1
|
Zhang GH, Chin KL, Yan SY, Pare R. Antioxioxidant and antiapoptotic effects of Thymosin β4 in Aβ-induced SH-SY5Y cells via the 5-HTR1A/ERK axis. PLoS One 2023; 18:e0287817. [PMID: 37788276 PMCID: PMC10547165 DOI: 10.1371/journal.pone.0287817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/13/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) is a common amnestic cognitive impairment characterised by β-amyloid (Aβ) plaques deposit in the brain of the elderly. AD is a yet incurable disease due to its unknown exact pathogenesis and unavailability of effective remedies in clinical application. Thymosin β4 (Tβ4) is a housekeeping protein that plays important role in cell proliferation, migration and differentiation. It has the ability to protect and repair neurons however it is still unclear involvement in AD. Therefore, the aim of this study is to elucidate the role and mechanism of Tβ4 in mediating the improvement of AD. AD-like cell model was constructed in neuroblastoma cell line SH-SY5Y treated with Aβ. Overexpression of Tβ4 were done using lentivirus infection and downregulation through siRNA transfection. We performed western blot and flow cytometry to study the apoptosis and standard kits to measure the oxidative stress-associated biomarkers. There is significant increased in viability and decreased apoptosis in Tβ4 overexpression group compared to control. Furthermore, overexpression of Tβ4 suppressed the expression of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax meanwhile upregulated the expression of anti-apoptotic gene Bcl-2. Tβ4 alleviated oxidative damage by reducing MDA, LDH and ROS and increasing SOD and GSH-PX in Aβ-treated SH-SY5Y cells. We found that Tβ4 inhibit ERK/p38 MAPK pathway and intensify the expression of 5-HTR1A. Additionally, we showed that upregulation of 5-HTR1A dampened the Tβ4 to activate ERK signalling. In conclusion, our study revealed the neuroprotective role of Tβ4 in AD which may open up new therapeutic applications in AD treatment.
Collapse
Affiliation(s)
- Gui-Hong Zhang
- School of Medicine, Xi’an International University, Xi’an, Shaanxi, China
- Faculty of Medicine and Health Sciences, Department of Biomedical Science, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Department of Biomedical Science, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Shi-Yan Yan
- International Innovation Institute of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing, Hebei, China
| | - Rahmawati Pare
- Faculty of Medicine and Health Sciences, Department of Biomedical Science, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
3
|
Kim S, Choi J, Kwon J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106-126) via Neurotrophic Factor Signaling. Molecules 2023; 28:molecules28093920. [PMID: 37175330 PMCID: PMC10180446 DOI: 10.3390/molecules28093920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, axonal enlargement, differentiation, neurite outgrowth, and proliferation. However, no studies about the effects of Tβ4 on prion disease have been performed yet. In the present study, we investigated the protective effect of Tβ4 against synthetic PrP (106-126) and considered possible mechanisms. Hippocampal neuronal HT22 cells were treated with Tβ4 and PrP (106-126) for 24 h. Tβ4 significantly reversed cell viability and reactive oxidative species (ROS) affected by PrP (106-126). Apoptotic proteins induced by PrP (106-126) were reduced by Tβ4. Interestingly, a balance of neurotrophic factors (nerve growth factor and brain-derived neurotrophic factor) and receptors (nerve growth factor receptor p75, tropomyosin related kinase A and B) were competitively maintained by Tβ4 through receptors reacting to PrP (106-126). Our results demonstrate that Tβ4 protects neuronal cells against PrP (106-126) neurotoxicity via the interaction of neurotrophic factors/receptors.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
- Knotus Co., Ltd., Incheon 22014, Republic of Korea
| | - Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
5
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
6
|
Zhang GH, Pare RB, Chin KL, Qian YH. Tβ4 ameliorates oxidative damage and apoptosis through ERK/MAPK and 5-HT1A signaling pathway in Aβ insulted SH-SY5Y cells. Life Sci 2021:120178. [PMID: 34838849 DOI: 10.1016/j.lfs.2021.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder seriously endangering the physical and mental health of the elderly, while no effective treatments and drugs in clinical practice are available. Thymosin β4 (Tβ4) is a multifunctional polypeptide involved in many physiological and pathological processes including AD. This study aims to understand the function and molecular mechanism of Tβ4 in the development of AD. MAIN METHODS Neuroblastoma cell line SH-SY5Y was treated with β-amyloid (Aβ) to induce AD-like pathological changes, which serves as Alzheimer's disease model. Tβ4 was overexpressed in SH-SY5Y cells by lentivirus infection, and downregulated by siRNA transfection. Apoptosis of transfected SH-SY5Y cells after Aβ-treatment was examined by western blot and flow cytometry. Apoptotic proteins and Tβ4-related signaling pathways were also investigated by western blot. KEY FINDINGS We found that Tβ4 overexpression increased viability and suppressed apoptosis of Aβ-treated SH-SY5Y cells. Tβ4 ameliorated oxidative damage and suppressed reactive oxygen species production in Aβ-treated SH-SY5Y cells. Consistently, Tβ4 overexpression down-regulated the expression levels of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax, while up-regulated the expression level of anti-apoptotic gene Bcl-2 in Aβ-stimulated SH-SY5Y cells. Mechanistically, we demonstrated that Tβ4 dampened ERK/p38 MAPK signaling and enhanced 5-HTR1A expression in Aβ-treated SH-SY5Y cells. Moreover, we revealed that Tβ4 inhibited the activation of ERK pathway through up-regulating 5-HTR1A in Aβ-treated SH-SY5Y cells. SIGNIFICANCE Taken together, our findings provide evidences to support the neuroprotective role of Tβ4 and might open up new therapeutic applications of Tβ4 in AD treatment.
