1
|
Kawamura M, Sekino Y. Adenosine A 1 receptor antagonist-induced facilitation of postsynaptic AMPA currents in pyramidal neurons of the rat hippocampal CA2 area. Purinergic Signal 2023; 19:623-632. [PMID: 36074226 PMCID: PMC10754797 DOI: 10.1007/s11302-022-09897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Adenosine A1 receptors (A1R) are widely expressed in hippocampal pyramidal neurons and their presynaptic terminals. It is well known that endogenous adenosine regulates hippocampal function through the activation of A1R in hippocampal pyramidal neurons and has been reported that blockade of A1R induces stronger potentiation of excitatory synaptic transmission in CA2 pyramidal neurons than in CA1 pyramidal neurons. This strong potentiation of CA2 neurons is thought to be caused by the specific modulation of excitatory synaptic transmission through postsynaptic A1R. However, the direct effects of A1R on postsynaptic AMPA channels remain unknown because of the technical difficulties of patch-clamp recording from mature hippocampal CA2 neurons. We recorded synaptic currents from pyramidal neurons in CA1 and CA2 and analyzed the effects of an A1R antagonist on stimulation-evoked synaptic transmission and local application-induced postsynaptic AMPA currents. The antagonist increased the amplitude of evoked synaptic transmission in neurons in both CA1 and CA2. This facilitation was larger in pyramidal neurons in CA2 than in CA1. The antagonist also increased postsynaptic AMPA currents in neurons in CA2 but not in CA1. This facilitation of CA2 AMPA currents was occluded by the intracellular application of a G-protein blocker. Even with the blockade of postsynaptic G-protein signaling, the A1R antagonist increased evoked synaptic transmission in neurons in CA2. These results suggest that synaptic transmission in pyramidal neurons in CA2 is regulated by both presynaptic and postsynaptic A1R. Moreover, A1R regulate excitatory synaptic transmission in pyramidal neurons in CA2 through the characteristic postsynaptic modulation of AMPA currents.
Collapse
Affiliation(s)
- Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yuko Sekino
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Bienkowski MS. Further refining the boundaries of the hippocampus CA2 with gene expression and connectivity: Potential subregions and heterogeneous cell types. Hippocampus 2023; 33:150-160. [PMID: 36786207 PMCID: PMC9987718 DOI: 10.1002/hipo.23508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Over the last two decades, the definition of hippocampal area CA2 has evolved from Lorente de Nó's original Golgi-based morphological description with the discovery of specific CA2 gene expression markers. Exploiting the specificity of these molecules has allowed for the genetic dissection of CA2 structure and function in transgenic mice. With this change in criteria, the anatomical boundaries of the CA2 have expanded across the hippocampal axis but the CA2's full rostrocaudal extent is not consistently delineated across atlases. The Hippocampus Gene Expression Atlas (HGEA) provides a comprehensive map of 20 gene expression domains across the entire mouse hippocampus including the CA2. In this commentary, I will review the consensus gene expression patterns that demarcate the expanded CA2 boundaries in the HGEA. Using DropViz single-cell transcriptomics and Mouse Connectome Project connectomics data, I will then suggest potential differences in CA2 cell type heterogeneity and connectivity that may identify and characterize further CA2 subregions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- USC Center for Integrative Connectomics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Shinohara Y, Kohara K. Projections of hippocampal CA2 pyramidal neurons: Distinct innervation patterns of CA2 compared to CA3 in rodents. Hippocampus 2023; 33:691-699. [PMID: 36855258 DOI: 10.1002/hipo.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The hippocampus is a center for spatial and episodic memory formation in rodents. Understanding the composition of subregions and circuitry maps of the hippocampus is essential for elucidating the mechanism of memory formation and recall. For decades, the trisynaptic circuit (entorhinal cortex layer II-dentate gyrus - CA3-CA1) has been considered the neural network substrate responsible for learning and memory. Recently, CA2 has emerged as an important area in the hippocampal circuitry, with distinct functions from those of CA3. In this article, we review the historical definition of the hippocampal area CA2 and the differential projection patterns between CA2 and CA3 pyramidal neurons. We provide a concise and comprehensive map of CA2 outputs by comparing (1) ipsi versus contra projections, (2) septal versus temporal projections, and (3) lamellar structures of CA2 and CA3 pyramidal neurons.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keigo Kohara
- KMU Biobank Center, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
4
|
Trinh PNH, Baltos JA, Hellyer SD, May LT, Gregory KJ. Adenosine receptor signalling in Alzheimer’s disease. Purinergic Signal 2022; 18:359-381. [PMID: 35870032 PMCID: PMC9391555 DOI: 10.1007/s11302-022-09883-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.
Collapse
Affiliation(s)
- Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, 3052 Australia
| |
Collapse
|
5
|
Shimoda Y, Beppu K, Ikoma Y, Morizawa YM, Zuguchi S, Hino U, Yano R, Sugiura Y, Moritoh S, Fukazawa Y, Suematsu M, Mushiake H, Nakasato N, Iwasaki M, Tanaka KF, Tominaga T, Matsui K. Optogenetic stimulus-triggered acquisition of seizure resistance. Neurobiol Dis 2021; 163:105602. [PMID: 34954320 DOI: 10.1016/j.nbd.2021.105602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kaoru Beppu
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Yosuke M Morizawa
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Satoshi Zuguchi
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Utaro Hino
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ryutaro Yano
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Matsui
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.
