1
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
2
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|
3
|
Gerashchenko D, Wisor JP, Kilduff TS. Sleep-active cells in the cerebral cortex and their role in slow-wave activity. Sleep Biol Rhythms 2011; 9:71-77. [PMID: 21625335 PMCID: PMC3103062 DOI: 10.1111/j.1479-8425.2010.00461.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.
Collapse
Affiliation(s)
| | | | - Thomas S. Kilduff
- Center for Neuroscience Biosciences Division, SRI International, Menlo Park, CA 94025 USA
| |
Collapse
|
4
|
Kilduff TS, Cauli B, Gerashchenko D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci 2010; 34:10-9. [PMID: 21030095 DOI: 10.1016/j.tins.2010.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 08/19/2010] [Accepted: 09/23/2010] [Indexed: 10/18/2022]
Abstract
Although slow wave activity in the EEG has been linked to homeostatic sleep regulation, the neurobiological substrate of sleep homeostasis is not well understood. Whereas cortical neurons typically exhibit reduced discharge rates during slow wave sleep (SWS), a subpopulation of GABAergic interneurons, which express the enzyme neuronal nitric oxide synthase (nNOS), has recently been found to be activated during SWS. The extent of activation of these nNOS neurons is proportional to homeostatic sleep 'drive'. These cells are an exception among cortical interneurons in that they are projection neurons. We propose that cortical nNOS neurons are positioned to influence neuronal activity across widespread brain areas. They could thus provide a long-sought anatomical link for understanding homeostatic sleep regulation.
Collapse
Affiliation(s)
- Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
5
|
Dyakonova VE, Dyakonova TL. Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:529-41. [PMID: 20559642 DOI: 10.1007/s00359-010-0541-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The buccal ganglia of the mollusc, Lymnaea stagnalis, contain two distinct but interacting rhythm-generating units: the central pattern generator for the buccal rhythm and nitrergic B2 neurons controlling gut motility. Nitric oxide (NO) has previously been demonstrated to be involved in the activation of the buccal rhythm. Here, we found that NO-generating substances (SNP and SNAP) activated the buccal rhythm while slowing the endogenous rhythm of B2 bursters. The inhibitor of NO-synthase, L-NNA, the NO scavenger PTIO, or the inhibitor of soluble guanylyl cyclase, ODQ, each produced opposite, depolarising effects on the B2 neuron. In isolated B2 cells, only depolarising effects of substances interfering with NO production or function (PTIO, L-NNA and ODQ) were detected, whereas the NO donors had no hyperpolarising effects. However, when an isolated B2 cell was placed close to its initial position in the ganglion, hyperpolarising effects could be obtained with NO donors. This indicates that extrasynaptic release of some unidentified factor(s) mediates the hyperpolarising effects of NO donors on the B2 bursters. The results suggest that NO is involved in coordination between the radula and foregut movements and that the effects of NO are partially mediated by the volume chemical neurotransmission of as yet unknown origin.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology of the Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119991, Russia.
| | | |
Collapse
|
6
|
Gabellieri C, Leach MO, Eykyn TR. Modulating the relaxivity of hyperpolarized substrates with gadolinium contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 4:143-7. [DOI: 10.1002/cmmi.272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
8
|
Viana LC, Torres JB, Farias JA, Kawhage R, Lins N, Passos A, Quintairos A, Trévia N, Guedes RCA, Diniz CWP. Exercise and food ad libitum reduce the impact of early in life nutritional inbalances on nitrergic activity of hippocampus and striatum. Nutr Neurosci 2008; 10:215-28. [PMID: 18284030 DOI: 10.1080/10284150701722158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nutritional imbalances were produced by varying litter size pups per dam: 3 (small), 6 (medium), and 12 (large). On the 21st day, 4 subjects of each litter, were sacrificed and the remaining were grouped, 2 per cage, with or without running wheels, with food and water ad libitum. Adult subjects were tested in water maze, their brains processed for NADPH-diaphorase histochemistry and quantified by densitometry. No differences were detected in water maze. At 21st day, S and L compared with M presented reduced NADPH-d in the stratum molecular of dentate gyrus (DG), stratum lacunosum of CA1 and in all CA3 layers but not in the striatum. On the 58th day, actvity remained low in S and L in CA3 and striatum and L in CA1 and DG. Voluntary exercise increased NADPH-d in DG, CA1, CA3, and striatum in S, and in the stratum lacunosum of CA1 and CA3 in L.
