1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Atiwiwat D, Aquilino M, Devinsky O, Bardakjian BL, Carlen PL. Interregional phase-amplitude coupling between theta rhythm in the nucleus tractus solitarius and high-frequency oscillations in the hippocampus during REM sleep in rats. Sleep 2023; 46:zsad027. [PMID: 36782374 PMCID: PMC10091087 DOI: 10.1093/sleep/zsad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Indexed: 02/15/2023] Open
Abstract
Cross-frequency coupling (CFC) between theta and high-frequency oscillations (HFOs) is predominant during active wakefulness, REM sleep and behavioral and learning tasks in rodent hippocampus. Evidence suggests that these state-dependent CFCs are linked to spatial navigation and memory consolidation processes. CFC studies currently include only the cortical and subcortical structures. To our knowledge, the study of nucleus tractus solitarius (NTS)-cortical structure CFC is still lacking. Here we investigate CFC in simultaneous local field potential recordings from hippocampal CA1 and the NTS during behavioral states in freely moving rats. We found a significant increase in theta (6-8 Hz)-HFO (120-160 Hz) coupling both within the hippocampus and between NTS theta and hippocampal HFOs during REM sleep. Also, the hippocampal HFOs were modulated by different but consistent phases of hippocampal and NTS theta oscillations. These findings support the idea that phase-amplitude coupling is both state- and frequency-specific and CFC analysis may serve as a tool to help understand the selective functions of neuronal network interactions in state-dependent information processing. Importantly, the increased NTS theta-hippocampal HFO coupling during REM sleep may represent the functional connectivity between these two structures which reflects the function of the hippocampus in visceral learning with the sensory information provided by the NTS. This gives a possible insight into an association between the sensory activity and REM-sleep dependent memory consolidation.
Collapse
Affiliation(s)
- Danita Atiwiwat
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mark Aquilino
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Orrin Devinsky
- New York University Langone Medical Center, Neurology, New York, NY, United States
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
4
|
Han W, Wang N, Han M, Ban M, Sun T, Xu J. Reviewing the role of gut microbiota in the pathogenesis of depression and exploring new therapeutic options. Front Neurosci 2022; 16:1029495. [PMID: 36570854 PMCID: PMC9772619 DOI: 10.3389/fnins.2022.1029495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The relationship between gut microbiota (GM) and mental health is one of the focuses of psychobiology research. In recent years, the microbial-gut-brain axis (MGBA) concept has gradually formed about this bidirectional communication between gut and brain. But how the GM is involved in regulating brain function and how they affect emotional disorders these mechanisms are tenuous and limited to animal research, and often controversial. Therefore, in this review, we attempt to summarize and categorize the latest advances in current research on the mechanisms of GM and depression to provide valid information for future diagnoses and therapy of mental disorders. Finally, we introduced some antidepressant regimens that can help restore gut dysbiosis, including classic antidepressants, Chinese materia medica (CMM), diet, and exogenous strains. These studies provide further insight into GM's role and potential pathways in emotion-related diseases, which holds essential possible clinical outcomes for people with depression or related psychiatric disorders. Future research should focus on clarifying the causal role of GM in disease and developing microbial targets, applying these findings to the prevention and treatment of depression.
Collapse
Affiliation(s)
- Wenjie Han
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Na Wang
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Mengzhen Han
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Meng Ban
- Liaoning Microhealth Biotechnology Co., Ltd., Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Junnan Xu
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China,*Correspondence: Junnan Xu,
| |
Collapse
|
5
|
Chrobok L, Wojcik M, Klich JD, Pradel K, Lewandowski MH, Piggins HD. Phasic Neuronal Firing in the Rodent Nucleus of the Solitary Tract ex vivo. Front Physiol 2021; 12:638695. [PMID: 33762969 PMCID: PMC7982836 DOI: 10.3389/fphys.2021.638695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Phasic pattern of neuronal activity has been previously described in detail for magnocellular vasopressin neurons in the hypothalamic paraventricular and supraoptic nuclei. This characteristic bistable pattern consists of alternating periods of electrical silence and elevated neuronal firing, implicated in neuropeptide release. Here, with the use of multi-electrode array recordings ex vivo, we aimed to study the firing pattern of neurons in the nucleus of the solitary tract (NTS) - the brainstem hub for homeostatic, cardio-vascular, and metabolic processes. Our recordings from the mouse and rat hindbrain slices reveal the phasic activity pattern to be displayed by a subset of neurons in the dorsomedial NTS subjacent to the area postrema (AP), with the inter-spike interval distribution closely resembling that reported for phasic magnocellular vasopressin cells. Additionally, we provide interspecies comparison, showing higher phasic frequency and firing rate of phasic NTS cells in mice compared to rats. Further, we describe daily changes in their firing rate and pattern, peaking at the middle of the night. Last, we reveal these phasic cells to be sensitive to α 2 adrenergic receptors activation and to respond to electrical stimulation of the AP. This study provides a comprehensive description of the phasic neuronal activity in the rodent NTS and identifies it as a potential downstream target of the AP noradrenergic system.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michal Wojcik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jasmin Daniela Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Hugh David Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109951. [PMID: 32335265 DOI: 10.1016/j.pnpbp.2020.109951] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that patients with severe mental disorders, including major depression, bipolar disorder and schizophrenia present with various alterations of the gut microbiota and increased intestinal permeability. In addition, the hypothalamic-pituitary-adrenal (HPA) axis dysregulation and subclinical inflammation have been reported in this group of patients. Although it has been found that the HPA axis dysregulation appears as a consequence of psychosocial stress, especially traumatic life events, the exact mechanisms of this observation remain unclear. Animal model studies have unraveled several mechanisms linking the gut microbiota with the HPA axis dysfunction. Indeed, the gut microbiota can activate the HPA axis through several mediators that cross the blood-brain barrier and include microbial antigens, cytokines and prostaglandins. There is also evidence that various microbial species can affect ileal corticosterone production that may impact the activity of the HPA axis. However, some metabolites released by various microbes, e.g., short-chain fatty acids, can attenuate the HPA axis response. Moreover, several bacteria release neurotransmitters that can directly interact with vagal afferents. It has been postulated that the HPA axis activation can impact the gut microbiota and intestinal permeability. In this article, we discuss various mechanisms linking the gut microbiota with the HPA axis activity and summarize current evidence for a cross-talk between the gut-brain axis and the HPA axis from studies of patients with mood and psychotic disorders. Finally, we show potential clinical implications that can arise from future studies investigating the HPA axis activity with respect to the gut microbiota in severe mental disorders.
Collapse
|
7
|
Ameliorating Effects and Mechanisms of Intra-Operative Vagal Nerve Stimulation on Postoperative Recovery After Sleeve Gastrectomy in Rats. Obes Surg 2020; 30:2980-2987. [DOI: 10.1007/s11695-020-04626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Res Bull 2019; 147:110-123. [DOI: 10.1016/j.brainresbull.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
|
9
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Medial septal cholinergic mediation of hippocampal theta rhythm induced by vagal nerve stimulation. PLoS One 2018; 13:e0206532. [PMID: 30395575 PMCID: PMC6218045 DOI: 10.1371/journal.pone.0206532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/15/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Electrical vagal nerve stimulation (VNS) has been used for years to treat patients with drug-resistant epilepsy. This technique also remains under investigation as a specific treatment of patients with Alzheimer's disease. Recently we discovered that VNS induced hippocampal formation (HPC) type II theta rhythm, which is involved in memory consolidation. In the present study, we have extended our previous observation and addressed the neuronal substrate and pharmacological profile of HPC type II theta rhythm induced by VNS in anesthetized rats. METHODS Male Wistar rats were implanted with a VNS cuff electrode around the left vagus nerve, a tungsten microelectrode for recording the HPC field activity, and a medial septal (MS) cannula for the injection of a local anesthetic, procaine, and muscarinic agents. A direct, brief effect of VNS on the HPC field potential was evaluated before and after medial-septal drug injection. RESULTS Medial septal injection of local anesthetic, procaine, reversibly abolished VNS-induced HPC theta rhythm. With the use of cholinergic muscarinic agonist and antagonists, we demonstrated that medial septal M1 receptors are involved in the mediation of the VNS effect on HPC theta field potential. CONCLUSION The MS cholinergic M1 receptor mechanism integrates not only central inputs from the brainstem synchronizing pathway, which underlies the production of HPC type II theta rhythm, but also the input from the vagal afferents in the brain stem.