Collapse
Affiliation(s)
- Gui-Hong Zhang
- School of Medicine, Xi'an International University, Xi'an 710077, Shaanxi, China; Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah, Malaysia
| | - Kai Ling Chin
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah, Malaysia
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center.
| |
Collapse
|
7
|
Zhang GH, Murthy KD, Binti Pare R, Qian YH. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gui-hong Zhang
- School of Medicine, Xi’an International University, Xi’an, China
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Krishna Dilip Murthy
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Yi-hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
8
|
Pardon MC. Anti-inflammatory potential of thymosin β4 in the central nervous system: implications for progressive neurodegenerative diseases. Expert Opin Biol Ther 2019; 18:165-169. [PMID: 30063850 DOI: 10.1080/14712598.2018.1486817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The actin-sequestering thymosin beta4 (Tβ4) is the most abundant member of the β-thymosins, and is widely expressed in the central nervous system (CNS), but its functions in the healthy and diseased brain are poorly understood. The expression of Tβ4 in neurons and microglia, the resident immune cells of the brain, suggests that it can play a role in modulating behavioral processes and immunological mechanisms in the brain. The purpose of this review is to shed lights on the role of Tβ4 in CNS function and diseases without antecedent autoimmune inflammation or injury, and to question its therapeutic potential for neurodegenerative disorders such as Alzheimer's disease. AREAS COVERED This review presents the evidence supporting a role for Tβ4 in behaviors that are affected in CNS disorders, as well as studies linking Tβ4 upregulation in microglia to neuroinflammatory processes associated with these disorders. Finally, the implication of Tβ4 in the process of microglial activation and the mechanisms underlying its ability to suppress pro-inflammatory signaling in microglia are discussed. EXPERT OPINION Tβ4 has the potential to control inflammatory processes in the brain, opening avenues for new therapeutic applications to a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- a School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Queens Medical Centre , The University of Nottingham Medical School , Nottingham , UK
| |
Collapse
|
9
|
Li H, Li Q, Zhang X, Zheng X, Zhang Q, Hao Z. Thymosin β4 suppresses CCl4
-induced murine hepatic fibrosis by down-regulating transforming growth factor β receptor-II. J Gene Med 2018; 20:e3043. [PMID: 29972714 DOI: 10.1002/jgm.3043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Xueting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Qiannan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| |
Collapse
|
10
|
Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochem Cell Biol 2016; 147:555-564. [DOI: 10.1007/s00418-016-1529-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
11
|
Hsu CC, Chou PT, Zare RN. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2015; 87:11171-5. [DOI: 10.1021/acs.analchem.5b03389] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cheng-Chih Hsu
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Santra M, Zhang ZG, Yang J, Santra S, Santra S, Chopp M, Morris DC. Thymosin β4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J Biol Chem 2014; 289:19508-18. [PMID: 24828499 DOI: 10.1074/jbc.m113.529966] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymosin β4 (Tβ4), a G-actin-sequestering peptide, improves neurological outcome in rat models of neurological injury. Tissue inflammation results from neurological injury, and regulation of the inflammatory response is vital for neurological recovery. The innate immune response system, which includes the Toll-like receptor (TLR) proinflammatory signaling pathway, regulates tissue injury. We hypothesized that Tβ4 regulates the TLR proinflammatory signaling pathway. Because oligodendrogenesis plays an important role in neurological recovery, we employed an in vitro primary rat embryonic cell model of oligodendrocyte progenitor cells (OPCs) and a mouse N20.1 OPC cell line to measure the effects of Tβ4 on the TLR pathway. Cells were grown in the presence of Tβ4, ranging from 25 to 100 ng/ml (RegeneRx Biopharmaceuticals Inc., Rockville, MD), for 4 days. Quantitative real-time PCR data demonstrated that Tβ4 treatment increased expression of microRNA-146a (miR-146a), a negative regulator the TLR signaling pathway, in these two cell models. Western blot analysis showed that Tβ4 treatment suppressed expression of IL-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two proinflammatory cytokines of the TLR signaling pathway. Transfection of miR-146a into both primary rat embryonic OPCs and mouse N20.1 OPCs treated with Tβ4 demonstrated an amplification of myelin basic protein (MBP) expression and differentiation of OPC into mature MBP-expressing oligodendrocytes. Transfection of anti-miR-146a nucleotides reversed the inhibitory effect of Tβ4 on IRAK1 and TRAF6 and decreased expression of MBP. These data suggest that Tβ4 suppresses the TLR proinflammatory pathway by up-regulating miR-146a.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Chopp
- From the Departments of Neurology, the Department of Physics, Oakland University, Rochester, Michigan 48309
| | - Daniel C Morris
- Emergency Medicine, Henry Ford Health Systems, Detroit, Michigan 48202 and
| |
Collapse
|
13
|
Dimatelis JJ, Russell VA, Stein DJ, Daniels WM. Effects of maternal separation and methamphetamine exposure on protein expression in the nucleus accumbens shell and core. Metab Brain Dis 2012; 27:363-75. [PMID: 22451087 DOI: 10.1007/s11011-012-9295-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/15/2012] [Indexed: 12/14/2022]
Abstract
Early life adversity has been suggested to predispose an individual to later drug abuse. The core and shell sub-regions of the nucleus accumbens are differentially affected by both stressors and methamphetamine. This study aimed to characterize and quantify methamphetamine-induced protein expression in the shell and core of the nucleus accumbens in animals exposed to maternal separation during early development. Isobaric tagging (iTRAQ) which enables simultaneous identification and quantification of peptides with tandem mass spectrometry (MS/MS) was used. We found that maternal separation altered more proteins involved in structure and redox regulation in the shell than in the core of the nucleus accumbens, and that maternal separation and methamphetamine had differential effects on signaling proteins in the shell and core. Compared to maternal separation or methamphetamine alone, the maternal separation/methamphetamine combination altered more proteins involved in energy metabolism, redox regulatory processes and neurotrophic proteins. Methamphetamine treatment of rats subjected to maternal separation caused a reduction of cytoskeletal proteins in the shell and altered cytoskeletal, signaling, energy metabolism and redox proteins in the core. Comparison of maternal separation/methamphetamine to methamphetamine alone resulted in decreased cytoskeletal proteins in both the shell and core and increased neurotrophic proteins in the core. This study confirms that both early life stress and methamphetamine differentially affect the shell and core of the nucleus accumbens and demonstrates that the combination of early life adversity and later methamphetamine use results in more proteins being affected in the nucleus accumbens than either treatment alone.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| | | | | | | |