| |
Collapse
|
6
|
Robert V, Therreau L, Davatolhagh MF, Bernardo-Garcia FJ, Clements KN, Chevaleyre V, Piskorowski RA. The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation. J Gen Physiol 2021; 152:133812. [PMID: 32069351 PMCID: PMC7141590 DOI: 10.1085/jgp.201912462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Recent studies have revealed that hippocampal area CA2 plays an important role in hippocampal network function. Disruption of this region has been implicated in neuropsychiatric disorders. It is well appreciated that cholinergic input to the hippocampus plays an important role in learning and memory. While the effect of elevated cholinergic tone has been well studied in areas CA1 and CA3, it remains unclear how changes in cholinergic tone impact synaptic transmission and the intrinsic properties of neurons in area CA2. In this study, we applied the cholinergic agonist carbachol and performed on-cell, whole-cell, and extracellular recordings in area CA2. We observed that under conditions of high cholinergic tone, CA2 pyramidal neurons depolarized and rhythmically fired bursts of action potentials. This depolarization depended on the activation of M1 and M3 cholinergic receptors. Furthermore, we examined how the intrinsic properties and action-potential firing were altered in CA2 pyramidal neurons treated with 10 µM carbachol. While this intrinsic burst firing persisted in the absence of synaptic transmission, bursts were shaped by synaptic inputs in the intact network. We found that both excitatory and inhibitory synaptic transmission were reduced upon carbachol treatment. Finally, we examined the contribution of different channels to the cholinergic-induced changes in neuronal properties. We found that a conductance from Kv7 channels partially contributed to carbachol-induced changes in resting membrane potential and membrane resistance. We also found that D-type potassium currents contributed to controlling several properties of the bursts, including firing rate and burst kinetics. Furthermore, we determined that T-type calcium channels and small conductance calcium-activated potassium channels play a role in regulating bursting activity.
Collapse
Affiliation(s)
- Vincent Robert
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - Ludivine Therreau
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - F Javier Bernardo-Garcia
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | | | - Vivien Chevaleyre
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| |
Collapse
|
7
|
Lehr AB, Kumar A, Tetzlaff C, Hafting T, Fyhn M, Stöber TM. CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neurosci Biobehav Rev 2021; 126:398-412. [PMID: 33775693 DOI: 10.1016/j.neubiorev.2021.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Hippocampal region CA2 has received increased attention due to its importance in social recognition memory. While its specific function remains to be identified, there are indications that CA2 plays a major role in a variety of situations, widely extending beyond social memory. In this targeted review, we highlight lines of research which have begun to converge on a more fundamental role for CA2 in hippocampus-dependent memory processing. We discuss recent proposals that speak to the computations CA2 may perform within the hippocampal circuit.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany; Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway.
| | - Arvind Kumar
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Biosciences, University of Oslo, Norway
| | - Tristan M Stöber
- Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Informatics, University of Oslo, Norway.
| |
Collapse
|
8
|
Caruana DA, Dudek SM. Adenosine A 1 Receptor-Mediated Synaptic Depression in the Developing Hippocampal Area CA2. Front Synaptic Neurosci 2020; 12:21. [PMID: 32612520 PMCID: PMC7307308 DOI: 10.3389/fnsyn.2020.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs.
Collapse
Affiliation(s)
- Douglas A. Caruana
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
9
|
Mao LM, Wang JQ. Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A 1 receptors in the male rat forebrain. Brain Behav 2020; 10:e01543. [PMID: 31994358 PMCID: PMC7066349 DOI: 10.1002/brb3.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The adenosine A1 receptor is a Gαi/o protein-coupled receptor and inhibits upon activation cAMP formation and protein kinase A (PKA) activity. As a widely expressed receptor in the mammalian brain, A1 receptors are implicated in the modulation of a variety of neuronal and synaptic activities. In this study, we investigated the role of A1 receptors in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat brain in vivo. METHODS Adult male Wistar rats were used in this study. After a systemic injection of the A1 antagonist DPCPX, rats were sacrificed and several forebrain regions were collected for assessing changes in phosphorylation of AMPA receptors using Western blots. RESULTS A systemic injection of the A1 antagonist DPCPX induced an increase in phosphorylation of AMPA receptor GluA1 subunits at a PKA-dependent site, serine 845 (S845), in the two subdivisions of the striatum, the caudate putamen, and nucleus accumbens. DPCPX also increased S845 phosphorylation in the medial prefrontal cortex (mPFC) and hippocampus. The DPCPX-stimulated S845 phosphorylation was a transient and reversible event. Blockade of Gαs/olf -coupled dopamine D1 receptors with a D1 antagonist SCH23390 abolished the responses of S845 phosphorylation to DPCPX in the striatum, mPFC, and hippocampus. DPCPX had no significant impact on phosphorylation of GluA1 at serine 831 and on expression of total GluA1 proteins in all forebrain regions surveyed. CONCLUSION These data demonstrate that adenosine A1 receptors maintain an inhibitory tone on GluA1 S845 phosphorylation under normal conditions. Blocking this inhibitory tone leads to the upregulation of GluA1 S845 phosphorylation in the striatum, mPFC, and hippocampus via a D1 -dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
10
|
Abstract
Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.