Collapse
Affiliation(s)
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| | - Paulina Kłos-Wojtczak
- Neuromedical, Research Department, Łódź, Poland
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Łódź, Łódź, Poland
| |
Collapse
|
10
|
Kawai Y. Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 2018; 12:63. [PMID: 30087599 PMCID: PMC6066510 DOI: 10.3389/fnana.2018.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
To integrate and broadcast neural information, local microcircuits and global macrocircuits interact within certain specific nuclei of the central nervous system. The structural and functional architecture of this interaction was determined for the caudal nucleus of the tractus solitarius (NTS) at the level of the area postrema (AP), a relay station of peripheral viscerosensory information that is processed and conveyed to brain regions concerned with autonomic-affective and other interoceptive reflexive functions. Axon collaterals of most small NTS cells (soma <150 μm2) establish excitatory or inhibitory local microcircuits likely to control the activity of nearby NTS cells and to transfer peripheral signals to efferent projection neurons. At least two types of cells that constitute efferent pathways from the caudal NTS (cNTS) were distinguished: (1) a greater numbers of small cells, seemingly forming local excitatory microcircuits via recurrent axon collaterals, that project specifically and unidirectionally to the lateral parabrachial nucleus; and (2) a much smaller numbers of cells likely to establish multiple global connections, mostly via the medial forebrain bundle (MFB) or the dorsal longitudinal fascicle (DLF), with a wide range of brain regions, including the ventrolateral medulla (VLM), hypothalamus, central nucleus of the amygdala (ACe), bed nucleus of the stria terminalis (BNST), spinal cord dorsal horn, brainstem reticular formation, locus coeruleus (LC), periaqueductal gray (PAG) and periventricular diencephalon (including the epithalamus). The evidence presented here suggests that distinct cNTS cell types distinguished by projection pattern and related structural and functional features participate differentially in the computation of viscerosensory information and coordination of global macro-networks in a highly organized manner.
Collapse
Affiliation(s)
- Yoshinori Kawai
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Carter DA, Guo H, Connelly AA, Bassi JK, Fong AY, Allen AM, McDougall SJ. Viscerosensory input drives angiotensin II type 1A receptor-expressing neurons in the solitary tract nucleus. Am J Physiol Regul Integr Comp Physiol 2017; 314:R282-R293. [PMID: 29118020 DOI: 10.1152/ajpregu.00290.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Homeostatic regulation of visceral organ function requires integrated processing of neural and neurohormonal sensory signals. The nucleus of the solitary tract (NTS) is the primary sensory nucleus for cranial visceral sensory afferents. Angiotensin II (ANG II) is known to modulate peripheral visceral reflexes, in part, by activating ANG II type 1A receptors (AT1AR) in the NTS. AT1AR-expressing NTS neurons occur throughout the NTS with a defined subnuclear distribution, and most of these neurons are depolarized by ANG II. In this study we determined whether AT1AR-expressing NTS neurons receive direct visceral sensory input, and whether this input is modulated by ANG II. Using AT1AR-GFP mice to make targeted whole cell recordings from AT1AR-expressing NTS neurons, we demonstrate that two-thirds (37 of 56) of AT1AR-expressing neurons receive direct excitatory, visceral sensory input. In half of the neurons tested (4 of 8) the excitatory visceral sensory input was significantly reduced by application of the transient receptor potential vallinoid type 1 receptor agonist, capsaicin, indicating AT1AR-expressing neurons can receive either C- or A-fiber-mediated input. Application of ANG II to a subset of second-order AT1AR-expressing neurons did not affect spontaneous, evoked, or asynchronous glutamate release from visceral sensory afferents. Thus it is unlikely that AT1AR-expressing viscerosensory neurons terminate on AT1AR-expressing NTS neurons. Our data suggest that ANG II is likely to modulate multiple visceral sensory modalities by altering the excitability of second-order AT1AR-expressing NTS neurons.
Collapse
Affiliation(s)
- D A Carter
- Department of Physiology, The University of Melbourne , Victoria , Australia
| | - H Guo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Victoria , Australia
| | - A A Connelly
- Department of Physiology, The University of Melbourne , Victoria , Australia
| | - J K Bassi
- Department of Physiology, The University of Melbourne , Victoria , Australia
| | - A Y Fong
- Department of Physiology, The University of Melbourne , Victoria , Australia
| | - A M Allen
- Department of Physiology, The University of Melbourne , Victoria , Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Victoria , Australia
| | - S J McDougall
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Victoria , Australia
| |
Collapse
|
12
|
Vagus nerve stimulation produces a hippocampal formation theta rhythm in anesthetized rats. Brain Res 2017; 1675:41-50. [DOI: 10.1016/j.brainres.2017.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
|
13
|
Boxwell AJ, Chen Z, Mathes CM, Spector AC, Le Roux CW, Travers SP, Travers JB. Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiol Behav 2015. [PMID: 26216080 DOI: 10.1016/j.physbeh.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bariatric surgery is an effective treatment for obesity that involves both peripheral and central mechanisms. To elucidate central pathways by which oral and visceral signals are influenced by high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB) surgery, we recorded from neurons in the caudal visceral nucleus of the solitary tract (cNST, N=287) and rostral gustatory NST (rNST,N=106) in rats maintained on a HFD and lab chow (CHOW) or CHOW alone, and subjected to either RYGB or sham surgery. Animals on the HFD weighed significantly more than CHOW rats and RYGB reversed and then blunted weight gain regardless of diet. Using whole-cell patch clamp recording in a brainstem slice, we determined the membrane properties of cNST and rNST neurons associated with diet and surgery. We could not detect differences in rNST neurons associated with these manipulations. In cNST neurons, neither the threshold for solitary tract stimulation nor the amplitude of evoked EPSCs at threshold varied by condition; however suprathreshold EPSCs were larger in HFD compared to chow-fed animals. In addition, a transient outward current, most likely an IA current, was increased with HFD and RYGB reduced this current as well as a sustained outward current. Interestingly, hypothalamic projecting cNST neurons preferentially express IA and modulate transmission of afferent signals (Bailey, '07). Thus, diet and RYGB have multiple effects on the cellular properties of neurons in the visceral regions of NST, with potential to influence inputs to forebrain feeding circuits.
Collapse
Affiliation(s)
- A J Boxwell
- Ohio State Univ., Columbus, OH, United States
| | - Z Chen
- Ohio State Univ., Columbus, OH, United States
| | - C M Mathes
- Florida State Univ., Tallahassee, FL, United States
| | - A C Spector
- Florida State Univ., Tallahassee, FL, United States
| | | | - S P Travers
- Ohio State Univ., Columbus, OH, United States
| | - J B Travers
- Ohio State Univ., Columbus, OH, United States.
| |
Collapse
|
14
|
McGinnis WR, Audhya T, Edelson SM. Proposed toxic and hypoxic impairment of a brainstem locus in autism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6955-7000. [PMID: 24336025 PMCID: PMC3881151 DOI: 10.3390/ijerph10126955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 01/15/2023]
Abstract
Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS) in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain's point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion--the "pNTS"--permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate), competition for hemoglobin (carbon monoxide, nitrates/nitrites), and higher blood viscosity (net systemic oxidative stress) are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism.
Collapse
Affiliation(s)
- Woody R. McGinnis
- Autism Research Institute, 4182 Adams Avenue, San Diego, CA 92116, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-541-326-8822; Fax: +1-619-563-6840
| | - Tapan Audhya
- Division of Endocrinology, Department of Medicine, New York University Medical School, New York, NY 10016, USA; E-Mail:
| | - Stephen M. Edelson
- Autism Research Institute, 4182 Adams Avenue, San Diego, CA 92116, USA; E-Mail:
| |
Collapse
|
15
|
Andresen MC, Fawley JA, Hofmann ME. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front Neurosci 2013; 6:191. [PMID: 23335875 PMCID: PMC3541483 DOI: 10.3389/fnins.2012.00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST) with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presynaptic receptors for angiotensin (AT1), vasopressin (V1a), oxytocin, opioid (MOR), ghrelin (GHSR1), and cholecystokinin differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
16
|
Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P, Fagon JY, Faisy C. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 2012; 303:E389-96. [PMID: 22649067 DOI: 10.1152/ajpendo.00502.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM - (ECW/0.98) - (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight - 0.406 × trunk length - 13.52. The fraction of variance explained by this model (adjusted r(2)) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.