Collapse
|
14
|
Paulussen M, Arckens L. Striking neuronal thymosin beta 4 expression in the deep layers of the mouse superior colliculus after monocular deprivation. Brain Struct Funct 2011; 217:81-91. [DOI: 10.1007/s00429-011-0330-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022]
|
15
|
Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG. Thymosin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neuroscience 2010; 169:674-82. [PMID: 20627173 DOI: 10.1016/j.neuroscience.2010.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/21/2010] [Accepted: 05/09/2010] [Indexed: 11/20/2022]
Abstract
UNLABELLED Thymosin beta4 (Tbeta4) is a developmentally expressed 43-amino acid peptide that inhibits organization of the actin-cytoskeleton by sequestration of G-actin monomers. Tbeta4 improves cardiac function after myocardial infarction in adult mice and promotes healing properties in both dermal and corneal wounds. We tested the hypothesis that Tbeta4 improves functional neurological outcome in a rat model of embolic stroke. EXPERIMENTAL PROCEDURES Male Wistar rats (n=18) were subjected to embolic middle cerebral artery occlusion (MCAo). Tbeta4 (6 mg/kg, IP) was administered 24 h after MCAo and then every 3 days for four additional doses (n=9). Rats treated with saline were used as a control (n=9). The adhesive-removal test (ART) and modified Neurological Severity Score (mNSS) were performed to measure functional outcome. Rats were sacrificed 56 days after MCAo. Immunostaining was performed with antibodies against NG-2 (chondroitin sulfate proteoglycan), CNPase (2", 3"-cyclic nucleotide 3'-phosphodiesterase) to detect immature and mature oligodendrocytes. Neurofilament-H (NF-H) antibodies were used to detect axons while myelinated axons were identified with Bielschowsky/Luxol (B/L) Blue staining. EBA (endothelial barrier antigen) was used for detection of mature vessels. RESULTS Ischemic rats treated with Tbeta4 demonstrated a significant overall improvement (P<0.01) in the ART and the mNSS when compared to controls. Significant improvement was observed beginning at 14 and 35 days, respectively. Lesion volumes showed no significant differences between the two groups. Treatment with Tbeta4 increased myelinated axons and increased vessel density in the ischemic boundary (P<0.05) and augmented remyelination which was associated with an increase of oligodendrocyte progenitor cells (OPCs) and myelinating oligodendrocytes (P<0.05). CONCLUSIONS The present study suggests that Tbeta4 improves neurological functional outcome after embolic stroke in rats. Axonal remodeling from mobilization of OPCs is proposed as contributing to Tbeta4 induced functional improvement.
Collapse
Affiliation(s)
- D C Morris
- Department of Emergency Medicine, Henry Ford Health Systems, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
16
|
Morris DC, Chopp M, Zhang L, Zhang ZG. Thymosin beta4: a candidate for treatment of stroke? Ann N Y Acad Sci 2010; 1194:112-7. [PMID: 20536457 DOI: 10.1111/j.1749-6632.2010.05469.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurorestorative therapy is the next frontier in the treatment of stroke. An expanding body of evidence supports the theory that after stroke, certain cellular changes occur that resemble early stages of development. Increased expression of developmental proteins in the area bordering the infarct suggest an active repair or reconditioning response to ischemic injury. Neurorestorative therapy targets parenchymal cells (neurons, oligodendrocytes, astrocyes, and endothelial cells) to enhance endogenous neurogenesis, angiogenesis, axonal sprouting, and synaptogenesis to promote functional recovery. Pharmacological treatments include statins, phosphodiesterase 5 inhibitors, erythropoietin, and nitric oxide donors that have all improved functional outcome after stroke in the preclinical arena. Thymosin beta4 (Tbeta4) is expressed in both the developing and adult brain and it has been shown to stimulate vasculogenesis, angiogenesis, and arteriogenesis in the postnatal and adult murine cardiac myocardium. In this manuscript, we describe our rationale and techniques to test our hypothesis that Tbeta4 may be a candidate neurorestorative agent.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health Systems, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
17
|
Yang H, Cui GB, Jiao XY, Wang J, Ju G, You SW. Thymosin-beta4 attenuates ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes by inhibiting apoptosis. Cell Mol Neurobiol 2010; 30:149-60. [PMID: 19688260 DOI: 10.1007/s10571-009-9439-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/27/2009] [Indexed: 12/26/2022]
Abstract
Thymosin-beta4 (Tbeta4) is a major actin monomer-binding peptide in mammalian tissues and plays a crucial role in the nervous system in synaptogenesis, neuronal survival and migration, axonal growth, and plastic changes of dendritic spines. However, it is unknown whether Tbeta4 is also involved in challenges with external stress such as ethanol-induced neurotoxicity. In the present study, we investigated the effects of Tbeta4 on ethanol-induced neurotoxicity in cultured cerebral cortical astrocytes and the underlying mechanisms. Primarily cultured astrocytes were treated with 1 microg/ml Tbeta4 2 h prior to administration of 100 mM ethanol for 0.5, 1, 3 and 6 days, respectively. The results showed that ethanol caused neurotoxicity in cultured astrocytes, as shown by declined cell viability, distinct astroglial apoptosis and increased intracellular peroxidation. Tbeta4 markedly promoted cell viability, ameliorated the injury of intracellular glial fibrillary acidic protein-immunopositive cytoskeletal structures, reduced the percentage of apoptotic astrocyte and cellular DNA fragmentation, suppressed caspase-3 activity and upregulated Bcl-2 expression, inhibited the accumulation of reactive oxygen species and production of malondialdehyde in ethanol-treated astrocytes in a time-dependent manner. These data indicated that Tbeta4 attenuates ethanol-induced neurotoxicity in cultured cortical astrocytes through inhibition of apoptosis signaling, and one of the mechanisms underlying the capacity of Tbeta4 to suppress apoptosis may in part be due to its effect of anti-peroxidation.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, 710032, Xi'an, China.
