1
|
Stellatelli OA, Bonavita MI, Victorel C, Gómez Alés R, Moreno Azócar DL, Block C, Cruz FB. Thermo-physiological changes and reproductive investment in a liolaemid lizard at the extreme of the slow-fast continuum. J Exp Biol 2024; 227:jeb247506. [PMID: 38826150 DOI: 10.1242/jeb.247506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Gravid female lizards often experience reduced thermal preferences and impaired locomotor performance. These changes have been attributed to the physical burden of the clutch, but some authors have suggested that they may be due to physiological adjustments. We compared the thermal biology and locomotor performance of the lizard Liolaemus wiegmannii 1 week before and 1 week after oviposition. We found that gravid females had a thermal preference 1°C lower than that of non-gravid females. This was accompanied by a change in the thermal dependence of maximum running speed. The thermal optimum for locomotor performance was 2.6°C lower before oviposition than after. At relatively low temperatures (22 and 26°C), running speeds of females before oviposition were up to 31% higher than for females after oviposition. However, at temperatures above 26°C, females achieved similar maximum running speeds (∼1.5 m s-1) regardless of reproductive stage. The magnitude of the changes in thermal parameters and locomotor performance of L. wiegmannii females was independent of relative clutch mass (clutches weighed up to 89% of post-oviposition body mass). This suggests that the changes are not simply due to the clutch mass, but are also due to physiological adjustments. Liolaemus wiegmannii females simultaneously adjusted their own physiology in a short period in order to improve locomotor performance and allocated energy for embryonic development during late gravid stage. Our findings have implications for understanding the mechanisms underlying life histories of lizards on the fast extreme of the slow-fast continuum, where physiological exhaustion could play an important role.
Collapse
Affiliation(s)
- Oscar A Stellatelli
- Grupo Vertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, B7602AYJ Mar del Plata, Buenos Aires, Argentina
| | - Mauro I Bonavita
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Candela Victorel
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Rodrigo Gómez Alés
- Gabinete Diversidad y Biología de Vertebrados del Árido (DIBIOVA), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, J5402DCS San Juan, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET San Juan, J5400ARL San Juan, San Juan, Argentina
| | - Débora L Moreno Azócar
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Carolina Block
- Grupo Vertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, B7602AYJ Mar del Plata, Buenos Aires, Argentina
| | - Félix B Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
2
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Litmer AR, Beaupre SJ. Thermal sensitivity of digestion in Sceloporus consobrinus, with comments on geographic variation. J Therm Biol 2024; 120:103808. [PMID: 38387224 DOI: 10.1016/j.jtherbio.2024.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Individual variation in energetics, environment, and genetics can influence population-level processes. However, it is often assumed that locally measured thermal and bioenergetic responses apply among broadly related species. Even closely related taxa may differ in the thermal sensitivity of performance, which in turn influences population persistence, population vital rates, and the ability to respond to environmental changes. The objectives of this project were to quantify the thermal sensitivity of digestive physiology in an Sceloporus lizards, to compare closely related, but geographically distinct, populations. Sceloporus lizards are a model organism, as they are known to exhibit thermally dependent physiologies and are geographically widespread. Digestive passage time, food consumption, fecal and urate production, metabolizable energy intake (MEI), and assimilated energy (AE) were compared for Sceloporus consobrinus in Arkansas and S. undulatus in South Carolina and New Jersey. Published data were acquired for NJ and SC lizards, while original data were collected for S. consobrinus. Comparisons of digestion among populations were made at 30 °C, 33 °C, or 36 °C. Results suggest that digestive physiology differs among populations, with S. consobrinus being more efficient at warmer temperatures. In contrast, NJ and SC lizards had quicker passage times and lower fecal and urate production at 30 °C in comparison to AR. The results of the current study exemplify how closely related organisms can differ in thermal sensitivity of performance. Such data are important for understanding how individual-level processes can vary in response to climate, with implications for understanding variation in physiological traits across the range of Sceloporus lizards.
Collapse
Affiliation(s)
- Allison R Litmer
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR, 72701, USA.
| | - Steven J Beaupre
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR, 72701, USA
| |
Collapse
|
4
|
Cohen JM, Fink D, Zuckerberg B. Spatial and seasonal variation in thermal sensitivity within North American bird species. Proc Biol Sci 2023; 290:20231398. [PMID: 37935364 PMCID: PMC10645114 DOI: 10.1098/rspb.2023.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Responses of wildlife to climate change are typically quantified at the species level, but physiological evidence suggests significant intraspecific variation in thermal sensitivity given adaptation to local environments and plasticity required to adjust to seasonal environments. Spatial and temporal variation in thermal responses may carry important implications for climate change vulnerability; for instance, sensitivity to extreme weather may increase in specific regions or seasons. Here, we leverage high-resolution observational data from eBird to understand regional and seasonal variation in thermal sensitivity for 21 bird species. Across their ranges, most birds demonstrated regional and seasonal variation in both thermal peak and range, or the temperature and range of temperatures when observations peaked. Some birds demonstrated constant thermal peaks or ranges across their geographical distributions, while others varied according to local and current environmental conditions. Across species, birds typically demonstrated either geographical or seasonal adaptation to climate. Local adaptation and phenotypic plasticity are likely important but neglected aspects of organismal responses to climate change.
Collapse
Affiliation(s)
- Jeremy M. Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
- Department of Ecology and Evolutionary Biology, and
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, 06520, USA
| | - Daniel Fink
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
6
|
Padilla P, Herrel A, Denoël M. May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 2023:10.1007/s00442-023-05402-0. [PMID: 37351628 DOI: 10.1007/s00442-023-05402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Climate change and invasive species are two major drivers of biodiversity loss and their interaction may lead to unprecedented further loss. Invasive ectotherms can be expected to tolerate temperature variation because of a broad thermal tolerance and may even benefit from warmer temperatures in their new ranges that better match their thermal preference. Multi-trait studies provide a valuable approach to elucidate the influence of temperature on the invasion process and offer insights into how climatic factors may facilitate or hinder the spread of invasive ectotherms. We here used marsh frogs, Pelophylax ridibundus, a species that is invading large areas of Western Europe but whose invasive potential has been underestimated. We measured the maximal and minimal temperatures to sustain physical activity, the preferred temperature, and the thermal dependence of their stamina and jumping performance in relation to the environmental temperatures observed in their invasive range. Our results showed that marsh frogs can withstand body temperatures that cover 100% of the annual temperature variation in the pond they live in and 77% of the observed current annual air temperature variation. Their preferred body temperature and performance optima were higher than the average temperature in their pond and the average air temperature experienced under the shade. These data suggest that invasive marsh frogs may benefit from a warmer climate. Broad thermal tolerances, combined with high thermal preferences and traits maximised at high temperatures, may allow this species to expand their activity period and colonise underexploited shaded habitat, thereby promoting their invasion success.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium.