Collapse
|
17
|
Abstract
Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Elmezzi Graduate School of Molecular Medicine, Hofstra North Shore-LIJ Medical School, Manhasset, New York, USA
| | | | | |
Collapse
|
18
|
Sadananda P, Drake MJ, Paton JFR, Pickering AE. An exploration of the control of micturition using a novel in situ arterially perfused rat preparation. Front Neurosci 2011; 5:62. [PMID: 21625609 PMCID: PMC3097374 DOI: 10.3389/fnins.2011.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022] Open
Abstract
Our goal was to develop and refine a decerebrate arterially perfused rat (DAPR) preparation that allows the complete bladder filling and voiding cycle to be investigated without some of the restrictions inherent with in vivo experimentation [e.g., ease and speed of set up (30 min), control over the extracellular milieu and free of anesthetic agents]. Both spontaneous (naturalistic bladder filling from ureters) and evoked (in response to intravesical infusion) voids were routinely and reproducibly observed which had similar pressure characteristics. The DAPR allows the simultaneous measurement of bladder intra-luminal pressure, external urinary sphincter-electromyogram (EUS-EMG), pelvic afferent nerve activity, pudendal motor activity, and permits excellent visualization of the entire lower urinary tract, during typical rat filling and voiding responses. The voiding responses were modulated or eliminated by interventions at a number of levels including at the afferent terminal fields (intravesical capsaicin sensitization-desensitization), autonomic (ganglion blockade with hexamethonium), and somatic motor (vecuronium block of the EUS) outflow and required intact brainstem/hindbrain-spinal coordination (as demonstrated by sequential hindbrain transections). Both innocuous (e.g., perineal stimulation) and nociceptive (tail/paw pinch) somatic stimuli elicited an increase in EUS-EMG indicating intact sensory feedback loops. Spontaneous non-micturition contractions were observed between fluid infusions at a frequency and amplitude of 1.4 ± 0.9 per minute and 1.4 ± 0.3 mmHg, respectively and their amplitude increased when autonomic control was compromised. In conclusion, the DAPR is a tractable and useful model for the study of neural bladder control showing intact afferent signaling, spinal and hindbrain co-ordination and efferent control over the lower urinary tract end organs and can be extended to study bladder pathologies and trial novel treatments.
Collapse
Affiliation(s)
- Prajni Sadananda
- School of Physiology and Pharmacology, University of BristolBristol, UK
| | | | | | | |
Collapse
|
19
|
Browning KN, Wan S, Baptista V, Travagli RA. Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R394-401. [PMID: 21543639 DOI: 10.1152/ajpregu.00054.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Baroreceptor inputs to nucleus of the tractus solitarius medialis (mNTS) neurons can be differentiated, among other features, by their response to vanilloid or purinergic agonists, active only on C- or A-fibers, respectively. A major aim of this study was to examine whether neurons of NTS centralis (cNTS), a subnucleus dominated by esophageal inputs, exhibit a similar dichotomy. Since it has been suggested that cholecystokinin (CCK), exerts its gastrointestinal (GI)-related effects via paracrine activation of vagal afferent C-fibers, we tested whether CCK-sensitive fibers impinging upon cNTS neurons are responsive to vanilloid but not purinergic agonists. Using whole cell patch-clamp recordings from cNTS, we recorded miniature excitatory postsynaptic currents (mEPSCs) to test the effects of the vanilloid agonist capsaicin, the purinergic agonist α,β-methylene-ATP (α,β-Met-ATP), and/or CCK-octapeptide (CCK-8s). α,β-Met-ATP, capsaicin; and CCK-8s increased EPSC frequency in 37, 71, and 46% of cNTS neurons, respectively. Approximately 30% of cNTS neurons were responsive to both CCK-8s and α,β-Met-ATP, to CCK-8s and capsaicin, or to α,β-Met-ATP and capsaicin, while 32% of neurons were responsive to all three agonists. All neurons responding to either α,β-Met-ATP or CCK-8s were also responsive to capsaicin. Perivagal capsaicin, which is supposed to induce a selective degeneration of C-fibers, decreased the number of cNTS neurons responding to capsaicin or CCK-8s but not those responding to α,β-Met-ATP. In summary, GI inputs to cNTS neurons cannot be distinguished on the basis of their selective responses to α,β-Met-ATP or capsaicin. Our data also indicate that CCK-8s increases glutamate release from purinergic and vanilloid responsive fibers impinging on cNTS neurons.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | |
Collapse
|
20
|
Andresen MC, Peters JH. Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus. Am J Physiol Heart Circ Physiol 2008; 295:H2032-42. [PMID: 18790834 DOI: 10.1152/ajpheart.00568.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
21
|
Wan S, Browning KN, Coleman FH, Sutton G, Zheng H, Butler A, Berthoud HR, Travagli RA. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci 2008; 28:4957-66. [PMID: 18463249 PMCID: PMC2681297 DOI: 10.1523/jneurosci.5398-07.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022] Open
Abstract
The nucleus tractus solitarius (NTS) integrates visceral sensory signals with information from the forebrain to control homeostatic functions, including food intake. Melanocortin 3/4 receptor (MC3/4R) ligands administered directly to the caudal brainstem powerfully modulate meal size but not frequency, suggesting the enhancement of visceral satiety signals. Using whole-cell recordings from rat brainstem slices, we examined the effects of melanocortin ligands, alpha-melanocyte-stimulating hormone (alphaMSH) and melanotan II (MTII), on EPSC in NTS neurons. Thirty-two percent of NTS neurons responded to perfusion with MTII or alphaMSH with either an increase (24%) or a decrease (8%) in the frequency, but not amplitude, of spontaneous EPSCs; the effects of MTII were abolished by pretreatment with SHU9119. After surgical vagal deafferentation, only four of 34 (9%) NTS neurons responded to MTII with an increase in EPSC frequency. When EPSCs were evoked by electrical stimulation of the tractus solitarius in Krebs' solution with 2.4 mm Ca(2+)(e), alphaMSH and MTII increased the amplitude in six of the 28 neurons tested, decreased amplitude in 14 with no effect in the remaining eight neurons. In four of six neurons unresponsive to MTII, decreasing Ca(2+)(e) levels to 1.5 mM uncovered an excitatory effect of MTII on EPSC amplitude. Reverse transcription-PCR analysis revealed the presence of MC4R, but not MC3R, in nodose ganglia. These results show that MC4R signaling leads mainly to presynaptic modulation of glutamatergic synaptic transmission and suggest that melanocortinergic-induced decrease of food intake may occur via enhancement of vagal afferent satiation signals from the gastrointestinal tract.
Collapse
Affiliation(s)
- Shuxia Wan
- Key Laboratory of Allergy and Immune-Related Diseases, Department of Physiology, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China
| | - Kirsteen N. Browning
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - F. Holly Coleman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Gregory Sutton
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Hiyuan Zheng
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Andrew Butler
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - R. Alberto Travagli
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| |
Collapse
|
22
|
Young RL, Cooper NJ, Blackshaw LA. Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology 2008; 54:965-75. [PMID: 18371991 DOI: 10.1016/j.neuropharm.2008.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate receptors (mGluR) are classified into groups I (excitatory), II and III (inhibitory) mGluR. Activation of peripheral group III mGluR (mGluR4, mGluR6, mGluR7, mGluR8), particularly mGluR8, inhibits vagal afferent mechanosensitivity in vitro which translates into reduced triggering of transient lower oesophageal sphincter relaxations and gastroesophageal reflux in vivo. However, the expression and function of group III mGluR in central gastrointestinal vagal reflex pathways is not known. Here we assessed the expression of group III mGluR in identified gastric vagal afferents in the nodose ganglion (NG) and in the dorsal medulla. We also determined the central action of the mGluR8a agonist S-3,4-DCPG (DCPG) on nucleus tractus solitarius (NTS) neurons with gastric mechanosensory input in vivo. Labelling for mGluR4 and mGluR8 was abundant in gastric vagal afferents in the NG, at their termination site in the NTS (subnucleus gelatinosus) and in gastric vagal motorneurons, while labelling for mGluR6 and mGluR7 was weaker in these regions. DCPG (0.1 nmol or 0.001-10 nmol i.c.v.) inhibited or markedly attenuated responses of 8/10 NTS neurons excited by isobaric gastric distension with no effect on blood pressure or respiration; 2 NTS neurons were unaffected. The effects of DCPG were significantly reversed by the group III mGluR antagonist MAP4 (10 nmol, i.c.v.). In contrast, 4/4 NTS neurons inhibited by gastric distension were unaffected by DCPG. We conclude that group III mGluR are expressed in peripheral and central vagal pathways, and that mGluR8 within the NTS selectively reduce excitatory transmission along gastric vagal pathways.