| | | | | | | | | | | |
Collapse
|
18
|
Mollinari C, Ricci-Vitiani L, Pieri M, Lucantoni C, Rinaldi AM, Racaniello M, De Maria R, Zona C, Pallini R, Merlo D, Garaci E. Downregulation of thymosin beta4 in neural progenitor grafts promotes spinal cord regeneration. J Cell Sci 2009; 122:4195-207. [PMID: 19861493 DOI: 10.1242/jcs.056895] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thymosin beta4 (Tbeta4) is an actin-binding peptide whose expression in developing brain correlates with migration and neurite extension of neurons. Here, we studied the effects of the downregulation of Tbeta4 expression on growth and differentiation of murine neural progenitor cells (NPCs), using an antisense lentiviral vector. In differentiation-promoting medium, we found twice the number of neurons derived from the Tbeta4-antisense-transduced NPCs, which showed enhanced neurite outgrowth accompanied by increased expression of the adhesion complex N-cadherin-beta-catenin and increased ERK activation. Importantly, when the Tbeta4-antisense-transduced NPCs were transplanted in vivo into a mouse model of spinal cord injury, they promoted a significantly greater functional recovery. Locomotory recovery correlated with increased expression of the regeneration-promoting cell adhesion molecule L1 by the grafted Tbeta4-antisense-transduced NPCs. This resulted in an increased number of regenerating axons and in sprouting of serotonergic fibers surrounding and contacting the Tbeta4-antisense-transduced NPCs grafted into the lesion site. In conclusion, our data identify a new role for Tbeta4 in neuronal differentiation of NPCs by regulating fate determination and process outgrowth. Moreover, NPCs with reduced Tbeta4 levels generate an L1-enriched environment in the lesioned spinal cord that favors growth and sprouting of spared host axons and enhances the endogenous tissue-repair processes.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Paulussen M, Landuyt B, Schoofs L, Luyten W, Arckens L. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides 2009; 30:1822-32. [PMID: 19631707 DOI: 10.1016/j.peptides.2009.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022]
Abstract
Thymosin beta 4 (Tbeta4) is a peptide of 43 amino acids, mainly recognized as a regulator of actin polymerization by sequestering G-actin. Meanwhile, the peptide has been implicated in lymphocyte maturation, carcinogenesis, apoptosis, angiogenesis, blood coagulation and wound healing. The peptide is also involved in lesion-induced neuroplasticity through microglia upregulation and it participates in the growth of neuronal processes. However, its precise cellular localization throughout the entire body of the mouse has not been documented. We therefore initiated a detailed investigation of the tissue distribution and cellular expression of the Tbeta4 peptide and its precursor mRNA by immunocytochemistry and in situ hybridization, respectively. In the brain, Tbeta4 was clearly present in neurons of the olfactory bulb, neocortex, hippocampus, striatum, amygdala, piriform cortex and cerebellum, and in microglia across the entire brain. We further localized Tbeta4 in cells, typically with many processes, inside thymus, spleen, lung, kidney, liver, adrenal gland, stomach and intestine. Remarkably, Tbeta4 was thus associated with microglia and macrophages, the differentiated phagocytic cells residing in every tissue. Motility and phagocytosis, two important activities of macrophages, depend on actin, which can explain the presence of Tbeta4 in these cells.