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Selected microhabitat and surface temperatures of two sympatric lizard species. ACTA OECOLOGICA 2023. [DOI: 10.1016/j.actao.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
9
|
Thermal optimality and physiological parameters inferred from experimental studies scale latitudinally with marine species occurrences. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Oliveira P, Gomes V, Riaño G, Rato C. Ontogenic differences and sexual dimorphism of the locomotor performance in a nocturnal gecko, Tarentola mauritanica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:28-36. [PMID: 35871279 DOI: 10.1002/jez.2645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
Locomotion performance in reptiles is deeply associated with habitat use, escape from predators, prey capture, and territory defense. As ectotherms, this trait in lizards is extremely sensitive to body temperature (BT). However, most studies rarely look at locomotion patterns in an ontogenic perspective. The Moorish gecko, Tarentola mauritanica, was used to investigate the possible effects of distinct BTs on the locomotor performance within juveniles and adults. Not surprisingly, adult individuals significantly outperform the juveniles in speed at every BT. Moreover, except in the 30-day-old juveniles, there is a general trend for an increase of speed with BT. The comparison of these speed values with the ones obtained for diurnal lizard species, corroborates the premise that because nocturnal species are subject to low thermal heterogeneity, little selection for behavioral thermoregulation, but strong selection for high performance at relatively cool temperatures are expected. Furthermore, the higher locomotor performance in adults at 29°C, roughly coincides with previously obtained preferred BTs. However, further studies need to be conducted to build the full performance curve, and to validate the existence of coadaption between behavioral thermoregulation and thermal sensitivity of physiological performance. Finally, this study has found that adult males run significantly faster than females at the highest BTs, highlighting the importance in understanding sex differences, and its potential to drive sex-specific behaviors, ecology, and ultimately fitness.
Collapse
Affiliation(s)
- Pedro Oliveira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vila do Conde, Vairão, Vila do Conde, Portugal
| | - Verónica Gomes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vila do Conde, Vairão, Vila do Conde, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Gabriel Riaño
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Catarina Rato
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vila do Conde, Vairão, Vila do Conde, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
11
|
Karameta E, Sfenthourakis S, Pafilis P. Are all islands the same? A comparative thermoregulatory approach in four insular populations. AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
As ectotherms, lizards, among the best models in thermal studies, are influenced by many abiotic factors. Interestingly, there is a scarcity of data regarding the impact that insularity may have on thermoregulation. Islands, depending their size and altitude, may differ considerably in the thermal conditions they provide to lizards. Here, we focused on a study system comprising islands that differ in morphological characteristics. We worked with four Rock Agama (Laudakia sp.) insular populations, namely Cyprus, Naxos, Delos, and Corfu. We measured body, operative and preferred temperatures and evaluated thermoregulation effectiveness (E). According to our findings, E differed among populations: Corfu received the lowest E (0.45), Cyprus and Naxos achieved median values (0.66 and 0.67, respectively) and lizards from Delos had the most effective thermoregulation (0.85). Our results underline the complex nature of insularity and its effect on saurian thermoregulation and highlight the importance of studying each insular population separately, taking into account the variable features of islands.
Collapse
Affiliation(s)
- Emmanouela Karameta
- Department of Biological Sciences, University of Cyprus, Panepistimiou 1, 2109 Aglantzia, Nicosia, Cyprus
| | - Spyros Sfenthourakis
- Department of Biological Sciences, University of Cyprus, Panepistimiou 1, 2109 Aglantzia, Nicosia, Cyprus
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilissia 15784, Greece
| |
Collapse
|
12
|
Assis BA, Avery JD, Earley RL, Langkilde T. Masculinized Sexual Ornaments in Female Lizards Correlate with Ornament-Enhancing Thermoregulatory Behavior. Integr Org Biol 2022; 4:obac029. [PMID: 36034057 PMCID: PMC9409079 DOI: 10.1093/iob/obac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The adaptive significance of colorful or exaggerated traits (i.e., ornaments) expressed in females is often unclear. Competing hypotheses suggest that expression of female ornaments arises from maladaptive (or neutral) genetic inheritance from males along with incomplete epigenetic regulation, or from positive selection for ornaments in females under social competition. Whether costly or advantageous, the visibility of such traits can sometimes be behaviorally modulated in order to maximize fitness. Female eastern fence lizards express blue badges that are variable in size and color saturation. These are rudimentary compared to those seen in males and carry important costs such as reduced mating opportunities. Body temperature is a well-established enhancer of badge color, and thus thermoregulation may be one way these animals modulate badge visibility. We quantified realized body temperatures of female lizards paired in laboratory trials and observed that females with larger badges attained higher body temperatures when freely allowed to thermoregulate, sometimes beyond physiological optima. In this association between phenotype and behavior, females with larger badges exhibited thermoregulatory patterns that increase their badges’ visibility. This signal-enhancing behavior is difficult to reconcile with the widely held view that female ornaments are maladaptive, suggesting they may carry context-dependent social benefits.
Collapse
Affiliation(s)
- B A Assis
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| | - J D Avery
- Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology, Pennsylvania State University , University Park, PA 16802
| | - R L Earley
- Department of Biological Sciences, University of Alabama , Tuscaloosa, AL 35487
| | - T Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| |
Collapse
|
13
|
Welman S, Ibarzabal I. Thermal physiology of Tropical House Geckos ( Hemidactylus mabouia) in a cool temperate region of South Africa. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2022.2098393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- S Welman
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - I Ibarzabal
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
14
|
Žagar A, Simčič T, Dajčman U, Megía-Palma R. Parasitemia and elevation as predictors of hemoglobin concentration and antioxidant capacity in two sympatric lizards. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111233. [PMID: 35589083 DOI: 10.1016/j.cbpa.2022.111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Studies which quantify the influence of abiotic factors on physiological variation are paramount to comprehend organismal responses to diverse environments. We studied three physiological aspects of metabolism in two sympatric and ecologically similar European lizard species, Podarcis muralis and Iberolacerta horvathi, across an 830-m elevational gradient. We collected blood samples and tail tips from adult lizards, which were analyzed for parasitemia, hemoglobin concentration, potential metabolic activity and catalase activity. Hemoglobin concentration was higher in males than females and it increased across elevation in one of the studied species - P. muralis. Parasitemia was not an important predictor of the variation in hemoglobin concentration, which suggests that blood parasites do not constraint the aerobic capacity of the lizards. On the other hand, catalase activity reflected increased antioxidant activity in the presence of higher parasitemia, possibly acting as an adaptive mechanism to reduce oxidative stress during immune activation. Potential metabolic activity, as a proxy for maximum respiratory enzymatic capacity, did not differ between species or sexes nor was it affected by elevation or levels of parasitemia. The results provide insight into the relationships between physiological, biotic, and environmental traits in sympatric lizards.
Collapse
Affiliation(s)
- Anamarija Žagar
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal.
| | - Tatjana Simčič
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Urban Dajčman
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Zotos S, Stamatiou M, Vogiatzakis IN. Elusive species distribution modelling: The case of Natrix natrix cypriaca. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Conley DA, Lattanzio MS. Active regulation of ultraviolet light exposure overrides thermal preference behaviour in eastern fence lizards. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dane A. Conley
- Department of Organismal and Environmental Biology Christopher Newport University Newport News VA USA
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology Christopher Newport University Newport News VA USA
| |
Collapse
|
17
|
Moen DS, Cabrera-Guzmán E, Caviedes-Solis IW, González-Bernal E, Hanna AR. Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs. J Exp Biol 2022; 225:274250. [PMID: 35119071 DOI: 10.1242/jeb.243292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework - the Ornstein-Uhlenbeck process - that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.
