1
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
2
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
3
|
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, Abussaud A, Chen NH, Miller SP, Sun HS, Feng ZP. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022; 351:113985. [DOI: 10.1016/j.expneurol.2022.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
|
4
|
Okubo Y, Mikami Y, Kanemaru K, Iino M. Role of Endoplasmic Reticulum-Mediated Ca 2+ Signaling in Neuronal Cell Death. Antioxid Redox Signal 2018; 29:1147-1157. [PMID: 29361832 DOI: 10.1089/ars.2018.7498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Properly controlled intracellular Ca2+ dynamics is crucial for regulation of neuronal function and survival in the central nervous system. The endoplasmic reticulum (ER), a major intracellular Ca2+ store, plays a critical role as a source and sink for neuronal Ca2+. Recent Advances: Accumulating evidence indicates that disrupted ER Ca2+ signaling is involved in neuronal cell death under various pathological conditions, providing novel insight into neurodegenerative disease mechanisms. CRITICAL ISSUES We summarize current knowledge concerning the relationship between abnormal ER Ca2+ dynamics and neuronal cell death. We also introduce recent technical advances for probing ER intraluminal Ca2+ dynamics with unprecedented spatiotemporal resolution. FUTURE DIRECTIONS Further studies on ER Ca2+ signaling are expected to provide progress for unmet medical needs in neurodegenerative disease. Antioxid. Redox Signal. 29, 1147-1157.
Collapse
Affiliation(s)
- Yohei Okubo
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Yoshinori Mikami
- 2 Department of Physiology, School of Medicine, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Kazunori Kanemaru
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan .,3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| | - Masamitsu Iino
- 3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| |
Collapse
|
5
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
6
|
Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018; 2018:3614303. [PMID: 29849615 PMCID: PMC5904808 DOI: 10.1155/2018/3614303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject to the I/R process.
Collapse
Affiliation(s)
- Simón Quetzalcóatl Rodríguez-Lara
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Leonel García-Benavides
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| |
Collapse
|
7
|
Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W. Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 2017; 37:1069-1079. [PMID: 27217380 PMCID: PMC5363481 DOI: 10.1177/0271678x16650218] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity at early reperfusion time after stroke may contribute to the ATF6-mediated neuroprotection. We concluded that the ATF6 UPR branch is crucial to ischemic stroke outcome. Therefore, boosting UPR pro-survival pathways may be a promising therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Zhui Yu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huaxin Sheng
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shuai Liu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shengli Zhao
- 3 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - David S Warner
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Li WH, Yu J, Lin YP, Tan X, Song Y. Effect of electroacupuncture at Neiguan (PC 6) and Baihui (GV 20) on CHOP and caspase-12 gene expressions in rats after ischemia-reperfusion injury. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2017. [DOI: 10.1007/s11726-017-0967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
10
|
Tong J, Okutani F, Murata Y, Taniguchi M, Namba T, Wang YJ, Kaba H. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb. Neuroscience 2017; 344:371-379. [PMID: 28087337 DOI: 10.1016/j.neuroscience.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/25/2016] [Accepted: 01/02/2017] [Indexed: 01/05/2023]
Abstract
Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB.
Collapse
Affiliation(s)
- Jia Tong
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Fumino Okutani
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan; Department of Occupational Health, Kochi Medical School, Nankoku, Kochi 783-8505, Japan.
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Toshiharu Namba
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Yu-Jie Wang
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Hideto Kaba
- Department of Physiology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
11
|
Yang W, Paschen W. Unfolded protein response in brain ischemia: A timely update. J Cereb Blood Flow Metab 2016; 36:2044-2050. [PMID: 27733676 PMCID: PMC5363674 DOI: 10.1177/0271678x16674488] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
Abstract
Folding and processing newly synthesized proteins are vital functions of the endoplasmic reticulum that are sensitive to a variety of stress conditions. The unfolded protein response is activated to restore endoplasmic reticulum function impaired by stress. While we know that brain ischemia impairs endoplasmic reticulum function, the role of unfolded protein response activation in post-ischemic recovery of neurologic function is only beginning to emerge. Here, we summarize what is known about endoplasmic reticulum stress and unfolded protein response in brain ischemia and discuss recent findings from myocardial ischemia studies that could help to advance research on endoplasmic reticulum stress and unfolded protein response in brain ischemia.