Collapse
Affiliation(s)
- Steven J Middleton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; ,
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; ,
| |
Collapse
|
11
|
Hill E, Hickman C, Diez R, Wall M. Role of A 1 receptor-activated GIRK channels in the suppression of hippocampal seizure activity. Neuropharmacology 2019; 164:107904. [PMID: 31812775 DOI: 10.1016/j.neuropharm.2019.107904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
The neuromodulator adenosine is released during seizure activity to provide negative feedback suppression of ongoing activity and to delay the occurrence of the next burst of activity. Adenosine acts via multiple G-protein-coupled receptors including the A1 receptor (A1R) which inhibits neurotransmitter release and hyperpolarises neuronal membrane potential. The hyperpolarisation is produced, at least in part, by the activation of G-protein-activated inwardly rectifying K+ (GIRK) channels. We have used tertiapin-Q (TQ), a potent and selective inhibitor of GIRK channels, to assess the role of GIRK channels in controlling seizure activity in areas CA1 and CA2 of mouse hippocampal slices. TQ (100-300 nM) blocked ~50% of the adenosine-mediated membrane potential hyperpolarisation of hippocampal CA1 and CA2 neurons. TQ (100 nM) had no significant effect on synaptic transmission in area CA1 of the hippocampus but enhanced transmission in CA2, an effect prevented by blocking A1Rs. TQ (100 nM) increased the frequency of spontaneous activity (induced by removing Mg2+ and increasing K+) and blunted the effects of exogenous adenosine on the suppression of activity. TQ had a significantly greater effect on electrically-stimulated seizure activity induced in CA2 versus that in CA1, producing a greater increase in both the duration and amplitude of the stimulated bursts. This is consistent with the greater A1R density and A1R activation tone in CA2. Thus GIRK channels play a role in the supressing effects of adenosine on seizure activity.
Collapse
Affiliation(s)
- Emily Hill
- School of Life Sciences, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Charlotte Hickman
- School of Life Sciences, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Rebecca Diez
- School of Life Sciences, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Mark Wall
- School of Life Sciences, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Sci Rep 2019; 9:17368. [PMID: 31757975 PMCID: PMC6874556 DOI: 10.1038/s41598-019-53415-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
Oligomers of intracellular amyloid β protein (Aβ) are strongly cytotoxic and play crucial roles in synaptic transmission and cognitive function in Alzheimer’s disease (AD). However, there is currently no AD model mouse in which to specifically analyze the function of Aβ oligomers only. We have now developed a novel AD model mouse, an Aβ-GFP transgenic mouse (Aβ-GFP Tg), that expresses the GFP-fused human Aβ1-42 protein, which forms only Aβ oligomers within neurons throughout their life. The fusion proteins are expressed mainly in the hippocampal CA1-CA2 region and cerebral cortex, and are not secreted extracellularly. The Aβ-GFP Tg mice exhibit increased tau phosphorylation, altered spine morphology, decreased expressions of the GluN2B receptor and neuroligin in synaptic regions, attenuated hippocampal long-term potentiation, and impaired object recognition memory compared with non-Tg littermates. Interestingly, these dysfunctions have already appeared in 2–3-months-old animals. The Aβ-GFP fusion protein is bioactive and highly toxic, and induces the similar synaptic dysfunctions as the naturally generated Aβ oligomer derived from postmortem AD patient brains and synthetic Aβ oligomers. Thus, Aβ-GFP Tg mouse is a new tool specialized to analyze the function of Aβ oligomers in vivo and to find subtle changes in synapses in early symptoms of AD.
Collapse
|
13
|
Muñoz MD, Solís JM. Characterisation of the mechanisms underlying the special sensitivity of the CA2 hippocampal area to adenosine receptor antagonists. Neuropharmacology 2019; 144:9-18. [DOI: 10.1016/j.neuropharm.2018.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
|
14
|
Carstens KE, Dudek SM. Regulation of synaptic plasticity in hippocampal area CA2. Curr Opin Neurobiol 2018; 54:194-199. [PMID: 30120016 DOI: 10.1016/j.conb.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 11/15/2022]
Abstract
Synaptic plasticity in the hippocampus is thought to play a vital role in both the refinement of neuronal circuits during development and in learning in the mature brain. Synapses in hippocampal area CA1 are known for a robust capacity for long-term potentiation (LTP), whereas synapses in the stratum radiatum of hippocampal area CA2 are particularly resistant to such changes. Although we have yet to fully understand the mechanisms behind this resistance to plasticity, a number of genes and extracellular matrix components highly expressed in CA2 appear to function as molecular brakes on plasticity and develop postnatally in the rodent brain. Curiously, the developmental profile of several CA2-enriched molecules is suggestive of a still undefined critical window of plasticity in the hippocampus.
Collapse
Affiliation(s)
- Kelly E Carstens
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
15
|
Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochem Res 2018; 44:214-227. [PMID: 29417473 DOI: 10.1007/s11064-018-2492-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that regular consumption of coffee, tea and dark chocolate (cacao) can promote brain health and may reduce the risk of age-related neurodegenerative disorders. However, the complex array of phytochemicals in coffee and cacao beans and tea leaves has hindered a clear understanding of the component(s) that affect neuronal plasticity and resilience. One class of phytochemicals present in relatively high amounts in coffee, tea and cacao are methylxanthines. Among such methylxanthines, caffeine has been the most widely studied and has clear effects on neuronal network activity, promotes sustained cognitive performance and can protect neurons against dysfunction and death in animal models of stroke, Alzheimer's disease and Parkinson's disease. Caffeine's mechanism of action relies on antagonism of various subclasses of adenosine receptors. Downstream xanthine metabolites, such as theobromine and theophylline, may also contribute to the beneficial effects of coffee, tea and cacao on brain health.