Collapse
Affiliation(s)
- Richard L Young
- Nerve Gut Research Laboratory, Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
23
|
Sartor DM, Verberne AJM. The role of NMDA and non-NMDA receptors in the NTS in mediating three distinct sympathoinhibitory reflexes. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:241-52. [PMID: 18008064 DOI: 10.1007/s00210-007-0203-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/12/2007] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) elicits a sympathetic vasomotor reflex that is implicated in gastrointestinal circulatory control. We sought to determine (1) the site in the solitary tract nucleus (NTS) responsible for mediating this reflex and (2) the possible involvement of excitatory amino acid (EAA) receptors. In addition, we sought to determine whether the NTS site responsible for mediating the baroreflex (phenylephrine, PE, 10 microg/kg i.v.) and the von Bezold-Jarisch reflex (phenylbiguanide, PBG, 10 microg/kg i.v) overlap with that involved in the CCK-induced reflex (CCK, 4 microg/kg, i.v.), and to compare the relative importance of NMDA and non-NDMA receptors in these reflexes. In separate experiments, the effects of PE, PBG, and CCK on mean arterial blood pressure, heart rate, and splanchnic sympathetic nerve discharge were tested before and after bilateral microinjection into the NTS of the gamma-aminobutyric acid(A) (GABA(A)) agonist muscimol, the EAA antagonist kynurenate, the NMDA receptor antagonist D: (-)-2-amino-5-phosphopentanoic acid (AP-5), the non-NMDA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), AP-5 + NBQX, or vehicle. While all treatments (except vehicle) significantly attenuated/abolished/reversed the splanchnic sympathoinhibitory responses to PE, PBG, and CCK, the extent of blockade varied between the different treatment groups. Both NMDA and non-NMDA receptors were essential to the baroreflex and the von Bezold-Jarisch reflex, whereas the CCK reflex was more dependent on non-NMDA receptors. Muscimol, kynurenate, and AP-5 + NBQX significantly attenuated the bradycardic responses to PE and PBG (P < 0.05), whereas AP-5, NBQX, or vehicle did not. The bradycardic responses to CCK remained intact after all treatments. These results suggest that while there is overlap in the area of the NTS responsible for eliciting all three reflexes, NMDA and non-NMDA receptors are recruited differentially for the full expression of these reflexes. The CCK-induced sympathoinhibitory reflex is unique in that it relies predominantly on non-NMDA receptors in the NTS and elicits bradycardic effects that are independent of the NTS.
Collapse
Affiliation(s)
- Daniela M Sartor
- Department of Medicine, Clinical Pharmacology and Therapeutics Unit, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia.
| | | |
Collapse
|
24
|
Poole SL, Deuchars J, Lewis DI, Deuchars SA. Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of mu-opioid receptors in the rat. J Neurophysiol 2007; 98:3060-71. [PMID: 17898143 DOI: 10.1152/jn.00755.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microinjection of opioid receptor agonists into the nucleus tractus solitarius (NTS) has differential effects on cardiovascular, respiratory, and gastrointestinal responses. This can be achieved either by presynaptic modulation of inputs onto neurons or by postsynaptic activation of receptors on neurons in specific regions. Therefore we sought to determine whether responses of neurons to activation of opioid receptors were dependent on their location within the NTS. Using whole cell patch-clamp recordings from neurons within the NTS, the mu opioid receptor (MOR) agonist [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO, 100 nM) hyperpolarized a proportion of neurons in the medial, dorsomedial and dorsolateral NTS, whereas no postsynaptic responses were observed in remaining subdivisions. DAMGO reduced the amplitude of solitary tract-evoked excitatory postsynaptic potentials (EPSPs) in all neurons tested, regardless of subdivision. The kappa opioid receptor (KOR) agonist U69593 (10-20 microM) also hyperpolarized a small fraction of neurons (6/79) and decreased the amplitude of EPSPs in 50% of neurons. In contrast, the delta-opioid receptor agonist DPDPE (1-4 microM) had no presynaptic or postsynaptic effects on NTS neurons even after preincubation with bradykinin. Anatomical data at the light and electron microscopic level complemented electrophysiological observations with respect to MOR location and further showed that MORs were present at both presynaptic and postsynaptic sites in the dorsolateral NTS, often at the same synapse. These data demonstrate site specific responses of neurons to activation of MORs and KORs, which may underlie their ability to modulate different autonomic reflexes.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn
- Drug Interactions
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- In Vitro Techniques
- Male
- Microscopy, Immunoelectron/methods
- Neurons/physiology
- Neurons/ultrastructure
- Patch-Clamp Techniques/methods
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Solitary Nucleus/cytology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- Sarah L Poole
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
25
|
Wang S, Paton JFR, Kasparov S. Differential sensitivity of excitatory and inhibitory synaptic transmission to modulation by nitric oxide in rat nucleus tractus solitarii. Exp Physiol 2007; 92:371-82. [PMID: 17138620 DOI: 10.1113/expphysiol.2006.036103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nucleus tractus solitarii (NTS) is a key central link in control of multiple homeostatic reflexes. A number of studies have demonstrated that exogenous and endogenous nitric oxide (NO) within NTS regulates visceral function, but further understanding of the role of NO in the NTS is hampered by the lack of information about its intracellular actions. We studied effects of NO in acute rat brainstem slices. Aqueous NO solution (NO(aq)) potentiated electrically evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different neuronal subpopulations and, in some neurones, caused a depolarization. Similar effects were observed using the NO donor diethylamine NONOate (DEA/NO). The threshold NO concentration as determined using an NO electrochemical sensor was estimated as approximately 0.4 nm (EC(50) approximately 0.9 nm) for potentiating glutamatergic EPSPs but approximately 3 nm for monosynaptic GABAergic IPSPs. Bath application of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) abolished NO(aq)- and DEA/NO-induced potentiation of evoked EPSPs, IPSPs and depolarization. All NO actions were mimicked by the non-NO-dependent guanylate cyclase activator Bay 41-2272. The effects of NO on EPSPs and IPSPs persisted in cells where postsynaptic sGC was blocked by ODQ and therefore were presynaptic, owing to a direct modulation of transmitter release combined with depolarization of presynaptic neurones. Therefore, while lower concentrations of NO may be important for fine tuning of glutamatergic transmission, higher concentrations are required to directly engage GABAergic inhibition. This differential sensitivity of excitatory and inhibitory connections to NO may be important for determining the specificity of the effects of this freely diffusible gaseous messenger.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Physiology, School of Medical Sciences, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
26
|
Braga VA, Soriano RN, Machado BH. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol 2006; 91:1025-31. [PMID: 16959820 DOI: 10.1113/expphysiol.2006.034868] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we tested the hypothesis that chronic intermittent hypoxia (CIH) produces changes in the autonomic and respiratory responses to acute peripheral chemoreflex activation. To attain this goal, 3-week-old rats were exposed to 10 days of CIH (6% O(2) for 40 s at 9 min intervals; 8 h day(-1)). They were then used to obtain a working heart-brainstem preparation and, using this unanaesthetized experimental preparation, the chemoreflex was activated with potassium cyanide (0.05%, injected via the perfusion system), and the thoracic sympathetic nerve activity (tSNA), heart rate and phrenic nerve discharge (PND) were recorded. Rats subjected to CIH (n = 12), when compared with control animals (n = 12), presented the following significant changes in response to chemoreflex activation: (a) an increase in tSNA (78 +/- 4 versus 48 +/- 3%); (b) a long-lasting increase in the frequency of the PND at 20 (0.52 +/- 0.03 versus 0.36 +/- 0.03 Hz) and 30 s (0.40 +/- 0.02 versus 0.31 +/- 0.02 Hz) after the stimulus; and (c) a greater bradycardic response (-218 +/- 20 versus -163 +/- 16 beats min(-1)). These results indicate that the autonomic and respiratory responses to chemoreflex activation in juvenile rats previously submitted to CIH are greatly increased.
Collapse
Affiliation(s)
- Valdir A Braga
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
27
|
Yoshioka M, Okada T, Inoue K, Kawai Y. Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius. Neurosci Res 2006; 55:300-15. [PMID: 16716422 DOI: 10.1016/j.neures.2006.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/25/2006] [Accepted: 04/03/2006] [Indexed: 01/14/2023]
Abstract
Region- and size-specific neuronal organizations of the caudal nucleus of the tractus solitarius (cNTS) were investigated, followed by analyses of excitatory and inhibitory synaptic input patterns onto specific cell types by patch clamp recordings and immunoelectron microscopy. Cell size distribution and numerical density of cNTS neurons were examined in subregions at levels of the area postrema. In the subpostremal and dorsomedial subnuclei, characterized by the presence of dense glutamatergic and sparse GABAergic somata, small calbindin neurons constituted 42% of the total cells. The medial subnucleus contained large numbers of glutamatergic, GABAergic, and catecholaminergic somata and large tyrosine hydroxylase-containing cells constituted 13% in this region. In total, small neurons (<150 microm2) represented about 80% of the cell population in the cNTS. Predominant excitatory postsynaptic currents were observed in the adult small neurons, while inhibitory postsynaptic currents were more evident in larger neurons, irrespective of subnuclear location. This distinct differentiation of postsynaptic current patterns was not evident in neonates. GABAergic synapses were more frequently associated with dendrites of large catecholaminergic cells (73%) than with those of small calbindin-containing cells (10%) in adults. These results indicate that differential synaptic input patterns were developmentally established in distinct small and large neurons.