Collapse
Affiliation(s)
- Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Elisa Cabrera-Guzmán
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Itzue W Caviedes-Solis
- Science Unit, Lingnan University, Hong Kong S.A.R., China.,Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Edna González-Bernal
- CONACYT - CIIDIR Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, México
| | - Allison R Hanna
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
18
|
Correspondence between thermal biology and locomotor performance in a liolaemid lizard from the southeastern coastal Pampas of Argentina. J Therm Biol 2021; 105:103173. [DOI: 10.1016/j.jtherbio.2021.103173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
|
19
|
Buckley LB, Kingsolver JG. Evolution of Thermal Sensitivity in Changing and Variable Climates. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011521-102856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, Washington 98195‐1800, USA
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
20
|
Delclos PJ, Adhikari K, Hassan O, Cambric JE, Matuk AG, Presley RI, Tran J, Sriskantharajah V, Meisel RP. Thermal tolerance and preference are both consistent with the clinal distribution of house fly proto-Y chromosomes. Evol Lett 2021; 5:495-506. [PMID: 34621536 PMCID: PMC8484723 DOI: 10.1002/evl3.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Selection pressures can vary within localized areas and across massive geographical scales. Temperature is one of the best studied ecologically variable abiotic factors that can affect selection pressures across multiple spatial scales. Organisms rely on physiological (thermal tolerance) and behavioral (thermal preference) mechanisms to thermoregulate in response to environmental temperature. In addition, spatial heterogeneity in temperatures can select for local adaptation in thermal tolerance, thermal preference, or both. However, the concordance between thermal tolerance and preference across genotypes and sexes within species and across populations is greatly understudied. The house fly, Musca domestica, is a well-suited system to examine how genotype and environment interact to affect thermal tolerance and preference. Across multiple continents, house fly males from higher latitudes tend to carry the male-determining gene on the Y chromosome, whereas those from lower latitudes usually have the male determiner on the third chromosome. We tested whether these two male-determining chromosomes differentially affect thermal tolerance and preference as predicted by their geographical distributions. We identify effects of genotype and developmental temperature on male thermal tolerance and preference that are concordant with the natural distributions of the chromosomes, suggesting that temperature variation across the species range contributes to the maintenance of the polymorphism. In contrast, female thermal preference is bimodal and largely independent of congener male genotypes. These sexually dimorphic thermal preferences suggest that temperature-dependent mating dynamics within populations could further affect the distribution of the two chromosomes. Together, the differences in thermal tolerance and preference across sexes and male genotypes suggest that different selection pressures may affect the frequencies of the male-determining chromosomes across different spatial scales.
Collapse
Affiliation(s)
- Pablo J. Delclos
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Kiran Adhikari
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Oluwatomi Hassan
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Jessica E. Cambric
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Anna G. Matuk
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Rebecca I. Presley
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Jessica Tran
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| | - Vyshnika Sriskantharajah
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTexas77030
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas77004
| |
Collapse
|
21
|
Stellatelli OA, Vega LE, Block C, Rocca C, Bellagamba P, Dajil JE, Cruz FB. Latitudinal pattern of the thermal sensitivity of running speed in the endemic lizard Liolaemus multimaculatus. Integr Zool 2021; 17:619-637. [PMID: 34496145 DOI: 10.1111/1749-4877.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Physiological performance in lizards may be affected by climate across latitudinal or altitudinal gradients. In the coastal dune barriers in central-eastern Argentina, the annual maximum environmental temperature decreases up to 2°C from low to high latitudes, while the mean relative humidity of the air decreases from 50% to 25%. Liolaemus multimaculatus, a lizard in the family Liolaemidae, is restricted to these coastal dunes. We investigated the locomotor performance of the species at 6 different sites distributed throughout its range in these dune barriers. We inquired whether locomotor performance metrics were sensitive to the thermal regime attributable to latitude. The thermal performance breadth increased from 7% to 82% with latitude, due to a decrease in its critical thermal minimum of up to 5°C at higher latitudes. Lizards from high latitude sites showed a thermal optimum, that is, the body temperature at which maximum speed is achieved, up to 4°C lower than that of lizards from the low latitude. At relatively low temperatures, the maximum running speed of high-latitude individuals was faster than that of low-latitude ones. Thermal parameters of locomotor performance were labile, decreasing as a function of latitude. These results show populations of L. multimaculatus adjust thermal physiology to cope with local climatic variations. This suggests that thermal sensitivity responds to the magnitude of latitudinal fluctuations in environmental temperature.
Collapse
Affiliation(s)
- Oscar Aníbal Stellatelli
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Laura E Vega
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Carolina Block
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Camila Rocca
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | | - Juan Esteban Dajil
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Félix Benjamín Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue - CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
22
|
Bakewell L, Kelehear C, Graham S. Impacts of temperature on immune performance in a desert anuran (
Anaxyrus punctatus
). J Zool (1987) 2021. [DOI: 10.1111/jzo.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Brizio MV, Cabezas-Cartes F, Fernández JB, Gómez Alés R, Avila LJ. Vulnerability to global warming of the critically endangered Añelo Sand Dunes Lizard (Liolaemus cuyumhue) from the Monte Desert, Patagonia Argentina. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The body temperature of lizards is strongly influenced by the thermal quality of microhabitats, exploiting the favourable environmental temperatures, and avoiding exposure to extreme thermal conditions. For these reasons, reptile populations are considered to be especially vulnerable to changes in environmental temperatures produced by climate change. Here, we study the thermal physiology of the critically endangered Añelo Sand Dunes Lizard (Liolaemus cuyumhue Avila, Morando, Perez and Sites, 2009). We hypothesise that (i) there is a thermal coadaptation between optimal temperature for locomotor performance of L. cuyumhue and its thermal preference; (ii) L. cuyumhue lives in an environment with low thermal quality; and (iii) a rise in environmental temperatures due to global warming will impose a decrement in locomotor speed represented by lower warming tolerance and narrower thermal safety margins, increasing their already high vulnerability. We recorded field body temperatures (T b), preferred body temperatures (T pref), the operative temperature (T e), and the thermal sensitivity of locomotion at different body temperatures. Our results indicate that this lizard is not currently under environmental stress or exceeding its thermal limits, but that it is thermoregulating below T pref to avoid overheating, and that an increase in environmental temperature higher than 3.5 °C will strongly affect the use of microhabitats with direct sun exposure.