Collapse
Affiliation(s)
- Melissa Paulussen
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Woman and Child, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
20
|
Expression and subcellular localization of thymosin beta15 following kainic acid treatment in rat brain. Biochem Biophys Res Commun 2008; 371:664-9. [DOI: 10.1016/j.bbrc.2008.04.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 11/23/2022]
|
21
|
The promotive effects of thymosin beta4 on neuronal survival and neurite outgrowth by upregulating L1 expression. Neurochem Res 2008; 33:2269-80. [PMID: 18461449 DOI: 10.1007/s11064-008-9712-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
Thymosin beta(4) (Tbeta4) is a major actin-sequestering peptide widely distributed in mammalian tissues including the nervous system. The presence of this peptide in the nervous system likely plays a role in synaptogensis, axon growth, cell migration, and plastic changes in dendritic spine. However, the effects of Tbeta4 on the survival of neurons and axonal outgrowth have still not been fully understood. So far it is not clear if the effects of Tbeta4 are associated with L1 functions. In the present study, we hypothesized that Tbeta4-induced up-regulation of L1 synthesis could be involved in the survival and axon outgrowth of cultured spinal cord neurons. To test this hypothesis, primarily cultured neurons were prepared from the mouse spinal cord and treated with various concentrations of Tbeta4 ranging from 0.1 to 10 microg/ml. The analysis of L1 mRNA expression and protein synthesis in neurons was then carried out using RT-PCR and western blot assays, respectively. After the addition of Tbeta4 to cultures, cells were then treated with antibodies against distinct domains of L1-Fc. Subsequently, beta-tubulin III and L1 double-labeled indirect immunofluorescence was carried out. Meanwhile, L1 immunofluorescent reactivity was analyzed and compared in cells treated with Tbeta4. Furthermore, the number of beta-tubulin III-positive cells and neurite lengths were measured. We found that Tbeta4 enhanced L1 expression in a dose-dependent manner, and the highest L1 mRNA and protein synthesis in cells increased by more than 2.1- and 2.3-fold in the presence of Tbeta4 at identical concentrations, respectively. Moreover, it also dose dependently enhanced neurite outgrowth and neuronal survival. Compared to conditions without Tbeta4, the length of neurite and neuronal survival increased markedly in presence of 0.5, 1, and 5 microg/ml Tbeta4, respectively, whereas the effects of Tbeta4 were significantly attenuated or inhibited in the process of L1-Fc antibodies treatment. These above results indicate that the promotive effect of Tbeta4 on the survival and neurite outgrowth of cultured spinal cord neurons might be mediated, at least in part via a stimulation of the production of L1 in the neurons.
Collapse
|
22
|
Popoli P, Pepponi R, Martire A, Armida M, Pèzzola A, Galluzzo M, Domenici MR, Potenza RL, Tebano MT, Mollinari C, Merlo D, Garaci E. Neuroprotective effects of thymosin beta4 in experimental models of excitotoxicity. Ann N Y Acad Sci 2007; 1112:219-24. [PMID: 17947590 DOI: 10.1196/annals.1415.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the possible neuroprotective effects of thymosin beta(4) in different models of excitotoxicity. The application of thymosin beta(4) significantly attenuated glutamate-induced toxicity both in primary cultures of cortical neurons and in rat hippocampal slices. In in vivo experiments, the intracerebroventricular administration of thymosin beta(4) significantly reduced hippocampal neuronal loss induced by kainic acid. These results show that thymosin beta(4) induced a protective effect in models of excitotoxicity. The mechanisms underlying such an effect, as well as the real neuroprotective potential of thymosin beta(4), are worthy of further investigations.
Collapse
Affiliation(s)
- Patrizia Popoli
- Istituto Superiore di Sanità, Viale Regina Elena, 299 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Choi SY, Noh MR, Kim DK, Sun W, Kim H. Neuroprotective function of thymosin-beta and its derivative peptides on the programmed cell death of chick and rat neurons. Biochem Biophys Res Commun 2007; 362:587-93. [PMID: 17716628 DOI: 10.1016/j.bbrc.2007.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 11/28/2022]
Abstract
Thymosin-betas (Tbetas) are small polypeptides with various biological functions, including cytoskeletal remodeling, angiogenesis, cellular migration, wound healing, and regulation of apoptosis. Recently, we found that Tbeta is involved in the control of programmed cell death (PCD) of motoneurons (MNs) in chick embryo, and that the anti-apoptotic action of Tbeta is independent of its actin-sequestering activity. In this study, we observed that a synthetic peptide derived from Tbeta suppressed staurosporine-induced neuronal apoptosis in vitro, and PCD of chick or rat MNs in vivo. Furthermore, inhibition of Tbeta4 in chick embryo by antibody significantly augmented the PCD of MNs, suggesting that secreted form of Tbeta is physiological regulator of PCD. Based on these findings, we propose that extracellularly secreted Tbeta is involved in the control of PCD of neurons during development, and Tbeta-derived peptides could be useful for the anti-apoptotic therapy of neuropathologies related to neuronal apoptosis.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, 126-1 Anam-Dong, Sungbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Gómez-Márquez J. Function of prothymosin alpha in chromatin decondensation and expression of thymosin beta-4 linked to angiogenesis and synaptic plasticity. Ann N Y Acad Sci 2007; 1112:201-9. [PMID: 17495247 DOI: 10.1196/annals.1415.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prothymosin alpha (ProTalpha) is an abundant highly acidic protein found in the nuclei of virtually all mammalian cells. The expression of this protein is increased in proliferating mammalian cells. However, the function of this molecule is still controversial. Here I present a model explaining the role of this protein in chromatin decondensation through its interaction with histone H1. beta-thymosins are a family of small actin-binding peptides widely distributed in eukaryotic cells. Here I will focus on thymosin beta-4, the most abundant member of this family. In particular, I will discuss its expression in the mammalian development of cardiovascular and nervous systems as well as its implications in neuronal plasticity.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago, Spain.
| |
Collapse
|
25
|
Sun W, Kim H. Neurotrophic roles of the beta-thymosins in the development and regeneration of the nervous system. Ann N Y Acad Sci 2007; 1112:210-8. [PMID: 17468233 DOI: 10.1196/annals.1415.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-thymosins (Tbetas) are polypeptides abundant in the cytosol, nucleus, and extracellular space of many cell types. In the nervous system, the expression of Tbetas is regulated during the development of the central nervous system and following neuronal insults in cell-type and brain-region dependent manners, which may be related to the function of Tbetas in the growth and regeneration of the nervous system. Supporting such a proposition, overexpression of Tbetas in neurons has been shown to modify the axonal branches in vivo and neurite branches in vitro. These neurite-modifying functions have been suggested to be due to the activity of Tbetas to bind actin. In addition, we recently observed that Tbetas suppressed the apoptotic neuronal death in chick embryos, and these functions might be mediated by the extracellularly secreted form(s) of Tbetas. These results suggest that Tbetas play neurotrophic roles in the neuroprotection and neuronal growth/regeneration via their cytosolic actin-remodeling activity and extracellular antiapoptotic activity. Even though further verification is required, we also observed that Tbeta15 was translocated into the injured neuronal nuclei, and this event appeared to be an eliminatory process of the injured cells. Therefore, treatment with Tbetas or their related peptides appear to be beneficial for neuronal diseases by preventing neuronal death or promoting neuronal regeneration.