Collapse
|
16
|
Benoy A, Dasgupta A, Sajikumar S. Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit. Exp Brain Res 2018; 236:919-931. [DOI: 10.1007/s00221-018-5187-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
|
17
|
Hippocampal area CA2: properties and contribution to hippocampal function. Cell Tissue Res 2018; 373:525-540. [PMID: 29335778 DOI: 10.1007/s00441-017-2769-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
This review focuses on area CA2 of the hippocampus, as recent results have revealed the unique properties and surprising role of this region in encoding social, temporal and contextual aspects of memory. Originally identified and described by Lorente de No, in 1934, this region of the hippocampus has unique intra-and extra-hippocampal connectivity, sending and receiving input to septal and hypothalamic regions. Recent in vivo studies have indicated that CA2 pyramidal neurons encode spatial information during immobility and play an important role in the generation of sharp-wave ripples. Furthermore, CA2 neurons act to control overall excitability in the hippocampal network and have been found to be consistently altered in psychiatric diseases, indicating that normal function of this region is necessary for normal cognition. With its unique role, area CA2 has a unique molecular profile, interneuron density and composition. Furthermore, this region has an unusual manifestation of synaptic plasticity that does not occur post-synaptically at pyramidal neuron dendrities but through the local network of inhibitory neurons. While much progress has recently been made in understanding the large contribution of area CA2 to social memory formation, much still needs to be learned.
Collapse
|
18
|
Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Sci Rep 2017; 7:12313. [PMID: 28951616 PMCID: PMC5615076 DOI: 10.1038/s41598-017-12508-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recurrent high-frequency epileptic seizures cause progressive hippocampal sclerosis, which is associated with caspase-3 activation and NMDA receptor-dependent excitotoxicity. However, the identity of caspase-3 substrates that contribute to seizure-induced hippocampal atrophy remains largely unknown. Here, we show that prolonged high-frequency epileptiform discharges in cultured hippocampal neurons leads to caspase-dependent cleavage of GIRK1 and GIRK2, the major subunits of neuronal G protein-activated inwardly rectifying potassium (GIRK) channels that mediate membrane hyperpolarization and synaptic inhibition in the brain. We have identified caspase-3 cleavage sites in GIRK1 (387ECLD390) and GIRK2 (349YEVD352). The YEVD motif is highly conserved in GIRK2-4, and located within their C-terminal binding sites for Gβγ proteins that mediate membrane-delimited GIRK activation. Indeed, the cleaved GIRK2 displays reduced binding to Gβγ and cannot coassemble with GIRK1. Loss of an ER export motif upon cleavage of GIRK2 abolishes surface and current expression of GIRK2 homotetramic channels. Lastly, kainate-induced status epilepticus causes GIRK1 and GIRK2 cleavage in the hippocampus in vivo. Our findings are the first to show direct cleavage of GIRK1 and GIRK2 subunits by caspase-3, and suggest the possible role of caspase-3 mediated down-regulation of GIRK channel function and expression in hippocampal neuronal injury during prolonged epileptic seizures.
Collapse
|
19
|
Abstract
Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A1 receptor antagonist, but not by an A2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A1 receptors in the hippocampal CA3 region or the dentate gyrus.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Center for Information and Neural Networks, National Institute of Information and Communications Technology
| |
Collapse
|
20
|
Rocha AKADA, de Lima E, Amaral F, Peres R, Cipolla-Neto J, Amado D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav 2017; 71:23-34. [PMID: 28460319 DOI: 10.1016/j.yebeh.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Department of Physiology, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Fernanda Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Departament of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
21
|
Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain. Physiol Behav 2017; 168:11-19. [DOI: 10.1016/j.physbeh.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023]
|
22
|
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions. Toxicol Pathol 2016; 35:984-99. [PMID: 18098044 DOI: 10.1080/01926230701748305] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common epilepsy in adults, is generally intractable and is suspected to be the result of recurrent excitation or inhibition circuitry. Recurrent excitation and the development of seizures have been associated with aberrant mossy fiber sprouting in the hippocampus. Of the animal models developed to investigate the pathogenesis of MTLE, post-status epilepticus models have received the greatest acceptance because they are characterized by a latency period, the development of spontaneous motor seizures, and a spectrum of lesions like those of MTLE. Among post-status epilepticus models, induction of systemic kainic acid or pilocarpine-induced epilepsy is less labor-intensive than electrical-stimulation models and these models mirror the clinicopathologic features of MTLE more closely than do kindling, tetanus toxin, hyperthermia, post-traumatic, and perinatal hypoxia/ischemia models. Unfortunately, spontaneous motor seizures do not develop in kindling or adult hyperthermia models and are not a consistent finding in tetanus toxin-induced or perinatal hypoxia/ischemia models. This review presents the mechanistic hypotheses for seizure induction, means of model induction, and associated pathology, especially as compared to MTLE patients. Animal models are valuable tools not only to study the pathogenesis of MTLE, but also to evaluate potential antiepileptogenic drugs.
Collapse
Affiliation(s)
- Alok K. Sharma
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Pathology, Covance Laboratories Inc., Madison, WI, 53704, USA
| | - Rachel Y. Reams
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - William H. Jordan
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - Margaret A. Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - H. Leon Thacker
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Abstract
Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data.
Collapse
|
24
|
Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling. eNeuro 2016; 3:eN-NWR-0124-15. [PMID: 27022623 PMCID: PMC4770009 DOI: 10.1523/eneuro.0124-15.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 01/30/2023] Open
Abstract
Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.
Collapse
|
25
|
Sosa M, Gillespie AK, Frank LM. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Curr Top Behav Neurosci 2016; 37:43-100. [PMID: 27885550 DOI: 10.1007/7854_2016_462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.
Collapse
Affiliation(s)
- Marielena Sosa
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA
| | | | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA. .,Howard Hughes Medical Institute, Maryland, USA.
| |
Collapse
|
26
|
Basu J, Siegelbaum SA. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb Perspect Biol 2015; 7:7/11/a021733. [PMID: 26525152 DOI: 10.1101/cshperspect.a021733] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC-hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories.