Collapse
Affiliation(s)
- M. Victoria Brizio
- Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, CONICET, Buenos Aires 1400, Neuquén, 8300b, Neuquén, Argentina
| | - Facundo Cabezas-Cartes
- Laboratorio de Ecofisiología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA–CONICET), Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jimena B. Fernández
- Laboratorio de Ecofisiología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA–CONICET), Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Rodrigo Gómez Alés
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, CONICET, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Luciano J. Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC–CONICET), Puerto Madryn, 9120, Chubut, Argentina
| |
Collapse
|
24
|
Fernández-Rodríguez I, Barroso FM, Carretero MA. An integrative analysis of the short-term effects of tail autotomy on thermoregulation and dehydration rates in wall lizards. J Therm Biol 2021; 99:102976. [PMID: 34420620 DOI: 10.1016/j.jtherbio.2021.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
Maintaining body temperature is essential for the optimal performance of physiological functions. Ectotherms depend on external heat sources to thermoregulate. However, thermoregulation may be constrained by body condition and hydration state. Autotomy (i.e., the voluntary shed of a body part) evolved in various animal lineages and allowed surviving certain events (such as predator attacks), but it may affect body condition and volume/surface ratios, increase dehydration and constrain thermoregulation. In the framework of a general analysis of the evolution of autotomy, here we assessed the effects of tail loss on the thermal preferences and evaporative water loss rates (EWL) in the lizard Podarcis bocagei, integrating the thermal and hydric factors. We did not observe shifts in the thermal preferences of experimentally autotomized lizards when compared to the controls, which contradicted the hypothesis that they would raise preferred temperature to increase metabolic rates and accelerate regeneration. Evaporative water loss rates were also similar for tailed and tailless individuals, suggesting negligible increase of water loss through the injury and no specific ecophysiological responses after autotomy. Therefore, the changes observed in autotomized lizards in the field are to be considered primarily behavioural, rather than physiological, and thermoregulation could be secondarily affected by behavioural compensations for an increased predation risk after autotomy. Functional studies are necessary to understand how lizards' interaction with the environment is altered after autotomy, and further studies including different dehydration levels would be useful to fully understand the effect of water shortage on lizards' performance after caudal autotomy.
Collapse
Affiliation(s)
- Irene Fernández-Rodríguez
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, 33071, Spain; Research Unit of Biodiversity (UMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain.
| | - Frederico M Barroso
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| |
Collapse
|
25
|
Dayananda B, Bezeng SB, Karunarathna S, Jeffree RA. Climate Change Impacts on Tropical Reptiles: Likely Effects and Future Research Needs Based on Sri Lankan Perspectives. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.688723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tropical island nation of Sri Lanka has a rich terrestrial and aquatic reptilian fauna. However, like most other tropical countries, the threat of climate change to its reptile diversity has not been adequately addressed, in order to manage and mitigate the extinction threats that climate change poses. To address this shortfall, a review of the international literature regarding climate change impacts on reptiles was undertaken with specific reference to national requirements, focusing on predicted changes in air temperature, rainfall, water temperature, and sea level. This global information base was then used to specify a national program of research and environmental management for tropical countries, which is urgently needed to address the shortcomings in policy-relevant data, its availability and access so that the risks of extinction to reptiles can be clarified and mitigated. Specifically, after highlighting how climate change affects the various eco-physiological features of reptiles, we propose research gaps and various recommendations to address them. It is envisaged that these assessments will also be relevant to the conservation of reptilian biodiversity in other countries with tropical and subtropical climatic regimes
Collapse
|
26
|
Age-Dependent Enclosure Use in Juvenile Chinese Crocodile Lizards, Shinisaurus crocodilurus crocodilurus. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study compared the resource use of juvenile zoo-living Chinese crocodile lizards, Shinisaurus crocodilurus crocodilurus across three observation windows, spanning nine months, accounting for time of day and lizard age, and under consistent environmental conditions. Lizards showed a significant difference in proportionate resource use, quantified using a modified spread of participation indices between the second and final sampling period, such that with increasing age, resources were more equally utilised. The time of day did not have a significant effect on resource use. Lizards in this study significantly increased their use of water bodies and branches outside the bask zone and decreased their use of the land areas within the bask zones over time. Resource use data suggests the importance of providing enclosures which cater to ontogenetic shifts in captive individuals or within mixed age groupings.
Collapse
|
27
|
Vicenzi N, Bacigalupe LD, Laspiur A, Ibargüengoytía N, Sassi PL. Could plasticity mediate highlands lizards' resilience to climate change? A case study of the leopard iguana (Diplolaemus leopardinus) in Central Andes of Argentina. J Exp Biol 2021; 224:269253. [PMID: 34160050 DOI: 10.1242/jeb.242647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
The predicted rise of global temperatures is of major concern for ectotherms because of its direct impact on their behavior and physiology. As physiological performance mediates a species' resilience to warming exposure, physiological plasticity could greatly reduce the susceptibility to climate change. We studied the degree to which Diplolaemus leopardinus lizards are able to adjust behavioral and physiological traits in response to short periods of temperature change. We used a split cross design to measure the acclimation response of preferred body temperature (Tp), and the thermal performance curve of resting metabolic rate (RMR) and evaporative water loss (EWL). Our results showed that plasticity differs among traits: whereas Tp and EWL showed lower values in warm conditions, the body temperature at which RMR was highest increased. Moreover, RMR was affected by thermal history, showing a large increase in response to cold exposure in the group initially acclimated to warm temperatures. The reduction of EWL and the increase in optimal temperature will give lizards the potential to partially mitigate the impact of rising temperatures in the energy cost and water balance. However, the decrease in Tp and the sensitivity to the warm thermal history of RMR could be detrimental to the energy net gain, increasing the species' vulnerability, especially considering the increase of heat waves predicted for the next 50 years. The integration of acclimation responses in behavioral and physiological traits provides a better understanding of the range of possible responses of lizards to cope with the upcoming climatic and environmental modifications expected as a result of climate change.
Collapse
Affiliation(s)
- Nadia Vicenzi
- Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA-CONICET), Avenida Ruiz Leal s/n, Mendoza 5500, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Contreras 1300, Mendoza 5500, Argentina
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile
| | - Alejandro Laspiur
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (INIBIOMA-CONICET), Quintral 1250, San Carlos de Bariloche 8400, Argentina
| | - Nora Ibargüengoytía
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (INIBIOMA-CONICET), Quintral 1250, San Carlos de Bariloche 8400, Argentina
| | - Paola L Sassi
- Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA-CONICET), Avenida Ruiz Leal s/n, Mendoza 5500, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Contreras 1300, Mendoza 5500, Argentina
| |
Collapse
|
28
|
Hayford HA, Gilman SE, Carrington E. Tidal cues reduce thermal risk of climate change in a foraging marine snail. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Wagener C, Kruger N, Measey J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J Exp Biol 2021; 224:jeb.233031. [PMID: 34424980 DOI: 10.1242/jeb.233031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.
Collapse
Affiliation(s)
- Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
30
|
Hews S, Allen Z, Baxter A, Rich J, Sheikh Z, Taylor K, Wu J, Zakoul H, Brodie R. Field-based body temperatures reveal behavioral thermoregulation strategies of the Atlantic marsh fiddler crab Minuca pugnax. PLoS One 2021; 16:e0244458. [PMID: 33406524 PMCID: PMC7787712 DOI: 10.1371/journal.pone.0244458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022] Open
Abstract
Behavioral thermoregulation is an important defense against the negative impacts of climate change for ectotherms. In this study we examined the use of burrows by a common intertidal crab, Minuca pugnax, to control body temperature. To understand how body temperatures respond to changes in the surface temperature and explore how efficiently crabs exploit the cooling potential of burrows to thermoregulate, we measured body, surface, and burrow temperatures during low tide on Sapelo Island, GA in March, May, August, and September of 2019. We found that an increase in 1°C in the surface temperature led to a 0.70-0.71°C increase in body temperature for females and an increase in 0.75-0.77°C in body temperature for males. Body temperatures of small females were 0.3°C warmer than large females for the same surface temperature. Female crabs used burrows more efficiently for thermoregulation compared to the males. Specifically, an increase of 1°C in the cooling capacity (the difference between the burrow temperature and the surface temperature) led to an increase of 0.42-0.50°C for females and 0.34-0.35°C for males in the thermoregulation capacity (the difference between body temperature and surface temperature). The body temperature that crabs began to use burrows to thermoregulate was estimated to be around 24°C, which is far below the critical body temperatures that could lead to death. Many crabs experience body temperatures of 24°C early in the reproductive season, several months before the hottest days of the year. Because the use of burrows involves fitness trade-offs, these results suggest that warming temperatures could begin to impact crabs far earlier in the year than expected.