Collapse
Affiliation(s)
- Masayuki Yoshioka
- Department of Anatomy I, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
28
|
Sartor DM, Verberne AJM. The sympathoinhibitory effects of systemic cholecystokinin are dependent on neurons in the caudal ventrolateral medulla in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1390-8. [PMID: 16793934 DOI: 10.1152/ajpregu.00314.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.
Collapse
Affiliation(s)
- D M Sartor
- University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Dept. of Medicine, Austin Health, Heidelberg, Victoria 3084, Australia.
| | | |
Collapse
|
29
|
Abstract
Brainstem parasympathetic circuits that modulate digestive functions of the stomach are comprised of afferent vagal fibers, neurons of the nucleus tractus solitarius (NTS), and the efferent fibers originating in the dorsal motor nucleus of the vagus (DMV). A large body of evidence has shown that neuronal communications between the NTS and the DMV are plastic and are regulated by the presence of a variety of neurotransmitters and circulating hormones as well as the presence, or absence, of afferent input to the NTS. These data suggest that descending central nervous system inputs as well as hormonal and afferent feedback resulting from the digestive process can powerfully regulate vago-vagal reflex sensitivity. This paper first reviews the essential "static" organization and function of vago-vagal gastric control neurocircuitry. We then present data on the opioidergic modulation of NTS connections with the DMV as an example of the "gating" of these reflexes, i.e., how neurotransmitters, hormones, and vagal afferent traffic can make an otherwise static autonomic reflex highly plastic.
Collapse
|
30
|
Andrews PLR, Horn CC. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. Auton Neurosci 2006; 125:100-15. [PMID: 16556512 PMCID: PMC2658708 DOI: 10.1016/j.autneu.2006.01.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 12/12/2022]
Abstract
Nausea and vomiting are amongst the most common symptoms encountered in medicine as either symptoms of diseases or side effects of treatments. In a more biological setting they are also important components of an organism's defences against ingested toxins. Identification of treatments for nausea and vomiting and reduction of emetic liability of new therapies has largely relied on the use of animal models, and although such models have proven invaluable in identification of the anti-emetic effects of both 5-hydroxytryptamine(3) and neurokinin(1) receptor antagonists selection of appropriate models is still a matter of debate. The present paper focuses on a number of controversial issues and gaps in our knowledge in the study of the physiology of nausea and vomiting including: The choice of species for the study of emesis and the underlying behavioural (e.g. neophobia), anatomical (e.g. elongated, narrow abdominal oesophagus with reduced ability to shorten) and physiological (e.g. brainstem circuitry) mechanisms that explain the lack of a vomiting reflex in certain species (e.g. rats); The choice of response to measure (emesis[retching and vomiting], conditioned flavour avoidance or aversion, ingestion of clay[pica], plasma hormone levels[e.g. vasopressin], gastric dysrhythmias) and the relationship of these responses to those observed in humans and especially to the sensation of nausea; The stimulus coding of nausea and emesis by abdominal visceral afferents and especially the vagus-how do the afferents encode information for normal postprandial sensations, nausea and finally vomiting?; Understanding the central processing of signals for nausea and vomiting is particularly problematic in the light of observations that vomiting is more readily amenable to pharmacological treatment than is nausea, despite the assumption that nausea represents "low" intensity activation of pathways that can evoke vomiting when stimulated more intensely.
Collapse
Affiliation(s)
- Paul L R Andrews
- Division of Basic Medical Sciences, St George's University of London, Cranmer Terrace, London, SW 17 0RE, UK.
| | | |
Collapse
|
31
|
Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol (1985) 2006; 101:618-27. [PMID: 16645192 PMCID: PMC4503231 DOI: 10.1152/japplphysiol.00252.2006] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung sensory receptors with afferent fibers coursing in the vagus nerves are broadly divided into three groups: slowly (SAR) and rapidly (RAR) adapting stretch receptors and bronchopulmonary C fibers. Central terminations of each group are found in largely nonoverlapping regions of the caudal half of the nucleus of the solitary tract (NTS). Second order neurons in the pathways from these receptors innervate neurons located in respiratory-related regions of the medulla, pons, and spinal cord. The relative ease of selective activation of SARs, and to a lesser extent RARs, has allowed for more complete physiological and morphological characterization of the second and higher order neurons in these pathways than for C fibers. A subset of NTS neurons receiving afferent input from SARs (termed pump or P-cells) mediates the Breuer-Hering reflex and inhibits neurons receiving afferent input from RARs. P-cells and second order neurons in the RAR pathway also provide inputs to regions of the ventrolateral medulla involved in control of respiratory motor pattern, i.e., regions containing a predominance of bulbospinal premotor neurons, as well as regions containing respiratory rhythm-generating neurons. Axon collaterals from both P-cells and RAR interneurons, and likely from NTS interneurons in the C-fiber pathway, project to the parabrachial pontine region where they may contribute to plasticity in respiratory control and integration of respiratory control with other systems, including those that provide for voluntary control of breathing, sleep-wake behavior, and emotions.
Collapse
Affiliation(s)
- Leszek Kubin
- Dept. of Physiology-M211, Feinberg School of Medicine, Northwestern Univ., 303 E. Chicago Ave., Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|
32
|
Okada T, Yoshioka M, Inoue K, Kawai Y. Local axonal arborization patterns of distinct neuronal types in the caudal nucleus of the tractus solitarius. Brain Res 2006; 1083:134-44. [PMID: 16545781 DOI: 10.1016/j.brainres.2006.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 11/20/2022]
Abstract
Neurons in the caudal nucleus of the tractus solitarius (cNTS) are quite heterogeneous in cell size (50 to 450 microm(2) in somal area) and other morphologic characteristics. For a more objective classification of cNTS neurons, their morphologic features were analyzed quantitatively based on reconstructed biocytin-filled cells after whole-cell patch-clamp recordings. According to the patterns of axonal branching behaviors, cNTS cells could be classified into two groups: smaller cells (94.1 microm(2) in mean somal area, range 62-120 microm(2), n = 22) and larger cells (245 microm(2) in mean somal area, range 142-411 microm(2), n = 23). Extensive axonal arborization with numerous possible synaptic boutons was specifically associated with smaller neurons, while larger cells possessed no or few axon collaterals, suggesting their distinct roles as local circuit neurons (or interneurons) and projection neurons, respectively. With regard to somatodendritic characteristics, the following correlations with cell size were found: smaller cells had larger form factors than larger cells (P < 0.05). Larger neurons had more extensive dendritic arborization, expressed by total dendritic length (P < 0.01) and number of dendritic branching points (P < 0.01), than smaller cells. It was suggested that small cNTS neurons contribute specifically to an integration of input information generated in the local circuits, while large neurons convey the integrated information to other autonomic brain regions.
Collapse
Affiliation(s)
- Tomoaki Okada
- Department of Anatomy I, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
33
|
Braga VA, Machado BH. Chemoreflex sympathoexcitation was not altered by the antagonism of glutamate receptors in the commissural nucleus tractus solitarii in the working heart-brainstem preparation of rats. Exp Physiol 2006; 91:551-9. [PMID: 16452122 DOI: 10.1113/expphysiol.2005.033100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The changes in thoracic sympathetic nerve activity, heart rate and frequency of phrenic nerve discharge in response to chemoreflex activation before and after bilateral microinjections of glutamate receptor antagonists into the comissural nucleus tractus solitarii (cNTS) were evaluated in the working heart-brainstem preparation of rats. Microinjections of kynurenic acid (KYN, 250 mM), (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG, 100 mM), or KYN plus MCPG into the cNTS were performed in three different groups. These microinjections into the cNTS did not affect the increase in the thoracic sympathetic nerve activity elicited by chemoreflex activation (KYN, 54 +/- 3 versus 51 +/- 2%, n = 11; MCPG, 48 +/- 5 versus 54 +/- 5%, n = 7; and KYN plus MCPG, 57 +/- 6 versus 55 +/- 3%, n = 5). The increase in the frequency of the phrenic nerve discharge in response to chemoreflex activation was also not affected by KYN (0.28 +/- 0.02 versus 0.30 +/- 0.04 Hz), MCPG (0.27 +/- 0.03 versus 0.27 +/- 0.04 Hz), or KYN plus MCPG (0.30 +/- 0.04 versus 0.20 +/- 0.03 Hz). The bradycardic response to chemoreflex activation was significantly reduced after microinjection of KYN at 2 (-220 +/- 16 versus -50 +/- 6 beats min(-1)) and 10 min (-220 +/- 16 versus -65 +/- 9 beats min(-1)) and after microinjection of KYN plus MCPG into the NTS it was abolished at 2 (-192 +/- 14 versus -2 +/- 1 beats min(-1)) and 10 min (-192 +/- 14 versus -4 +/- 2 beats min(-1)). These data support the hypothesis that the neurotransmission of the sympathoexcitatory and respiratory components of the chemoreflex in the cNTS involves neurotransmitters other than L-glutamate and also the concept that the parasympathetic component of this reflex is mediated by L-glutamate.