Collapse
Affiliation(s)
- Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, USA
| | - Wulf Paschen
- Department of Anesthesiology, Duke University Medical Center, Durham, USA.,Department of Neurobiology, Duke University Medical Center, Durham, USA
| |
Collapse
|
12
|
Garnier Y, Pfeiffer D, Jensen A, Berger R. Effects of Mild Hypothermia on Metabolic Disturbances in Fetal Hippocampal Slices After Oxygen/Glucose Deprivation Depend on Depth and Time Delay of Cooling. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Arne Jensen
- Department of Obstrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| | - Richard Berger
- Department of Obstrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany; Universitätsfrauenklinik Bochum, Knappschaftskrankenhaus, In der Schornau 23 25, D-44892 Bochum, Germany
| |
Collapse
|
13
|
Cystathionine: A novel oncometabolite in human breast cancer. Arch Biochem Biophys 2016; 604:95-102. [PMID: 27311614 DOI: 10.1016/j.abb.2016.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 01/05/2023]
Abstract
In this study, we have identified cystathionine (CTH), a sulfur containing metabolite, to be selectively enriched in human breast cancer (HBC) tissues (∼50-100 pmoles/mg protein) compared with undetectable levels in normal breast tissues. The accumulation of CTH, specifically in HBC, was attributed to the overexpression of cystathionine beta synthase (CBS), its synthesizing enzyme, and the undetectable levels of its downstream metabolizing enzyme, cystathionine gamma lyase (CGL). Interestingly both CBS and CGL could not be detected in normal breast tissues. We further observed that CTH protected HBC cells against excess reactive oxygen species (ROS) and chemotherapeutic drug-induced apoptosis. Moreover, CTH promoted both mitochondrial and endoplasmic reticulum homeostasis in HBC cells. As both the mitochondria and the endoplasmic reticulum are key organelles regulating the onset of apoptosis, we reasoned that endogenous CTH could be contributing towards increasing the apoptotic threshold in HBC cells. An increased apoptotic threshold is a hallmark of all cancer types, including HBC, and is primarily responsible for drug resistance. Hence this study unravels one of the possible pathways that may contribute towards drug resistance in HBC.
Collapse
|
14
|
Rakkar K, Bayraktutan U. Increases in intracellular calcium perturb blood–brain barrier via protein kinase C-alpha and apoptosis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:56-71. [DOI: 10.1016/j.bbadis.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
|
15
|
Swaminathan B, Goikuria H, Vega R, Rodríguez-Antigüedad A, López Medina A, Freijo MDM, Vandenbroeck K, Alloza I. Autophagic marker MAP1LC3B expression levels are associated with carotid atherosclerosis symptomatology. PLoS One 2014; 9:e115176. [PMID: 25503069 PMCID: PMC4264866 DOI: 10.1371/journal.pone.0115176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Objectives The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable plaques) and asymptomatic patients (stable plaques). Methods 80 carotid plaques obtained by carotid endarterectomy and classified as symptomatic (>70% stenosis) or asymptomatic (>80% stenosis) were used in this study. The expression levels of 59 genes were quantified by qPCR on RNA extracted from the carotid plaques obtained by endarterectomy and analyzed by means of various bioinformatic tools. Results Several genes associated with autophagy pathways displayed differential expression levels between asymptomatic and symptomatic (i.e. MAP1LC3B, RAB24, EVA1A). In particular, mRNA levels of MAP1LC3B, an autophagic marker, showed a 5−fold decrease in symptomatic samples, which was confirmed in protein blots. Immune system−related factors and endoplasmic reticulum-associated markers (i.e. ERP27, ITPR1, ERO1LB, TIMP1, IL12B) emerged as differently expressed genes between asymptomatic and symptomatic patients. Conclusions Carotid atherosclerotic plaques in which MAP1LC3B is underexpressed would not be able to benefit from MAP1LC3B−associated autophagy. This may lead to accumulation of dead cells at lesion site with subsequent plaque destabilization leading to cerebrovascular events. Identified biomarkers and network interactions may represent novel targets for development of treatments against plaque destabilization and thus for the prevention of cerebrovascular events.