Collapse
Affiliation(s)
- Sarah Hews
- School of Natural Science, Hampshire College, Amherst, MA, United States of America
- Department of Mathematics & Statistics, Amherst College, Amherst, MA, United States of America
| | - Zahkeyah Allen
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Adrienne Baxter
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Jacquline Rich
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Zahida Sheikh
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Kayla Taylor
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Jenny Wu
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Heidi Zakoul
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
| | - Renae Brodie
- Biological Sciences, Mount Holyoke College, South Hadley, MA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Huey RB, Ma L, Levy O, Kearney MR. Three questions about the eco-physiology of overwintering underground. Ecol Lett 2020; 24:170-185. [PMID: 33289263 DOI: 10.1111/ele.13636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
In cold environments ectotherms can be dormant underground for long periods. In 1941 Cowles proposed an ecological trade-off involving the depth at which ectotherms overwintered: on warm days, only shallow reptiles could detect warming soils and become active; but on cold days, they risked freezing. Cowles discovered that most reptiles at a desert site overwintered at shallow depths. To extend his study, we compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and physiological data, and simulated consequences of overwintering at fixed depths. In warm localities shallow ectotherms have lowest energy costs and largest reserves in spring, but in cold localities, they risk freezing. Ectotherms shifting hourly to the coldest depth potentially reduce energy expenses, but paradoxically sometimes have higher expenses than those at fixed depths. Biophysical simulations for a desert site predict that shallow ectotherms have increased opportunities for mid-winter activity but need to move deep to digest captured food. Our simulations generate testable predictions to eco-physiological questions but rely on physiological responses to acute cold rather than to natural cooling profiles. Furthermore, natural-history data to test most predictions do not exist. Thus, our simulation approach uncovers knowledge gaps and suggests research agendas for studying ectotherms overwintering underground.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Liang Ma
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
| | - Ofir Levy
- School of Zoology, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| |
Collapse
|
32
|
Dallas JW, Deutsch M, Warne RW. Eurythermic Sprint and Immune Thermal Performance and Ecology of an Exotic Lizard at Its Northern Invasion Front. Physiol Biochem Zool 2020; 94:12-21. [PMID: 33275543 DOI: 10.1086/712059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThermal performance of immunity has been relatively understudied in ectotherms, especially in the context of invasive species or in relation to other fitness-related traits and thermoregulatory patterns in the field. For reptiles, thermal biology is a primary factor determining physiological performance and population viability, and suboptimal thermal conditions may limit the expansion of exotic species along the edges of their invasion fronts. This study examined thermoregulatory ecology and thermal performance of immunity and sprinting in a population of Mediterranean geckos (Hemidactylus turcicus) at the northern edge of their invasion front in a temperate zone of the United States. In the field, we quantified temperatures of geckos of varied age classes in relation to air, wall, and refugia temperatures. We also quantified temperature-dependent sprint performance and immune function in field-collected geckos to detail thermal performance patterns that may contribute to the capacity for this species to invade cool climates. Although body temperature (Tb) of wild-caught geckos correlated with wall temperature, average Tb exhibited wide distributions, suggesting eurythermy. Furthermore, the thermal performance of immune swelling responses to phytohemagglutinin injections and sprinting was optimized over a similarly wide temperature range that overlapped with the field Tb's that suggest eurythermy in this species. The wide thermal performance breadths in these traits could buffer against variation in factors such as pathogen exposure and environmental temperatures that could otherwise suppress functional performance. Thus, eurythermy of sprint and immune performance may facilitate the invasive potential of H. turcicus.
Collapse
|
33
|
Cox CL, Tribble HO, Richardson S, Chung AK, Curlis JD, Logan ML. Thermal ecology and physiology of an elongate and semi-fossorial arthropod, the bark centipede. J Therm Biol 2020; 94:102755. [DOI: 10.1016/j.jtherbio.2020.102755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
|
34
|
Brusch GA, Gavira RSB, Viton R, Dupoué A, Leroux-Coyau M, Meylan S, Le Galliard JF, Lourdais O. Additive effects of temperature and water availability on pregnancy in a viviparous lizard. ACTA ACUST UNITED AC 2020; 223:223/19/jeb228064. [PMID: 33046578 DOI: 10.1242/jeb.228064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022]
Abstract
One of the greatest current threats to biodiversity is climate change. However, understanding of organismal responses to fluctuations in temperature and water availability is currently lacking, especially during fundamental life-history stages such as reproduction. To further explore how temperature and water availability impact maternal physiology and reproductive output, we used the viviparous form of the European common lizard (Zootoca vivipara) in a two-by-two factorial design manipulating both hydric and thermal conditions, for the first time. We collected blood samples and morphological measurements during early pregnancy and post-parturition to investigate how water availability, temperature and a combination of the two influence maternal phenology, morphology, physiology and reproductive output. We observed that dehydration during gestation negatively affects maternal physiological condition (lower mass gain, higher tail reserve mobilization) but has little effect on reproductive output. These effects are mainly additive to temperature regimes, with a proportional increase in maternal costs in warmer environments. Our study demonstrates the importance of considering combined effects of water and temperature when investigating organismal responses to climate changes, especially during periods crucial for species survival such as reproduction.
Collapse
Affiliation(s)
- George A Brusch
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France .,Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Rodrigo S B Gavira
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Andréaz Dupoué
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Sandrine Meylan
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
35
|
Tylan C, Horvat-Gordon M, Bartell PA, Langkilde T. Ecoimmune reallocation in a native lizard in response to the presence of invasive, venomous fire ants in their shared environment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:792-804. [PMID: 33038069 DOI: 10.1002/jez.2418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/10/2023]
Abstract
Exposure to stressors over prolonged periods can have fitness-relevant consequences, including suppression of immune function. We tested for effects of presence of an invasive species threat on a broad panel of immune functions of a coexisting lizard. Eastern fence lizards (Sceloporus undulatus) have been exposed to invasive fire ants (Solenopsis invicta) for over 80 years. Fire ants sting and envenomate lizards, causing physiological stress, but we do not have a comprehensive understanding of the broad immune consequences of lizard exposure to fire ant presence. We conducted a suite of immune measures on fence lizards caught from areas with long histories of fire ant invasion and lizards from areas not yet invaded by fire ants. The effect of fire ant presence on immunity varied depending on the immune component measured: within fire ant invaded areas, some portions of immunity were suppressed (lymphocytic cell-mediated immunity, complement), some were unaffected (phagocytic respiratory burst, natural antibodies), and some were enhanced (anti-fire ant immunoglobulin M, basophils) compared to within uninvaded areas. Rather than fire ants being broadly immunosuppressing, as generally assumed, the immune response appears to be tailored to this specific stressor: the immune measures that were enhanced are important to the lizards' ability to handle envenomation, whereas those that were unaffected or suppressed are less critical to surviving fire ant encounters. Several immune measures were suppressed in reproductive females when actively producing follicles, which may make them more susceptible to immunosuppressive costs of stressors such as interactions with fire ants.