Collapse
Affiliation(s)
- Lane Coelho Viana
- Departamento de Morfologia, Universidade Federal do Pará, CEP 66075900 Belém, PA, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Diler AS, Uzüm G, Akgün Dar K, Aksu U, Atukeren P, Ziylan YZ. Sex differences in modulating blood brain barrier permeability by NO in pentylenetetrazol-induced epileptic seizures. Life Sci 2007; 80:1274-81. [PMID: 17306837 DOI: 10.1016/j.lfs.2006.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/03/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
Susceptibility to epilepsy as well as BBB dysfunction in some pathological conditions varies depending on sex difference. It has recently been shown that systemically given NO donor and antagonists modify the nature of seizures induced by PTZ (pentylenetetrazol) differently in male and female rats. This study investigates the role of NO on BBB permeability in PTZ seizures with sex differences using NO donor, sodium nitroprusside (SNP), and NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). Nitrite+nitrate levels as indices of NO generation in the brain were also assessed. L-NAME prolonged seizure latency in male rats, seizure intensity and seizure duration were lessened. L-NAME depicted opposite effects in seizure nature in female rats. SNP prolonged seizure latency, while seizure intensity and duration were lessened only in female rats. L-NAME in male rats increased L-NAME use in female rats (not in male rats) which resulted in a more leaky BBB especially in midbrain, thalamus, hippocampus, corpus striatum and cerebellum whereas SNP use in male rats and not in female rats resulted in pronounced BBB opening in all brain regions studied than PTZ per se. L-NAME while decreasing nitrite+nitrate levels in male rat brains, acted in an opposite fashion in females. SNP use depicted an inverse picture with respect to L-NAME, with an opposite action in different sexes. This study reveals that NO effect on BBB in PTZ-induced seizures depends unequivocally on sex difference. The sex-dependent action of NO in seizures and in CNS pathologies warrants further investigation.
Collapse
Affiliation(s)
- A Sarper Diler
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, 34390 Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
10
|
Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, De Marco C, Butterfield DA, Stella AMG. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 2007; 101:709-17. [PMID: 17241115 DOI: 10.1111/j.1471-4159.2006.04367.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests a critical role for oxidative and nitrosative stress in the pathogenesis of most important neurodegenerative disorders. Parkinson's disease (PD) is a neurodegenerative disease characterized by a severe depletion in number of dopaminergic cells of the substantia nigra (SN). Administration of L-DOPA (LD) is the more effective treatment for patients with PD. However, the vast majority of patients suffer LD-related complications, which represent the major problem in the clinical management of PD. In the present study, LD administration to rats resulted in a significant dose-dependent increase in Hsp70 synthesis which was specific for the SN. The amount of 70 kDa protein increased after 6 h treatment reaching the maximal induction after 24-48 h. Induction of Hsp70 in the SN was associated with a significant increase in constitutive Hsc70 and mitochondrial Hsp60 stress proteins, and with increased expression of mitochondrial complex I whereas no significant changes were found in the activity of complex IV. In the same experimental conditions, a significant decrease in reduced glutathione was observed, which was associated with an increased content of oxidized glutathione content as well as nitric oxide (NO) synthase activity, NO metabolites and nitrotyrosine immunoreactivity. Interestingly, Hsp70 induction, iNOS up-regulation and nitrotyrosine formation have been confirmed also in SN and striatum of rats treated with LD and carbidopa, this latter being an inhibitor of the peripheral DOPA decarboxylase. Our data are in favor of the importance of the heat shock signal pathway as a basic mechanism of defense against neurotoxicity elicited by free radical oxygen and nitrogen species produced in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Stella AMG, Butterfield DA. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid Redox Signal 2006; 8:1975-86. [PMID: 17034343 DOI: 10.1089/ars.2006.8.1975] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive and memory decline, personality changes, and synapse loss. Increasing evidence indicates that factors such as oxidative and nitrosative stress, glutathione depletion, and impaired protein metabolism can interact in a vicious cycle, which is central to AD pathogenesis. In the present study, we demonstrate that brains of AD patients undergo oxidative changes classically associated with a strong induction of the so-called vitagenes, including the heat shock proteins (HSPs) heme oxygenase-1 (HO-1), HSP60, and HSP72, as well as thioredoxin reductase (TRXr). In inferior parietal brain of AD patients, a significant increase in the expression of HO-1 and TRXr was observed, whereas HO-2 expression was decreased, compared with controls. TRHr was not increased in AD cerebellum. Plasma GSH was decreased in AD patients, compared with the control group, and was associated with a significant increase in oxidative stress markers (i.e., GSSG, hydroxynonenal, protein carbonyl content, and nitrotyrosine). In AD lymphocytes, we observed an increased expression of inducible nitric oxide synthase, HO-1, Hsp72, HSP60, and TRXr. Our data support a role for nitrative stress in the pathogenesis of AD and indicate that the stress-responsive genes, such as HO-1 and TRXr, may represent important targets for novel cytoprotective strategies.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry, & Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hickner RC, Kemeny G, Stallings HW, Manning SM, McIver KL. Relationship between body composition and skeletal muscle eNOS. Int J Obes (Lond) 2006; 30:308-12. [PMID: 16231020 DOI: 10.1038/sj.ijo.0803134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Owing to the relationship between nitric oxide related endothelial dysfunction, insulin resistance and cardiovascular disease in overweight individuals, we investigated if skeletal muscle endothelial nitric oxide synthase (eNOS) protein content and activity are lower in overweight than lean women. DESIGN A total of 19 women (age 26.0+/-1.7 years) underwent a resting muscle biopsy, body composition analysis by hydrostatic weighing and peak aerobic capacity determination using indirect calorimetry (Study 1). An additional separate set of six lean (< or = 25% fat) and six overweight (>25% fat) women were subsequently studied for the determination of eNOS activity, and to better control for absolute peak aerobic capacity between lean and overweight women (Study 2). RESULTS Skeletal muscle eNOS content was inversely related to percent body fat (r2 = 0.58, P < 0.01), and body mass index (r2 = 0.35, P < 0.05). Total eNOS activity was lower in overweight than lean women (2.09 +/- 0.22 vs 1.44 +/- 0.17 U, P < 0.05; n = 12), and was inversely related to percent body fat (r2 = 0.32, P = 0.05), and BMI (r 2 = 0.41, P < 0.05). Absolute and relative aerobic capacity were not independent predictors of skeletal muscle eNOS content (r2 = 0.11 and 0.26, respectively). CONCLUSION There is an inverse relationship between eNOS and percent body fat that may have implications for the previously reported reduced endothelial function and insulin sensitivity in overweight women.
Collapse
Affiliation(s)
- R C Hickner
- Human Performance Laboratory, Department of Exercise and Sport Science, East Carolina University, Greenville, NC, USA.
| | | | | | | | | |
Collapse
|
13
|
Kalayci R, Kaya M, Ahishali B, Arican N, Elmas I, Kucuk M. Long-term l-NAME treatment potentiates the blood–brain barrier disruption during pentylenetetrazole-induced seizures in rats. Life Sci 2006; 79:16-20. [PMID: 16438992 DOI: 10.1016/j.lfs.2005.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/20/2022]
Abstract
We investigated whether the severity of blood-brain barrier disruption caused by pentylenetetrazole-induced seizures is modified by long-term nitric oxide synthase inhibition in rats. Rats were given N-omega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, in drinking water for 4 weeks, and then treated with pentylenetetrazole to induce seizures. Damage to the blood-brain barrier was investigated using Evans blue dye extravasation. Serum nitric oxide concentration was decreased in L-NAME-treated rats (P<0.01). L-NAME and/or pentylenetetrazole treatments elevated systolic blood pressure of animals (P<0.01). L-NAME caused an increase in the mortality rate after pentylenetetrazole injection leading to the death of animals at about 15 min after the onset of the seizure. Pentylenetetrazole-induced seizures in rats treated with L-NAME caused a significant increase in Evans blue dye extravasation into cerebral cortex, diencephalon and cerebellum, as compared with seizures evoked by pentylenetetrazole injection to L-NAME-untreated rats (P<0.01). Data presented here suggest that the degree of blood-brain barrier disruption induced by seizures is more pronounced in long-term nitric oxide deficiency.