Collapse
Affiliation(s)
- Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| | - Steven A Siegelbaum
- Kavli Institute for Brain Science, Columbia University, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10032 Department of Pharmacology, Columbia University, New York, New York 10032
| |
Collapse
|
27
|
Evans PR, Dudek SM, Hepler JR. Regulator of G Protein Signaling 14: A Molecular Brake on Synaptic Plasticity Linked to Learning and Memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:169-206. [PMID: 26123307 DOI: 10.1016/bs.pmbts.2015.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regulators of G protein signaling (RGS) proteins are a diverse family of proteins that function as central components of G protein and other signaling pathways. In the brain, regulator of G protein signaling 14 (RGS14) is enriched in neurons in the hippocampus where the mRNA and protein are highly expressed. This brain region plays a major role in processing learning and forming new memories. RGS14 is an unusual RGS protein that acts as a multifunctional scaffolding protein to integrate signaling events and pathways essential for synaptic plasticity, including conventional and unconventional G protein signaling, mitogen-activated protein kinase, and, possibly, calcium signaling pathways. Within the hippocampus of primates and rodents, RGS14 is predominantly found in the enigmatic CA2 subfield. Principal neurons within the CA2 subfield differ from neighboring hippocampal regions in that they lack a capacity for long-term potentiation (LTP) of synaptic transmission, which is widely viewed as the cellular substrate of learning and memory formation. RGS14 was recently identified as a natural suppressor of LTP in hippocampal CA2 neurons as well as forms of learning and memory that depend on the hippocampus. Although CA2 has only recently been studied, compelling recent evidence implicates area CA2 as a critical component of hippocampus circuitry with functional roles in mediating certain types of learning and memory. This review will highlight the known functions of RGS14 in cell signaling and hippocampus physiology, and discuss potential roles for RGS14 in human cognition and disease.
Collapse
Affiliation(s)
- Paul R Evans
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA.
| |
Collapse
|
28
|
Shi Y, Ikrar T, Olivas ND, Xu X. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus. J Comp Neurol 2015; 522:2191-208. [PMID: 24357090 PMCID: PMC4293468 DOI: 10.1002/cne.23528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/22/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Abstract
Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus.
Collapse
Affiliation(s)
- Yulin Shi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, 92697-1275
| | | | | | | |
Collapse
|
29
|
The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization. BIOMED RESEARCH INTERNATIONAL 2015; 2015:872684. [PMID: 25667928 PMCID: PMC4312621 DOI: 10.1155/2015/872684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/05/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022]
Abstract
Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3–30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ± 2.7 μM and an Emax of 31% ± 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10–150 nM), an EC50 of 35 ± 19 nM, and an Emax of 29% ± 5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41% ± 6% (n = 4), which did not differ (P > 0.7) from the sum of the individual effects of each agonist (43% ± 8%) but was different (P < 0.05) from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM) for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM) on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.
Collapse
|
30
|
San Antonio A, Liban K, Ikrar T, Tsyganovskiy E, Xu X. Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti-Purkinje cell protein 4 (PCP4) immunostaining. J Comp Neurol 2014; 522:1333-54. [PMID: 24166578 PMCID: PMC4001794 DOI: 10.1002/cne.23486] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/04/2022]
Abstract
The hippocampal CA2 subfield was initially identified by Lorente de Nó as an anatomically distinct region based on its cytoarchitectural features. Although there is an enormous body of literature on other hippocampal subfields (CA1 and CA3), relatively little is known about the physiological and developmental properties of CA2. Here we report identification of the CA2 region in the mouse by immunostaining with a Purkinje cell protein 4 (PCP4) antibody, which effectively delineates CA3/CA2 and CA2/CA1 borders and agrees well with previous cytoarchitectural definitions of CA2. The PCP4 immunostaining–delineated CA2 neurons have distinguishable differences in cell morphology, physiology, and synaptic circuit connections compared with distal CA3 and proximal CA1 regions. The average somatic sizes of excitatory cells differ across CA1–3, with the smallest to largest somatic size being CA1<CA2<CA3. CA2 excitatory cells have dense dendritic spines, but do not have thorny excrescences associated with bordering CA3 neurons. Photostimulation functional circuit mapping shows that CA2 excitatory neurons receives extensive synaptic input from CA3, but no detectable input from the dentate gyrus. CA2 excitatory cells also differ significantly from CA3 cells in intrinsic electrophysiological parameters, such as membrane capacitance and spiking rates. Although CA2 neurons differ from CA1 neurons for PCP4 and other marker expressions, these neurons have less distinct neurophysiological and morphological properties. Developmental examination revealed that PCP4 immunostaining first appears at postnatal day 4–5 and becomes successively more refined around CA2 until reaching adult form by postnatal day 21. J. Comp. Neurol. J. Comp. Neurol. 522:1333–1354, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew San Antonio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, 92697-1275
| | | | | | | | | |
Collapse
|
31
|
Abstract
Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.
Collapse
|
32
|
Borota D, Murray E, Keceli G, Chang A, Watabe JM, Ly M, Toscano JP, Yassa MA. Post-study caffeine administration enhances memory consolidation in humans. Nat Neurosci 2014; 17:201-3. [PMID: 24413697 DOI: 10.1038/nn.3623] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
It is currently not known whether caffeine has an enhancing effect on long-term memory in humans. We used post-study caffeine administration to test its effect on memory consolidation using a behavioral discrimination task. Caffeine enhanced performance 24 h after administration according to an inverted U-shaped dose-response curve; this effect was specific to consolidation and not retrieval. We conclude that caffeine enhanced consolidation of long-term memories in humans.
