At the same doses, SR141716A increased acetylcholine efflux in the medial prefrontal cortex, in agreement with previous studies; contrary to the effects in cortex, SR141716A had no effect on acetylcholine efflux in the nucleus accumbens. 4. The efficacy of SR141716A in the psychostimulant-induced hyperlocomotion and the forced swimming paradigms was also explored in mice. SR141716A attenuated phenylcyclidine- and d-amphetamine-induced hyperlocomotion, without affecting locomotor activity when administered alone, and decreased immobility in the forced swimming test. 5. These results suggest that the cortical selectivity in the release of catecholamines, dopamine in particular, induced by the cannabinoid antagonist SR141716A, its procholinergic properties, together with its mild stimulatory effects on serotonin and norepinephrine efflux make similar compounds unique candidates for the treatment of psychosis, affective and cognitive disorders.
Collapse
Affiliation(s)
- Eleni T Tzavara
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Richard J Davis
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Kenneth W Perry
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Xia Li
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Craig Salhoff
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Frank P Bymaster
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - Jeffrey M Witkin
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| | - George G Nomikos
- Eli Lilly and Company, Lilly Corporate Center, DC0510, Neuroscience Discovery Research, Indianapolis, IN 46285-0510, U.S.A
| |
Collapse
|
24
|
Bueters TJH, van Helden HPM, Danhof M, IJzerman AP. Effects of the adenosine A1 receptor allosteric modulators PD 81,723 and LUF 5484 on the striatal acetylcholine release. Eur J Pharmacol 2002; 454:177-82. [PMID: 12421644 DOI: 10.1016/s0014-2999(02)02494-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of the present study was to characterize the adenosine A(1) receptor allosteric enhancing and antagonistic actions of (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)(3,4-dichlorophenyl)methanone (LUF 5484) and (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone (PD 81,723) on striatal acetylcholine release. Upon local administration in conscious rats, LUF 5484 or PD 81,723 caused a concentration-dependent increase of extracellular acetylcholine levels of approximately 40%, which was similar to that obtained by the selective adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine (8CPT) and N(6)-cyclopentyl-9-methyladenine (N0840). In interaction experiments, LUF 5484 or PD 81,723 did not change the inhibition of acetylcholine release by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), whereas 8CPT caused an eightfold rightward shift. Acetylcholine concentrations were diminished with 62+/-3%, 48+/-11% and 56+/-9% by CPA, CPA+LUF 5484 and CPA+PD 81,723, respectively. In conclusion, the antagonistic action of LUF 5484 and PD 81,723 seems to counteract the putative allosteric actions with respect to the reduction of striatal acetylcholine release.
Collapse
Affiliation(s)
- Tjerk J H Bueters
- Research Group Medical Countermeasures, TNO Prins Maurits Laboratory, Lange Kleiweg 137, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
25
|
Materi LM, Semba K. Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. Eur J Neurosci 2001; 14:38-46. [PMID: 11488947 DOI: 10.1046/j.0953-816x.2001.01619.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical acetylcholine (ACh) has been shown to regulate diverse cognitive processes and its release can be regulated by neuromodulators that act presynaptically at cholinergic terminals. The neocortex receives dense glutamatergic input from thalamocortical and other fibres. The present study used in vivo microdialysis to examine, and pharmacologically characterize, the effect of glutamate on cortical ACh release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane-anaesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. Application of glutamate had no detectable effect on spontaneous ACh release but reduced evoked cortical ACh efflux in a concentration-dependent manner. This effect was mimicked by the glutamate transporter blocker L-trans-pyrrolidine-2,4-dicarboxylic acid, as well as by the ionotropic glutamate receptor agonists N-methyl-D-aspartic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and was blocked by the ionotropic glutamate receptor antagonists 6,7-dinitroquinoxaline-2,3-dione and (+/-)-3-(2-carboxypiperazin-4yl)-propyl-1-phosphonic acid. Glutamate application also increased extracellular adenosine levels but the simultaneous delivery of the broad-spectrum adenosine receptor antagonist caffeine failed to affect the inhibitory action of glutamate on evoked ACh release. However, the effect of glutamate was fully blocked by simultaneous delivery of the GABAA receptor antagonist bicuculline and partially blocked by the GABAB receptor antagonist phaclofen. These results suggest that ionotropic glutamate receptor activation by glutamate inhibits evoked cortical ACh release via an indirect pathway involving GABAergic neurons in the cortex.