Collapse
Affiliation(s)
- Woong Sun
- Department of Anatomy, BK21 Program, College of Medicine, Korea University, 126-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea 136-705, Korea.
| | | |
Collapse
|
26
|
Choi SY, Kim DK, Eun B, Kim K, Sun W, Kim H. Anti-apoptotic function of thymosin-β in developing chick spinal motoneurons. Biochem Biophys Res Commun 2006; 346:872-8. [PMID: 16782066 DOI: 10.1016/j.bbrc.2006.05.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Thymosin-betas (Tbetas) are water-soluble peptides abundantly present in the cytoplasm and extracellular compartment. The functions of Tbetas appear to be pleiotrophic, including actin-remodeling, wound healing, angiogenesis, etc. In the present study, we present the evidence that Tbetas have anti-apoptotic activity on developing chick motoneurons (MNs) in vivo. Using in ovo electroporation, we introduced three isoforms of Tbeta (Tbeta4, Tbeta10, and Tbeta15) and found the significantly diminished normal and limb bud removal (LBR)-induced programmed cell death. Such anti-apoptotic activity is independent of Tbeta's actin remodeling activity. On the other hand, overexpression of Tbetas substantially reduced early cell death initiation signal, such as phosphorylation of c-Jun. Collectively, these results suggest that Tbetas may prevent apoptosis of neurons via blockade of early apoptogenic signals independent of actin remodeling action.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Kim Y, Kim EH, Hong S, Rhyu IJ, Choe J, Sun W, Kim H. Expression of thymosin beta in the rat brain following transient global ischemia. Brain Res 2006; 1085:177-82. [PMID: 16566908 DOI: 10.1016/j.brainres.2006.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Thymosin beta (Tbeta) isoforms play an important role in the organization of the cytoskeleton by sequestering G-actin during development of the mammalian brain. In this study, we examined changes in the expression of Tbeta4 and Tbeta15 after transient global ischemia. Tbeta15 mRNA increased gradually in the dentate gyrus (DG) of the hippocampal formation from 3 h after reperfusion and peaked 9 h later. Similarly, a significant increase in Tbeta4 mRNA level was observed in the DG 12 h after reperfusion. Tbeta4 and Tbeta15 proteins were found in different cell types in control brains; Tbeta15 was expressed in a subset of doublecortin (DCX)-positive cells in the DG, whereas Tbeta4-IR was observed in DG neurons and nearby microglial cells. After ischemia, Tbeta15-IR was found in DG neurons and Tbeta4-IR in the reactivated microglial cells. Interestingly, Tbeta15-IR accumulated in the nuclei of CA1 neurons, which are vulnerable to ischemic insults. These results suggest that Tbeta4 and Tbeta15 function in different cellular contexts during ischemia-induced responses.
Collapse
Affiliation(s)
- Younghwa Kim
- Department of Anatomy, College of Medicine, Brain Korea 21, Korea University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
van Kesteren RE, Carter C, Dissel HMG, van Minnen J, Gouwenberg Y, Syed NI, Spencer GE, Smit AB. Local synthesis of actin-binding protein beta-thymosin regulates neurite outgrowth. J Neurosci 2006; 26:152-7. [PMID: 16399682 PMCID: PMC6674307 DOI: 10.1523/jneurosci.4164-05.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022] Open
Abstract
Local protein synthesis plays an essential role in the regulation of various aspects of axonal and dendritic function in adult neurons. At present, however, there is no direct evidence that local protein translation is functionally contributing to neuronal outgrowth. Here, we identified the mRNA encoding the actin-binding protein beta-thymosin as one of the most abundant transcripts in neurites of outgrowing neurons in culture. Beta-thymosin mRNA is not evenly distributed in neurites, but appears to accumulate at distinct sites such as turning points and growth cones. Using double-stranded RNA knockdown, we show that reducing beta-thymosin mRNA levels results in a significant increase in neurite outgrowth, both in neurites of intact cells and in isolated neurites. Together, our data demonstrate that local synthesis of beta-thymosin is functionally involved in regulating neuronal outgrowth.
Collapse
Affiliation(s)
- Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Research Institute Neurosciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dong JH, Ying GX, Liu X, Wang WY, Wang Y, Ni ZM, Zhou CF. Expression of thymosin beta4 mRNA by activated microglia in the denervated hippocampus. Neuroreport 2005; 16:1629-33. [PMID: 16189468 DOI: 10.1097/01.wnr.0000183326.21241.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thymosin beta4 is a major actin-sequestering molecule. Here, we report a prominent upregulation of thymosin beta4 in the hippocampus following entorhinal deafferentation. Northern blotting displayed a transient increase of thymosin beta4 mRNA in the deafferented hippocampus by 1.8, 2.3, 1.3 and 1.1-fold of controls, respectively, at 1, 3, 7 and 15 days post-lesion. In-situ hybridization confirmed that the induction of thymosin beta4 mRNA specifically occurred in the entorhinally denervated zones of the hippocampus. The double labeling of in-situ hybridization for thymosin beta4 mRNA with isolectin B4 cytochemistry showed that isolectin B4-positive microglial cells are responsible for deafferentation-induced thymosin beta4 mRNA expression. The results suggest that thymosin beta4 may participate in the process of microglial activation, which is the earliest event in lesion-induced plasticity.