Collapse
Affiliation(s)
- Daniel Borota
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth Murray
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gizem Keceli
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Allen Chang
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph M Watabe
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maria Ly
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael A Yassa
- 1] Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA. [2] Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
33
|
Kiasalari Z, Roghani M, Khalili M, Rahmati B, Baluchnejadmojarad T. Antiepileptogenic effect of curcumin on kainate-induced model of temporal lobe epilepsy. PHARMACEUTICAL BIOLOGY 2013; 51:1572-1578. [PMID: 24004105 DOI: 10.3109/13880209.2013.803128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Temporal lobe epilepsy (TLE) is an intractable neurological disorder. Curcumin is the bioactive component of turmeric with anti-epileptic and neuroprotective potential. OBJECTIVE The beneficial effect of curcumin on the intrahippocampal kainate-induced model of TLE was investigated. MATERIALS AND METHODS Rats were divided into sham, curcumin-pretreated sham, kainate and curcumin-pretreated kainate groups. The rat model of TLE was induced by unilateral intrahippocampal injection of 4 μg of kainate. Rats received curcumin p.o. at a dose of 100 mg/kg/d starting 1 week before the surgery. Seizure activity (SE) and oxidative stress-related markers were measured. Furthermore, the Timm index for evaluation of mossy fiber sprouting (MFS) and number of Nissl-stained neurons were quantified. RESULTS All rats in the kainate group had SE, while 28.5% of rats showed seizures in the curcumin-pretreated kainate group. Malondialdehyde and nitrite and nitrate levels significantly increased in the kainate group (p < 0.01 and p < 0.05, respectively), and curcumin significantly lowered these parameters (p < 0.05). Superoxide dismutase activity significantly decreased in the kainate group (p < 0.05) and curcumin did not improve it. Rats in the kainate group showed a significant reduction of neurons in Cornu Ammonis 1 (CA1) (p < 0.05), CA3 (p < 0.005) and hilar (p < 0.01) regions, and curcumin significantly prevented these changes (p < 0.05-0.005). The Timm index significantly increased in the kainate group (p < 0.005), and curcumin significantly lowered this index (p < 0.01). DISCUSSION AND CONCLUSION Curcumin pretreatment can attenuate seizures, lower some oxidative stress markers, and prevent hippocampal neuronal loss and MFS in the kainate-induced model of TLE.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University , Tehran , Iran
| | | | | | | | | |
Collapse
|
34
|
Cui Z, Gerfen CR, Young WS. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 2013; 521:1844-66. [PMID: 23172108 DOI: 10.1002/cne.23263] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 11/06/2012] [Indexed: 11/08/2022]
Abstract
The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothalamus (PVN) to the CA2 as well as a projection from pyramidal neurons of the CA2 to the supramammillary nuclei. These projections were confirmed by retrograde tracing. As expected, we observed CA2 afferent projections from neurons in ipsilateral entorhinal cortical layer II as well as from bilateral dorsal CA2 and CA3 using retrograde tracers. Additionally, we saw CA2 neuronal input from bilateral medial septal nuclei, vertical and horizontal limbs of the nucleus of diagonal band of Broca, supramammillary nuclei (SUM), and median raphe nucleus. Dorsal CA2 injections of adeno-associated virus expressing green fluorescent protein revealed axonal projections primarily to dorsal CA1, CA2, and CA3 bilaterally. No projection was detected to the entorhinal cortex from the dorsal CA2. These results are consistent with recent observations that the dorsal CA2 forms disynaptic connections with the entorhinal cortex to influence dynamic memory processing. Mouse dorsal CA2 neurons send bilateral projections to the medial and lateral septal nuclei, vertical and horizontal limbs of the diagonal band of Broca, and SUM. Novel connections from the PVN and to the SUM suggest important regulatory roles for CA2 in mediating social and emotional input for memory processing.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
35
|
Laeremans A, Nys J, Luyten W, D'Hooge R, Paulussen M, Arckens L. AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct Funct 2013; 218:123-30. [PMID: 22314660 DOI: 10.1007/s00429-012-0387-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
AMIGO2, or amphoterin-induced gene and ORF (open reading frame) 2, belongs to the leucine-rich repeats and immunoglobulin superfamilies. The protein is a downstream target of calcium-dependent survival signals and, therefore, promotes neuronal survival. Here, we describe the mRNA distribution pattern of AMIGO2 throughout the mouse brain with special emphasis on the hippocampus. In the Ammon's horn, a detailed comparison between the subregional mRNA expression patterns of AMIGO2 and Pcp4 (Purkinje cell protein 4)--a known molecular marker of hippocampal CA2 (Cornu Ammonis 2)--revealed a prominent AMIGO2 mRNA expression level in both the CA2 and the CA3a (Cornu Ammonis 3a) subregion of the dorsal and ventral hippocampus. Since this CA2/CA3a region is particularly resistant to neuronal injury and neurotoxicity [Stanfield and Cowan (Brain Res 309(2):299–307 1984); Sloviter (J Comp Neurol 280(2):183–196 1989); Leranth and Ribak (Exp Brain Res 85(1):129–136 1991); Young and Dragunow (Exp Neurol 133(2):125–137 1995); Ochiishi et al. (Neurosci 93(3):955–967 1999)], we suggest that the expression pattern of AMIGO2 indeed fits with its involvement in neuroprotection.
Collapse
Affiliation(s)
- Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics, University of Leuven, Naamsestraat 59, Box 2467, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Burstein SR, Williams TJ, Lane DA, Knudsen MG, Pickel VM, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus. Brain Res 2013; 1518:71-81. [PMID: 23583481 DOI: 10.1016/j.brainres.2013.03.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/31/2013] [Indexed: 12/20/2022]
Abstract
In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females.