Collapse
Affiliation(s)
- Rivaze Kalayci
- Research Institute for Experimental Medicine, Istanbul University, Capa 34390, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
14
|
Kalayci R, Kaya M, Elmas I, Arican N, Ahishali B, Uzun H, Bilgic B, Kucuk M, Kudat H. Effects of atorvastatin on blood-brain barrier permeability during L-NAME hypertension followed by angiotensin-II in rats. Brain Res 2005; 1042:184-93. [PMID: 15854590 DOI: 10.1016/j.brainres.2005.02.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/07/2005] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
Recent studies suggest that 3-hydroxy-3 methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, statins, can have direct effects on blood vessels beyond their cholesterol-lowering effects. We investigated the effects of atorvastatin on the functional and structural properties of blood-brain barrier (BBB) and the activity of astrocytes during the N(omega)-nitro-L-arginine methyl ester (L-NAME) hypertension followed by angiotensin (ANG) II. We found that decreases in concentration of serum catalase and plasma nitric oxide (NO) induced by L-NAME were significantly ameliorated by atorvastatin, whereas L-NAME-induced serum malondialdehyde and cholesterol concentration increases were significantly reduced by atorvastatin. The content of Evans blue (EB) dye significantly increased in cerebellum, left cerebral cortex and diencephalon regions but atorvastatin markedly reduced the increased BBB permeability to EB in the brain regions of animals treated with L-NAME and L-NAME plus ANG II. Brain vessels of L-NAME-treated animals showed a considerable loss of immunoreactivity of tight junction proteins, zonula occludens (ZO)-1 and occludin. Immunoreactivity for ZO-1 and occludin increased in animals treated with atorvastatin and L-NAME plus atorvastatin. Glial fibrillary acidic protein (GFAP) immunoreactivity was seen in few astrocytes in the brain sections of L-NAME, but immunoreactivity for GFAP increased in L-NAME plus atorvastatin-treated animals. We suggest that long-term L-NAME treatment may affect BBB permeability through disruption of tight junction proteins, at least partly, via decreased NO concentration and increased oxidant capacity; the improvement of BBB integrity and astrocytic activity would be more closely associated with the action of atorvastatin favoring the increase in anti-oxidant capacity and expression of tight junction proteins and GFAP.
Collapse
Affiliation(s)
- Rivaze Kalayci
- Research Institute for Experimental Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reum T, Olshausen F, Mazel T, Vorísek I, Morgenstern R, Syková E. Diffusion parameters in the striatum of rats with 6-hydroxydopamine-induced lesions and with fetal mesencephalic grafts. J Neurosci Res 2002; 70:680-93. [PMID: 12424736 DOI: 10.1002/jnr.10332] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional recovery after transplantation of dopaminergic cells into the lesioned striatum is dependent on widespread diffusion of the transmitter released by the graft. In the present study, we investigated the diffusion parameters of the extracellular space in the striatum of control, 6-hydroxydopamine-lesioned, intrastriatally grafted, and sham-grafted rats in vivo. We used two types of grafts-single macrografts or multiple micrografts. The real-time iontophoretic tetramethylammonium method enabled us to extract three extracellular space diffusion parameters: volume fraction, alpha, tortuosity, lambda, and nonspecific uptake of tetramethylammonium, k'. Compared with controls (alpha = 0.19, lambda = 1.59), in lesioned animals both alpha and lambda were lower (alpha = 0.14, lambda = 1.50). alpha and lambda were increased inside macro-and micrografts, where alpha = 0.24 and lambda = 1.80, and in sham-grafted areas, where alpha = 0.24 and lambda = 1.72. In regions outside the grafts (alpha = 0.15, lambda = 1.51) or in sham grafts (alpha = 0.14, lambda = 1.49), the values of alpha and lambda were similar to the values observed in lesioned striatum. Nonspecific uptake (k') did not differ among the groups. Our results show that, compared with control, alpha and lambda were decreased in dopamine-depleted areas and increased in areas with grafts. Multiple but smaller graft deposits, in contrast to their enlarged capability for dopaminergic reinnervation, impair the conditions for diffusion and extrasynaptic transmission in a larger area of the striatum than do single macrografts, presumably because of more extensive tissue damage, cell loss, and astrogliosis.
Collapse
Affiliation(s)
- T Reum
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité), Humboldt-University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Gorman D, Huang YL, Williams C. A narcotic dose of carbon monoxide induces neuronal haeme oxygenase and nitric oxide synthetase in sheep. Toxicology 2002; 179:79-84. [PMID: 12204544 DOI: 10.1016/s0300-483x(02)00339-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Twelve Romney ewes were exposed to either 1% carbon monoxide (CO) in air (n=6) or room air alone for 120 min and were killed 15 days later for histological and immunohistochemical examination. This dose of CO was narcotic and induced both haeme oxygenase and nitric oxide synthetase in brain neurons, but not in endothelial cells. The mechanism of the induction is not established here, but cellular theories of CO toxicity will need to be re-examined given these results.