Collapse
Affiliation(s)
- L M Materi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| | | |
Collapse
|
26
|
Erb C, Troost J, Kopf S, Schmitt U, Löffelholz K, Soreq H, Klein J. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J Neurochem 2001; 77:638-46. [PMID: 11299326 DOI: 10.1046/j.1471-4159.2001.00287.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central cholinergic neurotransmission was studied in learning-impaired transgenic mice expressing human acetylcholinesterase (hAChE-Tg). Total catalytic activity of AChE was approximately twofold higher in synaptosomes from hippocampus, striatum and cortex of hAChE-Tg mice as compared with controls (FVB/N mice). Extracellular acetylcholine (ACh) levels in the hippocampus, monitored by microdialysis in the absence or presence of 10(-8)-10(-3) M neostigmine in the perfusion fluid, were indistinguishable in freely moving control and hAChE-Tg mice. Muscarinic receptor functions were unchanged as indicated by similar effects of scopolamine on ACh release and of carbachol on inositol phosphate formation. However, when the mice were anaesthetized with halothane (0.8 vol. %), hippocampal ACh reached significantly lower levels in AChE-Tg mice as compared with controls. Also, the high-affinity choline uptake (HACU) in hippocampal synaptosomes from awake hAChE-Tg mice was accelerated but was reduced by halothane anaesthesia. Moreover, hAChE-Tg mice displayed increased motor activity in novel but not in familiar environment and presented reduced anxiety in the elevated plus-maze test. Systemic application of a low dose of physostigmine (100 microgram/kg i.p.) normalized all of the enhanced parameters in hAChE-Tg mice: spontaneous motor activity, hippocampal ACh efflux and hippocampal HACU, attributing these parameters to the hypocholinergic state due to excessive AChE activity. We conclude that, in hAChE-Tg mice, hippocampal ACh release is up-regulated in response to external stimuli thereby facilitating cholinergic neurotransmission. Such compensatory phenomena most likely play important roles in counteracting functional deficits in mammals with central cholinergic dysfunctions.
Collapse
Affiliation(s)
- C Erb
- Department of Pharmacology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001; 23:21-39. [PMID: 11162147 DOI: 10.1006/meth.2000.1103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.
Collapse
Affiliation(s)
- J C Day
- Douglas Hospital Research Centre & Department of Psychiatry, McGill University, Verdun, Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|
28
|
Tsai TH. Separation methods used in the determination of choline and acetylcholine. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 747:111-22. [PMID: 11103902 DOI: 10.1016/s0378-4347(00)00268-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cholinergic neurotransmission has been the subject of intensive investigations in recent years due to increasing recognition of the importance of its roles in physiology, pathology and pharmacology. The fact that the disposition of a neurotransmitter may reflect its functional status has made the measurement of acetylcholine and/or its precursors and metabolites in biological fluids an integral part of cholinergic research. With evolving complexity in experimental approaches and designs, and correspondingly increasing demand on sensitivity, specificity and accuracy matching advancements in sophistication in analytical methods have been made. The present review attempts to survey the array of analytical techniques that have been adopted for the measurement of acetylcholine or its main precursor/metabolite choline ranging from simple bioassays, radioenzymatic assays, gas chromatography (GC) with flame ionization detection, GC with mass spectrometry (GC-MS) detection, high-performance liquid chromatography (HPLC) with electrochemical detection (ED), HPLC with MS (HPLC-MS) to the sophisticated combination of micro-immobilized enzymatic reactor, microbore HPLC and modified electrode technology for the detection of ultra-low levels with particular emphasis on the state of the art techniques.
Collapse
Affiliation(s)
- T H Tsai
- Department of Pharmacology, National Research Institute of Chinese Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Izurieta-Sánchez P, Jonkers N, Sarre S, Ebinger G, Michotte Y. Neostigmine influences the L-dopa-induced extracellular dopamine levels in the striatum. Brain Res 2000; 856:250-3. [PMID: 10677634 DOI: 10.1016/s0006-8993(99)02398-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using in vivo microdialysis in freely moving rats, we show that the addition to the dialysis perfusion fluid of the acetylcholinesterase inhibitor neostigmine influences the decarboxylation of levodopa (L-dopa). Continuous perfusion of neostigmine (10, 50 and 100 nM) in striatum attenuated the L-dopa-induced dopamine release in a dose-dependent manner. This effect suggests that changes in magnitude of drug responses may occur when an acetylcholinesterase inhibitor is included in the perfusion solution. Results obtained under these circumstances should be carefully interpreted concerning the pharmacological effects of other drugs when used concomitantly with neostigmine.