Collapse
Affiliation(s)
- Suzanne R Burstein
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Superior working memory and behavioural habituation but diminished psychomotor coordination in mice lacking the ecto-5'-nucleotidase (CD73) gene. Purinergic Signal 2012; 9:175-82. [PMID: 23274765 DOI: 10.1007/s11302-012-9344-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022] Open
Abstract
Adenosine is an important neuromodulator in the central nervous system involved in the regulation of wakefulness, sleep, learning and memory, fear and anxiety as well as motor functions. Extracellular adenosine is synthesized by the cell-surface ectoenzyme ecto-5'-nucleotidase (CD73) from 5'-adenosine monophosphate. While CD73 is widely expressed throughout the mammalian brain, its specific role for behaviour is poorly understood. We examined spatial working memory, emotional responses, motor coordination and motor learning as well as behavioural habituation in mice with a targeted deletion of CD73. CD73 knockout (CD73-/-) mice exhibit enhanced spatial working memory in the Y-maze and enhanced long-term behavioural habituation in the open field. Furthermore, impaired psychomotor coordination on the accelerating rotarod was found in CD73-/- mice. No changes in motor learning and/or anxiety-like behaviour were evident in CD73-/- mice. Our data provide evidence for a role of CD73 in the regulation of learning and memory and psychomotor coordination. Our results might be important for the evaluation of adenosine neuromodulators as possible treatments to ameliorate cognitive and motor deficits associated with neurodegenerative diseases.
Collapse
|
38
|
Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y. Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 2012; 37:816-30. [PMID: 23279039 DOI: 10.1111/ejn.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 12/18/2022]
Abstract
Cathepsin C (CC) (EC 3.4.14.1, dipeptidyl peptidase I) is a lysosomal cysteine protease that is required for the activation of several granule-associated serine proteases in vivo. CC has been shown to be constitutively expressed in various tissues, but the enzyme is hardly detectable in central nervous system (CNS) tissues. In the present study, we investigated the regional and cellular distribution of CC in normal, aging and pathological mouse brains. Immunoblotting failed to detect CC protein in whole brain tissues of normal mice, as previously described. However, low proteolytic activity of CC was detected in a brain region-dependent manner, and granular immunohistochemical signals were found in neuronal perikarya of particular brain regions, including the accessory olfactory bulb, the septum, CA2 of the hippocampus, a part of the cerebral cortex, the medial geniculate, and the inferior colliculus. In aged mice, the number of CC-positive neurons increased to some extent. The protein level of CC and its proteolytic activity showed significant increases in particular brain regions of mouse models with pathological conditions--the thalamus in cathepsin D-deficient mice, the hippocampus of ipsilateral brain hemispheres after hypoxic-ischemic brain injury, and peri-damaged portions of brains after penetrating injury. In such pathological conditions, the majority of the cells that were strongly immunopositive for CC were activated microglia. These lines of evidence suggest that CC is involved in normal neuronal function in certain brain regions, and also participates in inflammatory processes accompanying pathogenesis in the CNS.
Collapse
Affiliation(s)
- Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Caruana DA, Alexander GM, Dudek SM. New insights into the regulation of synaptic plasticity from an unexpected place: hippocampal area CA2. Learn Mem 2012; 19:391-400. [PMID: 22904370 DOI: 10.1101/lm.025304.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The search for molecules that restrict synaptic plasticity in the brain has focused primarily on sensory systems during early postnatal development, as critical periods for inducing plasticity in sensory regions are easily defined. The recent discovery that Schaffer collateral inputs to hippocampal area CA2 do not readily support canonical activity-dependent long-term potentiation (LTP) serves as a reminder that the capacity for synaptic modification is also regulated anatomically across different brain regions. Hippocampal CA2 shares features with other similarly "LTP-resistant" brain areas in that many of the genes linked to synaptic function and the associated proteins known to restrict synaptic plasticity are expressed there. Add to this a rich complement of receptors and signaling molecules permissive for induction of atypical forms of synaptic potentiation, and area CA2 becomes an ideal model system for studying specific modulators of brain plasticity. Additionally, recent evidence suggests that hippocampal CA2 is instrumental for certain forms of learning, memory, and social behavior, but the links between CA2-enriched molecules and putative CA2-dependent behaviors are only just beginning to be made. In this review, we offer a detailed look at what is currently known about the synaptic plasticity in this important, yet largely overlooked component of the hippocampus and consider how the study of CA2 may provide clues to understanding the molecular signals critical to the modulation of synaptic function in different brain regions and across different stages of development.
Collapse
Affiliation(s)
- Douglas A Caruana
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
40
|
Shinohara Y, Hosoya A, Yahagi K, Ferecskó AS, Yaguchi K, Sík A, Itakura M, Takahashi M, Hirase H. Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur J Neurosci 2012; 35:702-10. [DOI: 10.1111/j.1460-9568.2012.07993.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 2012; 202:384-95. [DOI: 10.1016/j.neuroscience.2011.11.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/22/2022]
|
42
|
Piskorowski RA, Chevaleyre V. Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell Mol Life Sci 2012; 69:75-88. [PMID: 21796451 PMCID: PMC11115016 DOI: 10.1007/s00018-011-0769-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/13/2011] [Accepted: 07/05/2011] [Indexed: 01/18/2023]
Abstract
Pyramidal neurons have a complex dendritic arbor containing tens of thousands of synapses. In order for the somatic/axonal membrane potential to reach action potential threshold, concurrent activation of multiple excitatory synapses is required. Frequently, instead of a simple algebraic summation of synaptic potentials in the soma, different dendritic compartments contribute to the integration of multiple inputs, thus endowing the neuron with a powerful computational ability. Most pyramidal neurons share common functional properties. However, different and sometimes contrasting dendritic integration rules are also observed. In this review, we focus on the dendritic integration of two neighboring pyramidal neurons in the hippocampus: the well-characterized CA1 and the much less understood CA2. The available data reveal that the dendritic integration of these neurons is markedly different even though they are targeted by common inputs at similar locations along their dendrites. This contrasting dendritic integration results in different routing of information flow and generates different corticohippocampal loops.