Collapse
Affiliation(s)
- Catherine Tylan
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania, USA
| | - Maria Horvat-Gordon
- Department of Animal Science, The Pennsylvania State University, Forest Resource Laboratory, University Park, Pennsylvania, USA
| | - Paul A Bartell
- Department of Animal Science, The Pennsylvania State University, Forest Resource Laboratory, University Park, Pennsylvania, USA
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania, USA
| |
Collapse
|
36
|
Effects of temperature on plasma corticosterone in a native lizard. Sci Rep 2020; 10:16315. [PMID: 33004871 PMCID: PMC7530705 DOI: 10.1038/s41598-020-73354-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus). First, we acclimated lizards to one of 4 treatments: 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.
Collapse
|
37
|
Horváth G, Jiménez‐Robles O, Martín J, López P, De la Riva I, Herczeg G. Linking behavioral thermoregulation, boldness, and individual state in male Carpetan rock lizards. Ecol Evol 2020; 10:10230-10241. [PMID: 33005378 PMCID: PMC7520217 DOI: 10.1002/ece3.6685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023] Open
Abstract
Mechanisms affecting consistent interindividual behavioral variation (i.e., animal personality) are of wide scientific interest. In poikilotherms, ambient temperature is one of the most important environmental factors with a direct link to a variety of fitness-related traits. Recent empirical evidence suggests that individual differences in boldness are linked to behavioral thermoregulation strategy in heliothermic species, as individuals are regularly exposed to predators during basking. Here, we tested for links between behavioral thermoregulation strategy, boldness, and individual state in adult males of the high-mountain Carpetan rock lizard (Iberolacerta cyreni). Principal component analysis revealed the following latent links in our data: (i) a positive relationship of activity with relative limb length and color brightness (PC1, 23% variation explained), (ii) a negative relationship of thermoregulatory precision with parasite load and risk-taking (PC2, 20.98% variation explained), and (iii) a negative relationship between preferred body temperature and relative limb length (PC3, 19.23% variation explained). We conclude that differences in boldness and behavioral thermoregulatory strategy could be explained by both stable and labile state variables. The moderate link between behavioral thermoregulatory strategy and risk-taking personality in our system is plausibly the result of differences in reproductive state of individuals or variation in ecological conditions during the breeding season.
Collapse
Affiliation(s)
- Gergely Horváth
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | - Octavio Jiménez‐Robles
- Department of Ecology and EvolutionResearch School of BiologyAustralian National UniversityCanberraAustralia
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Pilar López
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Gábor Herczeg
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
38
|
McBrayer LD, Orton RW, Kinsey CT, Neel LK. Conservation and Management Strategies Create Opportunities for Integrative Organismal Research. Integr Comp Biol 2020; 60:509-521. [PMID: 32531064 DOI: 10.1093/icb/icaa069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conservation and management activities are geared toward the achievement of particular goals for a specific species, or groups of species, at the population level or higher. Conversely, organismal or functional research is typically organized by hypothesis tests or descriptive work that examines a broader theory studying individual organismal traits. Here, we outline how integrative organismal biologists might conduct mutually beneficial and meaningful research to inform or assist conservation and management biologists. We argue that studies of non-target species are very useful to both groups because non-target species can meet the goals of managers and organismal biologists alike, while also informing the other. We highlight our work on a threatened lizard species' thermal physiology, behavior, and color pattern-all of which are impacted by species management plans for sympatric, threatened, bird species. We show that management practices affect activity time, thermal adaptation, and substrate use, while also altering predation rates, crypsis, ectoparasite load, and sexual coloration in the study species. These case studies exemplify the challenges of conservation and management efforts for threatened or endangered species in that non-target species can be both positively and negatively affected by those efforts. Yet, the collaboration of organismal biologists with conservation and management efforts provides a productive system for mutually informative research.
Collapse
Affiliation(s)
- Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Richard W Orton
- Department of Biology, University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Chase T Kinsey
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Lauren K Neel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
39
|
Temporal variation in thermal plasticity in a free-ranging subalpine lizard. J Therm Biol 2020; 91:102623. [PMID: 32716872 DOI: 10.1016/j.jtherbio.2020.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Abstract
Thermally variable environments are particularly challenging for ectotherms as physiological functions are thermo-dependent. As a consequence, ectotherms in highly seasonal environments are predicted to have greater thermal plasticity. However, much of our understanding of thermal plasticity comes from controlled experiments in a laboratory setting. Relatively fewer studies investigate thermal plasticity in free-ranging animals living in their natural environment. We investigated the presence of thermal plasticity within a single activity season in adult males of a natural high elevation population of White's skink (Liopholis whitii) in south-eastern Australia. This species lives in a permanent home site (rock crevice and/or burrow), facilitating the repeated capture of the same individuals across the activity season. We monitored the thermal variation across the field site and over the activity season, and tested thermal tolerances and performance of male L. whitii on three occasions across their activity season. Maximum and average temperatures varied across the field site, and temperatures gradually increased across the study period. Evidence of temporal plasticity was identified in the critical thermal minimum and thermal tolerance breadth, but not in the critical thermal maximum. Thermal performance was also found to be plastic, but no temporal patterns were evident. Our temporal plasticity results are consistent which much of the previous literature, but this is one of the first studies to identify these patterns in a free-ranging population. In addition, our results indicate that performance may be more plastic than previous literature suggests. Overall, our study highlights the need to pair laboratory and field studies in order to understand thermal plasticity in an ecologically relevant context.
Collapse
|
40
|
Moreno Azócar DL, Nayan AA, Perotti MG, Cruz FB. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. ZOOLOGY 2020; 141:125774. [PMID: 32590232 DOI: 10.1016/j.zool.2020.125774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/18/2022]
Abstract
Body temperature affects various aspects of ectotherm biology. Reptiles, as ectotherms, gain and control their temperature mainly through behavioural adjustments, although some body traits may also be advantageous. According to the thermal melanism hypothesis (TMH) dark colour may be thermally advantageous in cold environments. Additionally, differences in thermoregulatory capacity may also affect performance. We analysed the role of melanism in the thermoregulation and sprint speed performance of three species of Liolaemus lizards from Argentinean Patagonia. Liolaemus shitan, L. elongatus and L. gununakuna are phylogenetically close, with similar body sizes and life history traits, but differ in their melanic colouration, L. shitan being the darkest and L. gununakuna the lightest species. We estimated sprint speed performance curves and heating rates, and recorded final body temperature and sprint speed achieved after a fixed heating time, from two different initial body temperatures, and with and without movement restriction. Performance curves were similar for all the species, but for L. gununakuna the curve was more flattened. Darker species showed faster heating rates, ran faster after fixed heating trials at the lowest temperature, and reached higher body temperatures than L. gununakuna, but this was compensated for by behavioural adjustments of the lighter lizards. Similarity of sprint speed performance may be due to the conservative nature of this character in these species, while variation in heating ability, particularly when starting from low temperatures, may reflect plasticity in this trait. The latter provides support for the TMH in these lizards, as melanism helps them increase their body temperature. This may be especially advantageous at the beginning of the day or on cloudy days, when temperatures are lower.