Collapse
Affiliation(s)
- Jing-Hui Dong
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences
| | | | | | | | | | | | | |
Collapse
|
30
|
Hsiao HL, Su Y. Identification of the positive and negative cis-elements involved in modulating the constitutive expression of mouse thymosin beta4 gene. Mol Cell Biochem 2005; 272:75-84. [PMID: 16010974 DOI: 10.1007/s11010-005-7638-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously showed that the -278 to +410 region of mouse thymosin beta4 (mT,beta4) gene supports high levels of reporter gene expression in NIH3T3 cells. This region contains part of the 5'-flanking sequences (-278 to -1), the intact first exon (+1 to +133), and portion of the first intron (+134 to +410). However, the size of this exon is much longer than those of its rat and human counterparts. To resolve the question regarding this size discrepancy, transcription start site for the mTbeta4 gene was re-examined by primer extension and bioinformatics analyses. We found that the first exon of mTbeta4 gene spans 56 bp with its cap site situated in a putative initiator highly similar to the consensus mammalian sequence. In addition, a TATA box-like motif and two consecutive downstream promoter elements were also found. To delineate the cis-elements involved in modulating the constitutive expression of mTbeta4 gene, transient transfection assay was performed. Interestingly, expression level of the reporter gene driven by the -117 to +56 region of mTbeta4 gene was approximately 8-fold higher than that directed by the SV40 promoter and significant promoter activity was found to be associated with the smaller (-56 to +56) fragment. A nuclear protein-bound silencer was located in the region between the -167 and -118 and an enhancer whose effect did not seem to be dependent on protein binding was identified in the downstream (-117 to -88) region. However, neither of these cis-elements affected reporter expression driven by a SV40 promoter. Intriguingly, mTbeta4 promoter functioned well in human colorectal (SW480) and cervical (HeLa) carcinoma cells. Taken together, our findings not only provide crucial information for further elucidation of the transcriptional regulation of mTbeta4 gene but also raise the possibility of utilizing its promoter to produce large quantity of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Hung-Liang Hsiao
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
31
|
Ying GX, Liu X, Wang WY, Wang Y, Dong JH, Jin HF, Huang C, Zhou CF. Regulated transcripts in the hippocampus following transections of the entorhinal afferents. Biochem Biophys Res Commun 2004; 322:210-6. [PMID: 15313193 DOI: 10.1016/j.bbrc.2004.07.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Indexed: 10/26/2022]
Abstract
Based on the data from a cDNA microarray experiment which was carried out to screen the differential expressed genes in the rat hippocampus 10 days after removal of the entorhinal afferents, we confirmed the increase of expression of eight transcripts encoding protein osteonectin, thymosin-beta4, gelsolin, MHC I, MHC II, beta2-microglobulin, and interferon-gamma receptor using Northern blot. In situ hybridization revealed that the up-regulation of all these 8 transcripts localized specifically in the denervated target areas, the hippocampal stratum lacunosum-moleculare, and the dentate outer molecular layer. The results suggest that these molecules may have roles in the plasticity events in the hippocampus after entorhinal deafferentation.
Collapse
Affiliation(s)
- Guo-Xin Ying
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci 2003. [PMID: 14561869 DOI: 10.1523/jneurosci.23-28-09409.2003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local protein synthesis is required for long-lasting synapse-specific plasticity in cultured Aplysia sensorimotor synapses. To identify synaptically localized mRNAs, we prepared a cDNA library from isolated sensory neurites. By sequence analysis, we estimate that the library contains 263 distinct mRNAs, with 98 of these mRNAs constituting 70% of all clones. The localized transcripts are enriched for mRNAs encoding cytoskeletal elements and components of the translational machinery. In situ hybridization confirms that the mRNAs for at least eight of these transcripts are present in distal neurites. Immunocytochemistry reveals that serotonin regulates the translation of one of the localized mRNAs, that encoding alpha1-tubulin. Our identification of mRNAs encoding cytoskeletal elements suggests that local protein synthesis is required for the growth of new synaptic connections associated with persistent synaptic strengthening. Our finding of mRNAs encoding components of the translational machinery suggests that local protein synthesis serves to increase the translational capacity of synapses.
Collapse
|
33
|
dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433-73. [PMID: 12663865 DOI: 10.1152/physrev.00026.2002] [Citation(s) in RCA: 706] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin beta4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.
Collapse
Affiliation(s)
- C G dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, Department of Anatomy and Histology, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gómez-Márquez J, Anadón R. The beta-thymosins, small actin-binding peptides widely expressed in the developing and adult cerebellum. CEREBELLUM (LONDON, ENGLAND) 2002; 1:95-102. [PMID: 12882358 DOI: 10.1007/bf02941895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-thymosins are a highly conserved family of small polar peptides known to bind monomeric actin and inhibit its polymerization. The beta-thymosins show a high degree of sequence conservation among all vertebrate classes and they have been also identified in some invertebrate phyla. The most abundant beta-thymosins in mammals are thymosin beta4 (Tbeta4) and thymosin beta10 (Tbeta10), two ubiquitous small (43 amino acids) peptides sharing a high degree of sequence homology. Both beta-thymosins are present in virtually all mammalian tissues and cells studied, showing distinct patterns of expression in several tissues. The beta-thymosins are expressed in the developing and mature nervous system, indicating their participation with other actin-binding peptides in the control of actin polymerization. In the rat cerebellum the temporal and cellular patterns of expression of Tbeta4 and Tbeta10 are different, suggesting that each beta-thymosin could play a specific physiological function during cerebellum development. The possible roles of beta-thymosins in the developing mammalian cerebellum are discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, Spain.