Collapse
Affiliation(s)
- Valdir A Braga
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
34
|
Baptista V, Zheng Z, Coleman F, Rogers R, Travagli R. Characterization of neurons of the nucleus tractus solitarius pars centralis. Brain Res 2005; 1052:139-46. [PMID: 16005442 PMCID: PMC3070946 DOI: 10.1016/j.brainres.2005.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 12/29/2022]
Abstract
Esophageal sensory afferent inputs terminate principally in the central subnucleus of the tractus solitarius (cNTS). Neurons of the cNTS comprise two major neurochemical subpopulations. One contains neurons that are nitric oxide synthase (NOS) immunoreactive (-IR) while the other comprises neurons that are tyrosine hydroxylase (TH)-IR. We have shown recently that TH-IR neurons are involved in esophageal-distention induced gastric relaxation. We used whole cell patch clamp techniques in rat brainstem slices combined with immunohistochemical and morphological reconstructions to characterize cNTS neurons. Postrecording reconstruction of cNTS neurons revealed two morphological neuronal subtypes; one group of cells (41 out of 131 neurons, i.e., 31%) had a multipolar soma, while the other group (87 out of 131 neurons, i.e., 66%) had a bipolar soma. Of the 43 cells in which we conducted a neurochemical examination, 15 displayed TH-IR (9 with bipolar morphology, 6 with multipolar morphology) while the remaining 28 neurons did not display TH-IR (18 with bipolar morphology, 10 with multipolar morphology). Even though the range of electrophysiological properties varied significantly, morphological or neurochemical distinctions did not reveal characteristics peculiar to the subgroups. Spontaneous excitatory postsynaptic currents (sEPSC) recorded in cNTS neurons had a frequency of 1.5 +/- 0.15 events s(-1) and an amplitude of 27 +/- 1.2 pA (Vh = -50 mV) and were abolished by pretreatment with 30 muM AP-5 and 10 muM CNQX, indicating the involvement of both NMDA and non-NMDA receptors. Some cNTS neurons also received a GABAergic input that was abolished by perfusion with 30-50 muM bicuculline. In conclusion, our data show that despite the heterogeneity of morphological and neurochemical membrane properties, the electrophysiological characteristics of cNTS neurons are not a distinguishing feature.
Collapse
Affiliation(s)
| | | | | | | | - R.A. Travagli
- Corresponding author. Fax: +1 225 763 0260. (R.A. Travagli)
| |
Collapse
|
35
|
Kasparov S, Paton J, Wang S, Deuchars J. Nitroxergic Modulation in the NTS. ADVANCES IN VAGAL AFFERENT NEUROBIOLOGY 2005. [DOI: 10.1201/9780203492314.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
McKay BE, Persinger MA. Conditioned taste aversion is not disrupted in rats exposed to weak, complex magnetic fields during the CS-UCS interval. Percept Mot Skills 2004; 97:1335-8. [PMID: 15002878 DOI: 10.2466/pms.2003.97.3f.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
40 normal male Wistar rats were trained for 8 successive days to consume water ad libitum during once-daily 20-min. sessions. On the following day (training day) the rats were presented with a novel solution of 10% sucrose for 20 min. followed by a single exposure for 2 hr. to one of two weak (200 to 500 nanoTesla) complex magnetic fields or to sham-field conditions. The patterns of the two magnetic fields and the durations of their repeated presentations (interstimulus interval) were designed to be resonant with the intrinsic firing of hippocampal pyramidal and solitary neurons, respectively. Immediately after the applications of the fields one-half the number of rats were injected with lithium to evoke gastrointestinal malaise. Although on the test day, three days later, rats previously injected with the lithium exhibited the usual robust reduction in the consumption of sucrose compared to the training day, there were no statistically significant differences between field-exposed and sham-field groups for these ratios. We conclude that a 2-hr. exposure to weak magnetic fields designed to simulate the pattern of two structures likely involved with conditioned taste aversion between the conditioned stimulus and the unconditioned stimulus did not affect this behavior.
Collapse
Affiliation(s)
- B E McKay
- Laurentian University, Sudbury, Ontario, Canada
| | | |
Collapse
|
37
|
Glatzer NR, Hasney CP, Bhaskaran MD, Smith BN. Synaptic and morphologic properties in vitro of premotor rat nucleus tractus solitarius neurons labeled transneuronally from the stomach. J Comp Neurol 2003; 464:525-39. [PMID: 12900922 DOI: 10.1002/cne.10831] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurons in the rat nucleus tractus solitarius (NTS) possess morphologic characteristics that have been correlated with the type of synaptic information they receive. These features have been described for viscerosensory neurons but not for premotor NTS neurons. The morphologic and synaptic features of neurons in the rat caudal NTS were assessed using whole-cell patch-clamp recordings and biocytin labeling in brainstem slices. Gastric-related premotor NTS neurons were identified for recording after inoculation of the stomach wall with a transneuronal retrograde viral label that reports enhanced green fluorescent protein. Three morphologic groups of NTS neurons were identified based on quantitative aspects of soma area and proximal dendritic arborization, measures that were consistent across slice recordings. The most common type of cell (group I) had relatively small somata and one to three sparsely branching dendrites, whereas the other groups had larger somata and more than three dendrites, which branched predominantly close to (group II) or distant from (group III) the soma. Voltage-clamp recordings revealed spontaneous excitatory and inhibitory postsynaptic currents in all neurons, regardless of morphology. Gastric-related premotor NTS neurons composed two of the three morphologic types (i.e., groups I and II). Compared with unlabeled neurons, these cells were less likely to receive constant-latency synaptic input from the tractus solitarius. These results refute the hypothesis that general patterns of synaptic input to NTS neurons depend on morphology. Gastric premotor neurons comprise a subset of NTS morphologic types, the organization of the viscerosensory input to which has yet to be defined.
Collapse
Affiliation(s)
- Nicholas R Glatzer
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
38
|
Travagli RA, Hermann GE, Browning KN, Rogers RC. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol 2003; 284:G180-7. [PMID: 12529266 PMCID: PMC3055655 DOI: 10.1152/ajpgi.00413.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vago-vagal reflex circuits modulate digestive functions from the oral cavity to the transverse colon. Previous articles in this series have described events at the level of the sensory receptors encoding the peripheral stimuli, the transmission of information in the afferent vagus, and the conversion of this data within the dorsal vagal complex (DVC) to impulses in the preganglionic efferents. The control by vagal efferents of the postganglionic neurons impinging on the glands and smooth muscles of the target organs has also been illustrated. Here we focus on some of the mechanisms by which these apparently static reflex circuits can be made quite plastic as a consequence of the action of modulatory inputs from other central nervous system sources. A large body of evidence has shown that the neuronal elements that constitute these brain stem circuits have nonuniform properties and function differently according to status of their target organs and the level of activity in critical modulatory inputs. We propose that DVC circuits undergo a certain amount of short-term plasticity that allows the brain stem neuronal elements to act in harmony with neural systems that control behavioral and physiological homeostasis.
Collapse
Affiliation(s)
- R Alberto Travagli
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
39
|
Boscan P, Paton JFR. Nociceptive afferents selectively modulate the cardiac component of the peripheral chemoreceptor reflex via actions within the solitary tract nucleus. Neuroscience 2002; 110:319-28. [PMID: 11958873 DOI: 10.1016/s0306-4522(01)00585-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our previous findings showed that the nucleus of the solitary tract (NTS) mediated part of the tachycardia evoked during somatic noxious stimulation. Here, we investigated the interaction between somatic nociceptor- and peripheral chemoreceptor-evoked cardiac changes. We sought to determine whether this interaction occurred within the NTS, the primary site of termination of chemoreceptor afferents. In a working heart-brainstem preparation of rat, mechanical noxious activation of a forelimb evoked a tachycardia of 17.5+/-3 (mean+/-S.E.M.) b.p.m., whereas sodium cyanide (7-30 microg) stimulation of peripheral chemoreceptors produced a sub-maximal bradycardia of -140+/-15 b.p.m. During nociceptor stimulation the sodium cyanide-evoked bradycardia was attenuated to -42.6+/-12 b.p.m. but could be prevented by a multiple bilateral NTS microinjection of bicuculline (i.e. -173+/-18 b.p.m.). Furthermore, the activity of NTS neurones responding to peripheral chemoreceptor stimulation increased from 2.8+/-1.3 to 9.4+/-1.9 Hz during sodium cyanide injection (n=7; P<0.01). The latter response was attenuated reversibly to 2.9+/-0.9 Hz during simultaneous stimulation of the brachial nerve. Pressure ejection of bicuculline abolished this inhibitory action of brachial-nerve stimulation on the chemoreceptor-evoked excitatory synaptic response. We conclude that somatic noxious stimulation attenuates the chemoreceptor reflex-evoked bradycardia via a GABA(A)ergic mechanism in the NTS.