Collapse
Affiliation(s)
- Des Gorman
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | |
Collapse
|
17
|
Jansson A, Lippoldt A, Mazel T, Bartfai T, Ogren SO, Syková E, Agnati LF, Fuxe K. Long distance signalling in volume transmission. Focus on clearance mechanisms. PROGRESS IN BRAIN RESEARCH 2001; 125:399-413. [PMID: 11098675 DOI: 10.1016/s0079-6123(00)25028-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- A Jansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lippoldt A, Jansson A, Kniesel U, Andbjer B, Andersson A, Wolburg H, Fuxe K, Haller H. Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Res 2000; 854:197-206. [PMID: 10784122 DOI: 10.1016/s0006-8993(99)02355-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular composition and functional properties of cell-cell junctions of choroid plexus epithelial cells and the ependyma of the lateral ventricular wall were investigated in the rat brain. Expression studies of cadherin and alpha- and beta-catenins, as well as expression of occludin and ZO-1, indicated that cell adherens and tight junctions were present in both choroid plexus epithelial cells and in ependymal cells. We then tested the hypothesis that phorbolester in vivo can induce changes in the expression level of adherens and tight junction molecules at the blood-cerebrospinal fluid (CSF) barrier as well as in the ependyma. In addition, the functional properties of the ependymal junctions were tested by injection of dextran 3000 into the striatum after phorbolester application. Twenty-four hours after phorbolester-injection into the lateral ventricle of the rat brain, the expression patterns of tight and adherens junction molecules were markedly changed in the epithelial cells of the choroid plexus. The adherens junction proteins cadherin and beta-catenin were reduced in both the ependymal cells of the lateral ventricle and choroid plexus epithelial cells. In addition, the occludin-immunoreactivity of the choroid plexus epithelial cells was strongly reduced. However, the ZO-1 immunoreactivity was not affected by the phorbol ester-treatment and the alpha-catenin immunoreactivity was not changed. Furthermore, phorbol ester injection induced a reduction of the volume of intrastriatal injected biotinylated dextran (m.w. 3000), which is consistent with a modulatory influence of protein kinase C activation on the clearance capacity of the brain.
Collapse
Affiliation(s)
- A Lippoldt
- Max Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jansson A, Tinner B, Andbjer B, Razani H, Wang F, Schött PA, Agnati LF, Ogren SO, Fuxe K. Internalization of intracerebrally administered porcine galanin (1-29) by a discrete nerve cell population in the hippocampus of the rat. Exp Neurol 2000; 161:153-66. [PMID: 10683281 DOI: 10.1006/exnr.1999.7266] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In spite of numerous studies utilizing intraventricular administration of porcine galanin (1-29), little is known about the spread and cellular distribution of exogenous galanin following intraventricular administration. In this study a discrete nerve cell body population with their dendrites became strongly galanin immunoreactive (IR) in the dorsal hippocampus following intraventricular porcine galanin (1.5 nmol/rat). Time course experiments showed that after time intervals of 10 and 20 min, but not at 60 min, scattered small- to medium-sized galanin-IR nerve cell bodies and their dendrites were present in all layers of the dorsal and ventral hippocampus. In double-immunolabeling experiments most of these nerve cells were identified as putative GABA interneurons costoring NPY-IR or somatostatin-IR in some cases. Twenty minutes after intraventricular injection of artificial cerebrospinal fluid (aCSF), only endogenous punctate and coarse galanin-IR terminals were found, but no galanin-IR cell bodies. Intrahippocampal injection of fluorophore-labeled galanin resulted in the appearance of fluorescent nerve cell bodies with the same morphology and localization as in the above experiments. Coadministration of the putative galanin antagonist M35 (0.5 nmol) and galanin (1.5 nmol) resulted in a reduced number of galanin-IR nerve cell bodies in the hippocampus of half of the rats. These findings support the existence of a population of putative hippocampal GABA interneurons with the ability to internalize and concentrate galanin and/or its fragments present in the extracellular fluid, possibly mediated by galanin receptors.
Collapse
Affiliation(s)
- A Jansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, S-171 77, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|