Collapse
Affiliation(s)
- Bhairavi Swaminathan
- Neurogenomiks, Neurosciences Department, Faculty of Medicine and Odontology, University of Basque Country, Leioa, Spain
| | - Haize Goikuria
- Neurogenomiks, Neurosciences Department, Faculty of Medicine and Odontology, University of Basque Country, Leioa, Spain
- Achucarro Basque Center for Neurosciences, Zamudio, Spain
| | - Reyes Vega
- Department of Neurology, Basurto Hospital, Bilbao, Spain
| | | | | | | | - Koen Vandenbroeck
- Neurogenomiks, Neurosciences Department, Faculty of Medicine and Odontology, University of Basque Country, Leioa, Spain
- IKERBASQUE, Basque Foundation for Sciences, Bilbao, Spain
- Achucarro Basque Center for Neurosciences, Zamudio, Spain
| | - Iraide Alloza
- Neurogenomiks, Neurosciences Department, Faculty of Medicine and Odontology, University of Basque Country, Leioa, Spain
- IKERBASQUE, Basque Foundation for Sciences, Bilbao, Spain
- Achucarro Basque Center for Neurosciences, Zamudio, Spain
- * E-mail:
| |
Collapse
|
16
|
Shah FA, Gim SA, Kim MO, Koh PO. Proteomic identification of proteins differentially expressed in response to resveratrol treatment in middle cerebral artery occlusion stroke model. J Vet Med Sci 2014; 76:1367-74. [PMID: 24998396 PMCID: PMC4221170 DOI: 10.1292/jvms.14-0169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resveratrol has a
neuroprotective effect against cerebral ischemia. The objective of this study was to
identify proteins that are differentially expressed in the cerebral cortex of vehicle- and
resveratrol-treated animals during ischemic injury. Focal cerebral ischemia was induced as
middle cerebral artery occlusion (MCAO) in male rats. Rats were treated with vehicle or
resveratrol before MCAO, and cerebral cortex was collected 24 hr after MCAO. Cerebral
cortex proteins were identified by two-dimensional gel electrophoresis and mass
spectrometry. Several proteins were identified as differentially expressed between
vehicle- and resveratrol-treated animals. Among these proteins, expression of
peroxiredoxin-5, isocitrate dehydrogenase [NAD+], apolipoprotein A-I and
ubiquitin carboxy terminal hydrolase L1 was decreased in the vehicle-treated group,
whereas resveratrol attenuated the injury-induced decrease in expression of these
proteins. However, expression of collapsing response mediator protein 2 was increased in
the vehicle-treated group, whereas resveratrol prevented the injury-induced increase in
the expression of this protein. These findings suggest that resveratrol modulates the
expression of various proteins that associated with oxidative stress and energy metabolism
in focal cerebral ischemia.