Collapse
Affiliation(s)
- Débora Lina Moreno Azócar
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400, Río Negro, Argentina.
| | - Andaluz Arcos Nayan
- Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Río Negro, Argentina
| | - María Gabriela Perotti
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400, Río Negro, Argentina
| | - Félix Benjamín Cruz
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
41
|
Neel LK, Curlis JD, Kinsey CT, Cox CL, McBrayer LD. Acclimatization in the physiological performance of an introduced ectotherm. J Exp Biol 2020; 223:jeb201517. [PMID: 32098885 DOI: 10.1242/jeb.201517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
Phenotypic flexibility may facilitate range expansion by allowing organisms to maintain high levels of performance when introduced to novel environments. Phenotypic flexibility, such as reversible acclimatization, permits organisms to achieve high performance over a wide range of environmental conditions, without the costly allocation or acquisition tradeoffs associated with behavioral thermoregulation, which may expedite range expansion in introduced species. The northern curly-tailed lizard, Leiocephalus carinatus, was introduced to the USA in the 1940s and is now established in southern Florida. We measured bite force and the thermal sensitivity of sprinting of L. carinatus during the winter and spring to determine how morphology and performance varied seasonally. We found evidence of seasonal variation in several aspects of physiological performance. Lizards sampled in spring sprinted faster and tolerated higher temperatures, while lizards sampled in winter had high performance over a wider range of temperatures. Furthermore, seasonal differences in physiology were only detected after generating thermal reaction norms. Both sprint and bite force performance did not differ seasonally when solely comparing performance at a common temperature. No seasonal relationships between morphology and performance were detected. Our results suggest that L. carinatus may use reversible acclimatization to maintain high levels of performance across seasons not typically experienced within their native range. Thermal physiology plasticity may ameliorate the impacts of sub-optimal temperatures on performance without the cost of behavioral thermoregulation. Our work highlights the importance of utilizing reaction norms when evaluating performance and the potential ecological impacts of introduced species.
Collapse
Affiliation(s)
- Lauren K Neel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - John D Curlis
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase T Kinsey
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Christian L Cox
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
42
|
Levinton JS, Volkenborn N, Gurr S, Correal K, Villacres S, Seabra R, Lima FP. Temperature-related heart rate in water and air and a comparison to other temperature-related measures of performance in the fiddler crab Leptuca pugilator (Bosc 1802). J Therm Biol 2020; 88:102502. [PMID: 32125988 DOI: 10.1016/j.jtherbio.2019.102502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 11/29/2022]
Abstract
Performance in poikilotherms is known to be sensitive to temperature, often with a low-sloping increase with temperature to a peak, and a steep decline with increasing temperature past the peak. We complemented past measures of performance by measuring heartbeat rates of the fiddler crab Leptuca pugilator in water and in air as a function of a range of temperatures previously shown to affect other measures of performance. In water over a range of 20-50 °C, heartbeat increased steadily to a peak at 40 °C and then steeply declined to near zero at 50 °C. In air, heartbeat also increased, but to a peak at 35 °C and then with a gentler decline than was found in water. Part of this different response may be due to evaporative water loss, which reduced body temperature in air, and therefore thermal stress, relative to body temperature when crabs were immersed in water. Increased availability of oxygen from air, according to the oxygen and capacity-limited thermal tolerance hypothesis, likely increased aerobic scope past the thermal peak, relative to within water, where oxygen delivery at higher temperatures may have been curtailed. We compared the heart rate performance relations to two previous measures of performance - endurance on a treadmill and sprint speed, both done in air. The peak performance temperature increased in the order: treadmill endurance time, sprint speed, heart rate in air, and heart rate in water, which demonstrates that different performance measures give different perspectives on the relation of thermal tolerance and fitness to temperature. Endurance may therefore be the limiting upper thermal stress factor in male fiddler crabs, when on hot sand flats. Temperature preference, found to be for temperatures <30 °C in air, could be a bet-hedging evolutionary strategy to avoid aerobic scope affecting endurance.
Collapse
Affiliation(s)
| | - Nils Volkenborn
- School of Marine and Atmospheric Sciences, Stony Brook University, USA
| | - Samuel Gurr
- School of Marine and Atmospheric Sciences, Stony Brook University, USA; Department of Ecology and Evolution, Stony Brook University, USA
| | - Kelly Correal
- Department of Ecology and Evolution, Stony Brook University, USA
| | | | - Rui Seabra
- Universidade do Porto, Campus Agrário de Vairão, Portugal
| | | |
Collapse
|
43
|
da Cunha O, Spies J, Hudman SP, Montgomery CE. Thermoregulation in the dry forest anole, Norops cupreus. CARIBB J SCI 2020. [DOI: 10.18475/cjos.v50i1.a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Océane da Cunha
- Department of Biology, Truman State University, Kirksville, Missouri, U. S. A
| | - James Spies
- Organization for Tropical Studies, Durham, North Carolina, U. S. A
| | - Stephen P. Hudman
- Department of Biology, Truman State University, Kirksville, Missouri, U. S. A
| | - Chad E. Montgomery
- Department of Biology, Truman State University, Kirksville, Missouri, U. S. A
| |
Collapse
|
44
|
Latitudinal comparison of the thermal biology in the endemic lizard Liolaemus multimaculatus. J Therm Biol 2020; 88:102485. [DOI: 10.1016/j.jtherbio.2019.102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
|
45
|
Ibargüengoytía NR, Kubisch E, Cabezas-Cartes F, Fernández JB, Duran F, Piantoni C, Medina MS, Sinervo B. Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia. NATURAL AND SOCIAL SCIENCES OF PATAGONIA 2020. [DOI: 10.1007/978-3-030-42752-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Benítez-Malvido J, Giménez A, Graciá E, Rodríguez-Caro RC, De Ybáñez RR, Siliceo-Cantero HH, Traveset A. Impact of habitat loss on the diversity and structure of ecological networks between oxyurid nematodes and spur-thighed tortoises ( Testudo graeca L.). PeerJ 2019; 7:e8076. [PMID: 31824759 PMCID: PMC6894431 DOI: 10.7717/peerj.8076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Habitat loss and fragmentation are recognized as affecting the nature of biotic interactions, although we still know little about such changes for reptilian herbivores and their hindgut nematodes, in which endosymbiont interactions could range from mutualistic to commensal and parasitic. We investigated the potential cost and benefit of endosymbiont interactions between the spur-thighed tortoise (Testudo graeca L.) and adult oxyurid nematodes (Pharyngodonidae order Oxyurida) in scrublands of southern Spain. For this, we assessed the association between richness and abundance of oxyurid species with tortoises' growth rates and body traits (weight and carapace length) across levels of habitat loss (low, intermediate and high). Furthermore, by using an intrapopulation ecological network approach, we evaluated the structure and diversity of tortoise-oxyurid interactions by focusing on oxyurid species infesting individual tortoises with different body traits and growth rates across habitats. Overall, tortoise body traits were not related to oxyurid infestation across habitats. Oxyurid richness and abundance however, showed contrasting relationships with growth rates across levels of habitat loss. At low habitat loss, oxyurid infestation was positively associated with growth rates (suggesting a mutualistic oxyurid-tortoise relationship), but the association became negative at high habitat loss (suggesting a parasitic relationship). Furthermore, no relationship was observed when habitat loss was intermediate (suggesting a commensal relationship). The network analysis showed that the oxyurid community was not randomly assembled but significantly nested, revealing a structured pattern for all levels of habitat loss. The diversity of interactions was lowest at low habitat loss. The intermediate level, however, showed the greatest specialization, which indicates that individuals were infested by fewer oxyurids in this landscape, whereas at high habitat loss individuals were the most generalized hosts. Related to the latter, connectance was greatest at high habitat loss, reflecting a more uniform spread of interactions among oxyurid species. At an individual level, heavier and larger tortoises tended to show a greater number of oxyurid species interactions. We conclude that there is an association between habitat loss and the tortoise-oxyurid interaction. Although we cannot infer causality in their association, we hypothesize that such oxyurids could have negative, neutral and positive consequences for tortoise growth rates. Ecological network analysis can help in the understanding of the nature of such changes in tortoise-oxyurid interactions by showing how generalized or specialized such interactions are under different environmental conditions and how vulnerable endosymbiont interactions might be to further habitat loss.