| | | |
Collapse
|
35
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
36
|
Anadón R, Rodríguez Moldes I, Carpintero P, Evangelatos G, Livianou E, Leondiadis L, Quintela I, Cerviño MC, Gómez-Márquez J. Differential expression of thymosins beta(4) and beta(10) during rat cerebellum postnatal development. Brain Res 2001; 894:255-65. [PMID: 11251199 DOI: 10.1016/s0006-8993(01)02024-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-thymosins are a family of actin monomer-sequestering proteins widely distributed among vertebrate classes. The most abundant beta-thymosins in mammalian species are thymosin beta(4) (Tbeta(4)) and thymosin beta(10) (Tbeta(10)), two small peptides (43 amino acids) sharing a high degree of sequence homology. In the present work, we have analyzed the distribution of Tbeta(4) and Tbeta(10) in the developing and adult rat cerebellum using in situ hybridization and immunohistochemistry techniques. Our results show that the temporal and cellular patterns of expression of both beta-thymosins are different. In the young (7 and 18 postnatal days) and adult (1 and 4 months old) rat cerebellum, Tbeta(4) was mainly expressed in the glia (microglia, Golgi epithelial cells and oligodendrocytes), neurons (granule cells and Purkinje cells), and in the capillaries. In 14-month-old rats, the Tbeta(4) immunoreactivity was only detected in some microglia cells. In young and adult animals, most of the Tbeta(10) immunoreactivity was localized in several types of neuronal cells including granule cells, Golgi neurons and Purkinje cells. In old animals, a faint Tbeta(10) signal could be detected in a few Purkinje cells. Our results suggest that each beta-thymosin could play a different function in the control of actin dynamics.
Collapse
Affiliation(s)
- R Anadón
- Departamento de Biología Fundamental (Area de Citología e Histología), Facultad de Biología, Universidad de Santiago, 15706, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Huff T, Müller CS, Otto AM, Netzker R, Hannappel E. beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 2001; 33:205-20. [PMID: 11311852 DOI: 10.1016/s1357-2725(00)00087-x] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The beta-thymosins are a family of highly conserved polar 5 kDa peptides originally thought to be thymic hormones. About 10 years ago, thymosin beta(4) as well as other members of this ubiquitous peptide family were identified as the main intracellular G-actin sequestering peptides, being present in high concentrations in almost every cell. beta-Thymosins bind monomeric actin in a 1:1 complex and act as actin buffers, preventing polymerization into actin filaments but supplying a pool of actin monomers when the cell needs filaments. Changes in the expression of beta-thymosins appear to be related to the differentiation of cells. Increased expression of beta-thymosins or even the synthesis of a beta-thymosin normally not expressed might promote metastasis possibly by increasing mobility of the cells. Thymosin beta(4) is detected outside of cells in blood plasma or in wound fluid. Several biological effects are attributed to thymosin beta(4), oxidized thymosin beta(4), or to the fragment, acSDKP, possibly generated from thymosin beta(4). Among the effects are induction of metallo-proteinases, chemotaxis, angiogenesis and inhibition of inflammation as well as the inhibition of bone marrow stem cell proliferation. However, nothing is known about the molecular mechanisms mediating the effects attributed to extracellular beta-thymosins.
Collapse
Affiliation(s)
- T Huff
- Institute of Biochemistry, Faculty of Medicine, University of Erlangen--Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001; 60:161-72. [PMID: 11273004 DOI: 10.1093/jnen/60.2.161] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microglia may contribute to cell death in neurodegenerative diseases. We studied the activation of microglia in affected regions of Huntington disease (HD) brain by localizing thymosin beta-4 (Tbeta4), which is increased in reactive microglia. Activated microglia appeared in the neostriatum, cortex, and globus pallidus and the adjoining white matter of the HD brain, but not in control brain. In the striatum and cortex, reactive microglia occurred in all grades of pathology, accumulated with increasing grade, and grew in density in relation to degree of neuronal loss. The predominant morphology of activated microglia differed in the striatum and cortex. Processes of reactive microglia were conspicuous in low-grade HD, suggesting an early microglia response to changes in neuropil and axons and in the grade 2 and grade 3 cortex, were aligned with the apical dendrites of pyramidal neurons. Some reactive microglia contacted pyramidal neurons with huntingtin-positive nuclear inclusions. The early and proximate association of activated microglia with degenerating neurons in the HD brain implicates a role for activated microglia in HD pathogenesis.
Collapse
Affiliation(s)
- E Sapp
- Department of Neurology, Massachusetts General Hospital, Boston 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carpintero P, Anadón R, Gómez-Márquez J. Expression of the thymosin beta10 gene in normal and kainic acid-treated rat forebrain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:141-6. [PMID: 10381552 DOI: 10.1016/s0169-328x(99)00115-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymosin beta10 (Tbeta10) is a small actin-sequestering peptide widely distributed in mammalian tissues including nervous system. Here, we analyze the expression of Tbeta10 gene in normal and kainic acid (KA)-treated rat forebrain by in situ hybridization. Our results showed a defined regional pattern of the mRNA encoding for Tbeta10 in both normal and KA-treated rat forebrain. The presence of this transcript in different regions of the rat forebrain, including hippocampus, neocortex and several brain nuclei, provides evidence for the participation of Tbeta10 in the control of the actin dynamics that takes place in neurons. Furthermore, the analysis of the forebrain in KA-treated rats revealed an activation of the Tbeta10 gene linked to gliosis.
Collapse
Affiliation(s)
- P Carpintero
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, 15706, Santiago, Spain
| | | | | |
Collapse
|