Collapse
Affiliation(s)
- P Izurieta-Sánchez
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan, 103, B-1090, Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Moore H, Fadel J, Sarter M, Bruno JP. Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 1999; 88:811-22. [PMID: 10363819 DOI: 10.1016/s0306-4522(98)00261-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cortical acetylcholine, under resting and stimulated conditions, was measured in frontoparietal and prefrontal cortex using in vivo microdialysis in freely-moving rats. Cortical acetylcholine efflux was stimulated by systemic administration of the benzodiazepine receptor partial inverse agonist FG 7142. Administration of FG 7142 (8.0 mg/kg; i.p.) significantly elevated acetylcholine efflux in both cortical regions (150-250% relative to baseline) for 30 min after drug administration. The ability of endogenous dopamine to regulate cortical acetylcholine efflux under resting or stimulated conditions and the relative contributions of D1- and D2-like dopamine receptor activation was also assessed. In a first series of experiments, systemic administration of the antipsychotic drug haloperidol (0.15, 0.9 mg/kg, i.p.) blocked FG 7142-stimulated acetylcholine efflux in frontoparietal, cortex while the D1-like antagonist, SCH 23390 (0.1, 0.3 mg/kg), was less effective in attenuating stimulated acetylcholine efflux. In a second series of experiments, the effects of infusions of these antagonists and of the D2-like antagonist sulpiride (10, 100 microM) into the nucleus accumbens were assessed. Infusions of haloperidol and sulpiride significantly blocked FG 7142-stimulated acetylcholine efflux while SCH 23390 did not. By contrast, a third series of experiments demonstrated that perfusion of these antagonists (100 microM) locally into the cortex (through the probe) did not affect FG 7142-stimulated acetylcholine efflux. Moreover, none of these dopamine receptor antagonists, whether administered systemically or perfused into the nucleus accumbens or cortex, affected basal cortical acetylcholine efflux. These results reveal similarities in stimulated cortical acetylcholine release across frontal cortical regions and suggest a prominent role for D2-mediated accumbens dopamine transmission in the regulation of cortical acetylcholine release. The findings provide evidence in support of a neural substrate that links dysregulation of mesolimbic dopaminergic transmission to changes in cortical cholinergic transmission. Dysregulation within this circuit is hypothesized to contribute to the etiology of disorders such as schizophrenia, dementia and drug abuse.
Collapse
Affiliation(s)
- H Moore
- Department of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Sánchez-Roa PM, Wagner HN, Villemagne VL, London ED, Lever JR. Effects of extracellular acetylcholine on muscarinic receptor binding assessed by [125I]dexetimide and a simple probe. Eur J Pharmacol 1998; 358:207-11. [PMID: 9822886 DOI: 10.1016/s0014-2999(98)00633-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New pharmacologic approaches to enhance brain cholinergic function focus on increasing intrasynaptic acetylcholine. We examined the usefulness of a simple probe and [125I]dexetimide to evaluate in vivo the effects of extracellular acetylcholine on muscarinic receptor binding in the mouse brain. After radiotracer injection continuous time/activity curves were generated over 330 min. [125I]Dexetimide reached a plateau at 90 min post-injection. To increase extracellular acetylcholine, the anticholinesterase physostigmine was administered at 120 min, producing a reversible decrease in [125I]dexetimide specific binding (23%) for 30 min. These findings demonstrate that dynamic changes in extracellular acetylcholine can be evaluated by displacement of [125I]dexetimide binding in vivo using a simple probe system.
Collapse
Affiliation(s)
- P M Sánchez-Roa
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205-2179, USA
| | | | | | | | | |
Collapse
|
33
|
Pepeu G, Blandina P. The acetylcholine, GABA, glutamate triangle in the rat forebrain. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:351-5. [PMID: 9789836 DOI: 10.1016/s0928-4257(99)80004-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present overview demonstrates that stress, fear, novelty, and learning processes are associated with arousal and increases of extracellular levels of cortical and hippocampal ACh, independently of increases of motor activity. Forebrain cholinergic systems appears to be regulated by GABAergic and glutamatergic inputs. However, several other neurotransmitter systems play a role.
Collapse
Affiliation(s)
- G Pepeu
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|