Collapse
Affiliation(s)
- Julieta Benítez-Malvido
- Laboratorio de Ecología del Hábitat Alterado, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Andrés Giménez
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Elche, Spain
| | - Eva Graciá
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Elche, Spain
| | | | - Rocío Ruiz De Ybáñez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, Murcía, Spain
| | - Héctor Hugo Siliceo-Cantero
- Laboratorio de Ecología del Hábitat Alterado, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Anna Traveset
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles, Mallorca, Spain
| |
Collapse
|
47
|
Sannolo M, Civantos E, Martín J, Carretero M. Variation in field body temperature and total evaporative water loss along an environmental gradient in a diurnal ectotherm. J Zool (1987) 2019. [DOI: 10.1111/jzo.12744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Sannolo
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
| | - E. Civantos
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales Madrid Spain
| | - J. Martín
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales Madrid Spain
| | - M.A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
| |
Collapse
|
48
|
Rusch TW, Adutwumwaah A, Beebe LE, Tomberlin JK, Tarone AM. The upper thermal tolerance of the secondary screwworm, Cochliomyia macellaria Fabricius (Diptera: Calliphoridae). J Therm Biol 2019; 85:102405. [DOI: 10.1016/j.jtherbio.2019.102405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 12/01/2022]
|
49
|
Evans LC, Sibly RM, Thorbek P, Sims I, Oliver TH, Walters RJ. Integrating the influence of weather into mechanistic models of butterfly movement. MOVEMENT ECOLOGY 2019; 7:24. [PMID: 31497300 PMCID: PMC6717957 DOI: 10.1186/s40462-019-0171-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Understanding the factors influencing movement is essential to forecasting species persistence in a changing environment. Movement is often studied using mechanistic models, extrapolating short-term observations of individuals to longer-term predictions, but the role of weather variables such as air temperature and solar radiation, key determinants of ectotherm activity, are generally neglected. We aim to show how the effects of weather can be incorporated into individual-based models of butterfly movement thus allowing analysis of their effects. METHODS We constructed a mechanistic movement model and calibrated it with high precision movement data on a widely studied species of butterfly, the meadow brown (Maniola jurtina), collected over a 21-week period at four sites in southern England. Day time temperatures during the study ranged from 14.5 to 31.5 °C and solar radiation from heavy cloud to bright sunshine. The effects of weather are integrated into the individual-based model through weather-dependent scaling of parametric distributions representing key behaviours: the durations of flight and periods of inactivity. RESULTS Flight speed was unaffected by weather, time between successive flights increased as solar radiation decreased, and flight duration showed a unimodal response to air temperature that peaked between approximately 23 °C and 26 °C. After validation, the model demonstrated that weather alone can produce a more than two-fold difference in predicted weekly displacement. CONCLUSIONS Individual Based models provide a useful framework for integrating the effect of weather into movement models. By including weather effects we are able to explain a two-fold difference in movement rate of M. jurtina consistent with inter-annual variation in dispersal measured in population studies. Climate change for the studied populations is expected to decrease activity and dispersal rates since these butterflies already operate close to their thermal optimum.
Collapse
Affiliation(s)
- Luke C. Evans
- School of Biological Sciences, University of Reading, Whiteknights, PO Box 217, Berkshire, Reading RG6 6AH UK
| | - Richard M. Sibly
- School of Biological Sciences, University of Reading, Whiteknights, PO Box 217, Berkshire, Reading RG6 6AH UK
| | - Pernille Thorbek
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK
- BASF SE, APD/EE, Speyerer Strasse 2, 67117 Limburgerhof, Germany
| | - Ian Sims
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK
| | - Tom H. Oliver
- School of Biological Sciences, University of Reading, Whiteknights, PO Box 217, Berkshire, Reading RG6 6AH UK
| | - Richard J. Walters
- School of Biological Sciences, University of Reading, Whiteknights, PO Box 217, Berkshire, Reading RG6 6AH UK
- Centre for Environmental and Climate Research, University of Lund, Lund, Sweden
| |
Collapse
|
50
|
Sannolo M, Ponti R, Carretero MA. Waitin' on a sunny day: Factors affecting lizard body temperature while hiding from predators. J Therm Biol 2019; 84:146-153. [PMID: 31466747 DOI: 10.1016/j.jtherbio.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
Most animals face predators in their daily life and have evolved antipredator strategies that promote survival while minimizing escaping costs. For example, many animals often hide into refuges when chased. Ectotherms rely on external sources of heat to raise their body temperature, and thermoregulate to keep their body temperature close to the optimal for performance. For many ectotherms living in temperate areas, it can be expected that they pay a cost in terms of heat loss while staying hidden. Indeed, refuges are often more thermally unsuitable than the external environment. Hence, the aim of this study was to assess if and to what extent hiding may result in a decrease of body temperature in a temperate lizard. We used infrared technology to measure the body temperature of a large-sized lizard (Timon lepidus) before individuals escaped from a simulated predation attempt to hide inside a refuge, and after they emerged back from the refuge. We quantified the change of body temperature that lizards experienced while hiding. Results show that while the decrease in body temperature covaried with the time spent hidden, it was also affected by the initial body temperature. Our key finding is that the time spent hidden depends mostly on the temperature inside the refuge. Indeed, lizards hiding in warmer refuges spent more time hidden, likely benefitting from a reduced cooling rate. This suggests that lizards perceive and evaluate the thermal quality of their refuges and integrate this information to react to predation attempts and minimize the potential thermal consequences of hiding.
Collapse
Affiliation(s)
- Marco Sannolo
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Raquel Ponti
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Miguel A Carretero
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, 4485-661, Vila do Conde, Portugal
| |
Collapse
|