Collapse
Affiliation(s)
- P Boscan
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
40
|
Cai XJ, Liu XH, Evans M, Clapham JC, Wilson S, Arch JRS, Morris R, Williams G. Orexins and feeding: special occasions or everyday occurrence? REGULATORY PEPTIDES 2002; 104:1-9. [PMID: 11830270 DOI: 10.1016/s0167-0115(01)00343-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons expressing prepro-orexin, the precursor of orexin-A and -B, are found in the lateral hypothalamic area, a region classically implicated in driving feeding. Orexin-A induces feeding transiently when injected centrally, and food intake can be decreased when orexin action is disrupted by immunoneutralization of orexin-A, or by pharmacological blockade of orexin receptors, or by transgenic knockout of orexin. Here, we argue that orexin neurons may act to stimulate feeding in the short term, and that important regulatory signals may be a fall in plasma glucose (stimulatory), countered by satiety signals generated by eating, such as gastric distention (inhibitory).
Collapse
Affiliation(s)
- Xue J Cai
- Department of Medicine, Diabetes and Endocrinology Research Group, University of Liverpool, L69 3GA, Liverpool, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Goyal RK, Padmanabhan R, Sang Q. Neural circuits in swallowing and abdominal vagal afferent-mediated lower esophageal sphincter relaxation. Am J Med 2001; 111 Suppl 8A:95S-105S. [PMID: 11749933 DOI: 10.1016/s0002-9343(01)00863-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this review is to identify the medullary subnuclei that house neural circuits for lower esophageal sphincter (LES) relaxation. LES relaxation may occur as a component of primary peristalsis elicited by superior laryngeal nerve (SLN) afferent stimulation, secondary peristalsis elicited by esophageal distention or as a component of belch reflex, and transient LES relaxation elicited by gastric vagal afferent stimulation. In mice, SLN stimulation at 10 Hz elicited complete swallowing reflex, including pharyngeal and esophageal peristalsis, and LES relaxation. SLN stimulation at 5 Hz elicited pharyngeal contractions and isolated LES relaxation, which is not accompanied by esophageal peristalsis. Electric stimulation of afferents in the ventral branch of the subdiaphragmatic vagus (vSDV) at 10 Hz also elicited isolated LES relaxation. Using these defined stimuli, c-fos expression was examined in the entire craniocaudal extent of the medullary nuclei. SLN stimulation at 10 Hz induced c-fos expression in neurons in: (1) interstitial (SolI), intermediate (SolIM), central (SolCe), occasional medial (SolM), and dorsomedial (SolDM) solitary subnuclei; (2) motor neurons in the nucleus ambiguus, including its semicompact (NAsc), loose (NAl), and compact (NAc) formations; and (3) dorsal motor nucleus of vagus, including its rostral (DMVr) and caudal (DMVc) parts. The activated neurons represent neurons involved with afferent SLN-mediated reflexes, including swallowing. SLN stimulation at 5 Hz evoked c-fos expression in neurons in SolI, SolIM, SolM, and SolDM but not in SolCe; and motor neurons in NAsc, NAl, and DMVc but not in NAc or DMVr. Stimulation of vSDV induced c-fos expression in neurons in SolM and SolDM and in motoneurons in DMVc. When considered with published reports in other animal species, these data support the speculation that (1) swallow-evoked primary peristalsis involves the following neural circuits: SolI/SolIM --> NAsc/NAl for pharyngeal and SolCe --> NAc for esophageal (striated muscle) peristalsis, SolM/SolDM --> preganglionic neurons in DMVc and DMVr and nitrergic and cholinergic neurons in myenteric plexus for esophageal (smooth muscle) peristalsis, and SolM/SolDM --> preganglionic neurons in DMVc --> postganglionic nitrergic neurons in the myenteric plexus for LES relaxation; and (2) abdominal vagus-stimulated isolated LES relaxation may involve neurons in SolM and SolDM --> preganglionic motor neurons in DMVc --> postganglionic nitrergic neurons in the myenteric plexus.
Collapse
Affiliation(s)
- R K Goyal
- Center for Swallowing and Motility Disorders, Department of Veterans Affairs Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
42
|
Abstract
The maternal roles of oxytocin (OT) are well known, but recent work suggests that OT is also a vital component in fluid balance regulation. To explore the role of OT in salt/volume regulation, we studied NaCl intake in a genetically modified mouse strain lacking OT. Using male control and OT knockout mice (OTKO), we determined the circadian pattern of salt and water intake under need-free conditions. For the study of intake, a two-bottle choice system was used to provide access to water and 2% NaCl with computerized monitoring of licking activity. Salt licking activity (licks/24 h) for controls was 59 +/- 22 vs. 380 +/- 105 in OTKO (P < 0.05). The volume of salt consumed (ml/24 h) was 0.4 +/- 0.1 in controls vs. 1.8 +/- 0.4 in OTKO (P < 0.01). There was no statistical difference in the consumption of water between the groups. However, the initiation of water intake was shifted, with an advancement of almost 3 h in OTKO (P < 0.01). Differences in the timing of salt intake could not be determined due to the low volume of salt consumed by controls. Taken together, these data show that removal of OT amplifies the salt-seeking behavior associated with normal daily fluid fluctuations. The fact that OTKO voluntarily consume a normally aversive salt solution further implies that OT is a powerful regulator of circadian salt appetite.
Collapse
Affiliation(s)
- R Puryear
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio 45401, USA
| | | | | | | |
Collapse
|
43
|
Paton JF, Deuchars J, Li YW, Kasparov S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience 2001; 105:231-48. [PMID: 11483315 DOI: 10.1016/s0306-4522(01)00106-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite the highly integrated pattern of response evoked by peripheral chemoreceptor stimulation, limited information exists regarding the neurones within the nucleus of the solitary tract that mediate this reflex. Using a working heart-brainstem preparation, we describe evoked synaptic response patterns, some intrinsic membrane properties, location, morphology and axonal projections of physiologically characterised 'chemoreceptive' neurones located in the solitary tract nucleus in the rat. From 172 whole cell recordings, 56 neurones were identified as chemoreceptive since they responded to aortic injections of low doses of sodium cyanide (2-5 microg). Chemoreceptive neurones had a mean resting membrane potential of -52+/-1 mV and input resistance was 297+/-15 M(Omega) (n=56). Synaptic responses evoked included excitatory synaptic potentials alone, excitatory-inhibitory post-synaptic potential complexes, inhibitory synaptic potentials alone and central respiratory modulated synaptic potentials. Synaptic response latency data were obtained by stimulating electrically the solitary tract: the mean excitatory synaptic latency was 5.2+/-0.4 ms (range 2.5-8.0 ms; n=17). Chemoreceptive neurones showed a heterogeneity in their intrinsic membrane properties: neurones displayed either steady state, augmenting or adapting firing responses to depolarising current injection and, in some neurones, either delayed excitation or rebound activity following hyperpolarising pulses. Eleven chemoreceptive neurones were labelled and provided the first morphological data of these cells. Labelled somata were detected dorsomedial or medial to the solitary tract spanning the obex. Neurones typically had three to eight primary dendrites which often entered the solitary tract as well as extending across the ipsilateral region of the nucleus of the solitary tract. Axons were mostly unmyelinated with boutons of the en passant variety and often ramified within the solitary tract nucleus as well as coursed towards the ipsilateral ventral medulla. In summary, this study provides new data on the neurophysiological, anatomical and morphological properties of nucleus of the solitary tract neurones responding to arterial chemoreceptors in the rat.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
Neurons in the nucleus of the solitary tract (NTS) responding to activation of arterial baroreceptors were recorded intracellularly using patch pipettes in an in situ arterially perfused working heart-brain stem preparation of rat. Seven of 15 (i.e., 46%) of NTS neurons showed adaptive (nonlinear) excitatory synaptic response patterns during baroreceptor stimulation followed by an "evoked hyperpolarization." This evoked hyperpolarization was stimulus intensity dependent and capable of shunting out a subsequent baroreceptor input. We suggest that this adaptive response behavior may be mediated, in part, by calcium-dependent potassium currents (IKCa) since neurons showed spike frequency adaptation during step depolarizations and an after-hyperpolarization after repetitive firing. Furthermore, in in vivo anesthetized rats, NTS microinjections of either charybdotoxin (225 fmol) or apamin (4.5 pmol) to block IKCa increased the baroreceptor reflex gain. Our data purport that the responsiveness of baroreceptive NTS neurons can be regulated by intrinsic membrane conductances such as IKCa. Modulation of such conductances during either physiological (exercise) or pathophysiological (essential hypertension) conditions may lead to changes in both the operating point and gain of the baroreceptor reflex.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