Collapse
Affiliation(s)
- Rebecca A. Piskorowski
- Université Paris Descartes, Sorbonne Paris Cité, IFR 95, CNRS UMR8118, Equipe ATIP, 45 rue des Saints-Pères, 75006 Paris, France
| | - Vivien Chevaleyre
- Université Paris Descartes, Sorbonne Paris Cité, IFR 95, CNRS UMR8118, Equipe ATIP, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
43
|
Caffeine-induced synaptic potentiation in hippocampal CA2 neurons. Nat Neurosci 2011; 15:23-5. [PMID: 22101644 PMCID: PMC3245784 DOI: 10.1038/nn.2962] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/21/2011] [Indexed: 11/24/2022]
Abstract
Caffeine enhances cognition, but even high non-physiological doses have modest effects on synapses. A1 adenosine receptors (A1Rs) are antagonized by caffeine and are most highly enriched in hippocampal CA2, which has not been studied in this context. Here we show that physiological doses of caffeine in vivo or A1R antagonists in vitro induce robust, long-lasting potentiation of synaptic transmission in rat CA2 without effect in other regions of the hippocampus.
Collapse
|
44
|
Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 2011; 34:526-35. [DOI: 10.1016/j.tins.2011.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/13/2011] [Accepted: 07/25/2011] [Indexed: 12/20/2022]
|
45
|
Yamazaki CK, Shirao T, Sasagawa Y, Maruyama Y, Akita H, Saji M, Sekino Y. Lesions of the Supramammillary Nucleus Decrease Self-Grooming Behavior of Rats Placed in an Open Field. ACTA ACUST UNITED AC 2011. [DOI: 10.2974/kmj.61.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Mercer A, Eastlake K, Trigg HL, Thomson AM. Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. Hippocampus 2010; 22:43-56. [PMID: 20882544 DOI: 10.1002/hipo.20841] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2010] [Indexed: 11/07/2022]
Abstract
There is a growing recognition that the CA2 region of the hippocampus has its own distinctive properties, inputs, and pathologies. The dendritic and axonal patterns of some interneurons in this region are also strikingly different from those described previously in CA1 and CA3. The local circuitry in this region, however, had yet to be studied in detail. Accordingly, using dual intracellular recordings and biocytin-filling, excitatory and inhibitory connections involving CA2 parvalbumin-positive basket cells were characterized for the first time. CA2 basket cells targeted neighboring pyramidal cells and received excitatory inputs from them. CA2 basket cells that resembled those in CA1 with a fast spiking behavior and dendritic tree confined to the region of origin received depressing excitatory postsynaptic potentials (EPSPs). In contrast, unlike CA1 basket cells but like CA1 Oriens-Lacunosum Moleculare (OLM) cells, the majority of CA2 basket cells had horizontally oriented dendrites in Stratum Oriens (SO), which extended into all three CA subfields, had an adapting firing pattern, presented a "sag" in their voltage responses to hyperpolarizing current injection, and received facilitating EPSPs. The expression of I(h) did not influence the EPSP time courses and paired pulse ratios (PPR). Estimates of the probability of release (p) for the depressing and facilitating EPSPs were correlated with the PPR. Connections with low probabilities of release had higher PPR. Quantal amplitude (q) for the facilitating connections was larger than q at depressing inputs onto fast spiking basket cells.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University of London, London WC1N 1AX, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Ito M, Shirao T, Doya K, Sekino Y. Three-dimensional distribution of Fos-positive neurons in the supramammillary nucleus of the rat exposed to novel environment. Neurosci Res 2009; 64:397-402. [DOI: 10.1016/j.neures.2009.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
|
48
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
49
|
Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus. Brain Res 2007; 1186:129-43. [DOI: 10.1016/j.brainres.2007.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/06/2007] [Accepted: 10/10/2007] [Indexed: 12/13/2022]
|
50
|
Zhao M, Choi YS, Obrietan K, Dudek SM. Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J Neurosci 2007; 27:12025-32. [PMID: 17978044 PMCID: PMC6673350 DOI: 10.1523/jneurosci.4094-07.2007] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 09/14/2007] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is critical for some forms of memory and spatial navigation, but previous research has mostly neglected the CA2, a unique region situated between CA3 and CA1. Here, we show that CA2 pyramidal neurons have distinctive physiological characteristics that include an unprecedented synaptic stability. Although basal synaptic currents in CA1 and CA2 are quite similar, synaptic plasticity including long-term potentiation and long-term depression is absent or less likely to be induced with conventional methods of stimulation in CA2. We also find that CA2 neurons have larger leak currents and more negative resting membrane potentials than CA1 neurons, and consequently, more current is required for action potential generation in CA2 neurons. These data suggest that the molecular "conspiracy against plasticity" in CA2 makes it functionally distinct from the other hippocampal CA regions. This work provides critical insight into hippocampal function and may lead to an understanding of the resistance of CA2 to damage from disease, trauma, and hypoxia.
Collapse
Affiliation(s)
- Meilan Zhao
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Yun-Sik Choi
- Ohio State University, Department of Neuroscience, Columbus, Ohio 43210
| | - Karl Obrietan
- Ohio State University, Department of Neuroscience, Columbus, Ohio 43210
| | - Serena M. Dudek
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| |
Collapse
|