45
|
Cai XJ, Evans ML, Lister CA, Leslie RA, Arch JR, Wilson S, Williams G. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 2001; 50:105-12. [PMID: 11147774 DOI: 10.2337/diabetes.50.1.105] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Orexins are novel appetite-stimulating peptides expressed in the lateral hypothalamic area (LHA), and their expression is stimulated by hypoglycemia in fasted rats. We investigated activation of orexin and other neurons during insulin-induced hypoglycemia using the immediate early gene product Fos. Insulin (50 U/kg) lowered plasma glucose by >50% after 5 h and stimulated feeding sixfold compared with saline-injected controls. Hypoglycemic rats allowed to feed and normoglycemic controls both showed sparse Fos-positive (Fos+) neurons in the LHA and the paraventricular nucleus (PVN) and arcuate nucleus (ARC) and showed none in the nucleus of the solitary tract (NTS), which relays visceral feeding signals to the LHA. In the LHA, total numbers of Fos+ neurons were comparable in fed hypoglycemic and control groups (60 +/- 6 vs. 52 +/- 4 cells/mm2, P > 0.05), as were Fos+ neurons immunoreactive for orexin (1.4 +/- 0.4 vs. 0.6 +/- 0.4 cells/mm2, P > 0.05). By contrast, hypoglycemic rats that were fasted showed significantly more Fos+ nuclei in the LHA (96 +/- 10 cells/mm2, P < 0.05, vs. both other groups) and Fos+ orexin neurons (8.4 +/- 3.3 cells/mm2, P < 0.001, vs. both other groups). They also showed two- to threefold more Fos+ nuclei (P < 0.001) in the PVN and ARC than both fed hypoglycemic rats and controls and showed strikingly abundant Fos+ neurons in the NTS and dorsal motor nucleus of the vagus. In parallel studies, whole hypothalamic orexin-A levels were not changed in hypoglycemic rats, whether fasted or freely fed, whereas orexin-B levels were 10-fold higher in hypoglycemic fasted rats than in control and hypoglycemic fed groups. These data support our hypothesis that orexin neurons are stimulated by falling glucose levels but are readily inhibited by signals related to nutrient ingestion and suggest that they may functionally link with neuronal activity in the NTS. Orexin-A and -B may play specific roles in behavioral or neuroendocrine responses to hypoglycemia.
Collapse
Affiliation(s)
- X J Cai
- Diabetes and Endocrinology Research Group, University of Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sang Q, Goyal RK. Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 2000; 119:1600-9. [PMID: 11113081 DOI: 10.1053/gast.2000.20234] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Isolated lower esophageal sphincter (LES) relaxation associated with belching and vomiting and the transient LES relaxation associated with gastroesophageal reflux are gastric afferent-mediated vagovagal reflexes. We aimed to identify the brain stem vagal subnuclei involved in these reflexes. METHODS In anesthetized mice, LES pressures were recorded using a manometric technique and response to electrical stimulation of the ventral trunk of subdiaphragmatic vagus was investigated. Anatomy of the vagal subnuclei was defined, and activated subnuclei with ventral subdiaphragmatic vagus stimulation were detected by c-fos immunohistochemical staining. RESULTS Ventral subdiaphragmatic vagal stimulation elicited frequency-dependent LES relaxation without evoking esophageal contractions and induced c-fos expression in interneurons in medial, dorsomedial, and commissural subnuclei along with outer shell of area postrema and motoneurons in the caudal dorsal motor nucleus of vagus. Brain stem subnuclei including interstitial, intermediate, and central subnuclei, and nucleus ambiguous, which have been reported to be involved in the response to swallowing, were not activated. CONCLUSIONS Stimulation of the ventral subdiaphragmatic vagus causes isolated LES relaxation and activates neurons in select vagal subnuclei that may represent the brain stem circuit involved in the abdominal vagal-afferent-evoked isolated LES relaxation. These observations suggest that different brain stem circuits are involved in swallow-induced and gastric afferent-mediated isolated LES relaxations.
Collapse
Affiliation(s)
- Q Sang
- Center for Swallowing and Motility Disorders, Department of Veterans Affairs Medical Center, West Roxbury, Massachusetts 02132, USA
| | | |
Collapse
|
47
|
Paton JF, Li YW, Deuchars J, Kasparov S. Properties of solitary tract neurons receiving inputs from the sub-diaphragmatic vagus nerve. Neuroscience 2000; 95:141-53. [PMID: 10619470 DOI: 10.1016/s0306-4522(99)00416-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vagal afferents ascending from the gastrointestinal tract synapse on neurons in the nucleus of the solitary tract. Although these neurons constitute a significant proportion of solitary tract cells their firing behaviour and synaptic properties are not documented. Since gastrointestinal tract afferent termination sites overlap with regions mediating cardiorespiratory reflexes the possibility of convergence with afferents mediating cardiovascular and respiratory reflexes was proposed. Here we describe some electrophysiological and morphological properties of solitary tract neurons orthodromically driven from the subdiaphragmatic vagus nerves and assess possible convergent inputs from cardiorespiratory afferents. Whole-cell recordings of solitary tract neurons responding to electrical stimulation of the sub-diaphragmatic vagus nerves (0.1-1 ms; 1-10 V; 2-20 Hz) were made in a working heart-brainstem preparation of rat. Baroreceptors were stimulated by raising pressure in the aorta or carotid sinus, whereas aortic injection of sodium cyanide (0.05% solution 25-50 microl) was used to activate peripheral chemoreceptors. Phrenic nerve activity and heart rate were monitored continuously. Of 88 solitary tract neurons tested, 39 responded with an evoked excitatory synaptic potential following stimulation of the sub-diaphragmatic vagus nerves. Resting membrane potential and input resistance of sub-diaphragmatic vagus nerve driven solitary tract neurons were 53.2 +/- 0.5 mV and 291 +/- 17 Mohms, respectively (mean +/- S.E.M.). Response latencies to sub-diaphragmatic vagus nerve stimulation were divided into two groups: <20 ms (16.0 +/- 2 ms, n = 7; mean +/- S.E.M.) and >20 ms (77.3 +/- 5 ms, n = 32). One additional neuron displayed an evoked inhibitory postsynaptic potential (latency 175 ms). Nineteen neurons showed ongoing activity which consisted of either irregular single action potential firing (0.5-10 Hz; n = 12) or burst discharge (n = 7). Of 33 neurons tested, 17 showed spike frequency adaptation during injection of positive current, whereas 19 of 38 cells displayed rebound excitation following release from hyperpolarized potentials. There was no correlation between these properties and synaptic latencies. Ninety-one per cent of neurons tested displayed synaptic depression following paired pulse stimulation of the sub-diaphragmatic vagus nerve over intervals up to 500 ms. Stimulation of either baroreceptors (n = 31) or chemoreceptors (n = 36) failed to elicit a synaptic response in all sub-diaphragmatic vagus nerve-driven solitary tract neurons. Neurobiotin-labelled solitary tract neurons (n = 10) were from both latency groups and were located medial to the solitary tract at the level of area postrema, -0.3 mm to +1 mm from the obex. One cell was located in commissural subnucleus at midline, seven cells dorsal to the tractus solitarius and three ventral and medial to it. Soma sizes were 23 +/- 9.6 x 14 +/- 4.9 microm (range: 50 x 16 microm to 15 x 7 microm). The number of primary dendrites varied from three to five, secondary from one to eight and tertiary zero to four. Labelled axons were found in seven cells which ramified extensively in the solitary tract nucleus (n = 3) and/or branched extensively in the dorsal vagal motonucleus (n = 3) and/or projected towards the ventrolateral medulla (n = 3). We conclude that solitary tract neurons receiving signals from the sub-diaphragmatic vagus nerves (most likely from gastrointestinal tract structures) appear to be a distinct pool of neurons. There was a heterogeneity in terms of both their ongoing activity and projection targets but despite this, there were three consistent properties. First, sub-diaphragmatic vagus nerve evoked predominantly excitatory synaptic responses in solitary tract neurons; second, neurons exhibited lasting paired pulse depression following activation of sub-diaphragmatic vagus nerves; and third, sub-diaphragmatic vagus nerve-driven solitary tract neurons were
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, UK
| | | | | | | |
Collapse
|