Collapse
Affiliation(s)
- Fawad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | |
Collapse
|
17
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
18
|
Akay C, Lindl KA, Shyam N, Nabet B, Goenaga-Vazquez Y, Ruzbarsky J, Wang Y, Kolson DL, Jordan-Sciutto KL. Activation status of integrated stress response pathways in neurones and astrocytes of HIV-associated neurocognitive disorders (HAND) cortex. Neuropathol Appl Neurobiol 2012; 38:175-200. [PMID: 21883374 PMCID: PMC3708539 DOI: 10.1111/j.1365-2990.2011.01215.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C. Akay, K. A. Lindl, N. Shyam, B. Nabet, Y. Goenaga‐Vazquez, J. Ruzbarsky, Y. Wang, D. L. Kolson and K. L. Jordan‐Sciutto (2012) Neuropathology and Applied Neurobiology38, 175–200 Activation status of integrated stress response pathways in neurones and astrocytes of HIV‐associated neurocognitive disorders (HAND) cortex Aims: Combined anti‐retroviral therapy (cART) has led to a reduction in the incidence of HIV‐associated dementia (HAD), a severe motor/cognitive disorder afflicting HIV(+) patients. However, the prevalence of subtler forms of neurocognitive dysfunction, which together with HAD are termed HIV‐associated neurocognitive disorders (HAND), continues to escalate in the post‐cART era. The microgliosis, astrogliosis, dendritic damage, and synaptic and neuronal loss observed in autopsy cases suggest an underlying neuroinflammatory process, due to the neurotoxic factors released by HIV‐infected/activated macrophages/microglia in the brain, might underlie the pathogenesis of HAND in the post‐cART era. These factors are known to induce the integrated stress response (ISR) in several neurodegenerative diseases; we have previously shown that BiP, an indicator of general ISR activation, is upregulated in cortical autopsy tissue from HIV‐infected patients. The ISR is composed of three pathways, each with its own initiator protein: PERK, IRE1α and ATF6. Methods: To further elucidate the specific ISR pathways activated in the central nervous system of HAND patients, we examined the protein levels of several ISR proteins, including ATF6, peIF2α and ATF4, in cortical tissue from HIV‐infected patients. Results: The ISR does not respond in an all‐or‐none fashion in HAND, but rather demonstrates a nuanced activation pattern. Specifically, our studies implicate the ATF6 pathway of the ISR as a more likely candidate than the PERK pathway for increases in BiP levels in astrocytes. Conclusion: These findings begin to characterize the nature of the ISR response in HAND and provide potential targets for therapeutic intervention in this disease.
Collapse
Affiliation(s)
- C Akay
- Department of Pathology, School of Dental Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jamison JT, Lewis MK, Kreipke CW, Rafols JA, DeGracia DJ. Polyadenylated mRNA staining reveals distinct neuronal phenotypes following endothelin 1, focal brain ischemia, and global brain ischemia/ reperfusion. Neurol Res 2012; 33:145-61. [PMID: 21499502 DOI: 10.1179/016164111x12881719352255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Most work on ischemia-induced neuronal death has revolved around the relative contributions of necrosis and apoptosis, but this work has not accounted for the role of ischemia-induced stress responses. An expanded view recognizes a competition between ischemia-induced damage mechanisms and stress responses in the genesis of ischemia-induced neuronal death. An important marker of post-ischemic stress responses is inhibition of neuronal protein synthesis, a morphological correlate of which is the compartmentalization of mRNA away from ribosomes in the form of cytoplasmic mRNA granules. METHODS Here we assessed the generality of this mRNA granule response following either 10 or 15 minutes global brain ischemia and 1 hour reperfusion, 4 hours focal cerebral ischemia alone, and endothelin 1 intraventricular injection. RESULTS Both global and focal ischemia led to prominent neuronal cytoplasmic mRNA granule formation in layer II cortical neurons. In addition, we report here new post-ischemic cellular phenotypes characterized by the loss of nuclear polyadenylated mRNA staining in cortical neurons following endothelin 1 treatment and 15 minutes global ischemia. Both mRNA granulation and loss of nuclear mRNAs occurred in non-shrunken post-ischemic neurons. DISCUSSION Where cytoplasmic mRNA granules generally appear to mark a protective response in surviving cells, loss of nuclear mRNAs may mark cellular damage leading to cell atrophy/death. Hence, staining for total mRNA may reveal facets of the competition between stress responses and damage mechanisms at early stages in post-ischemic neurons.
Collapse
Affiliation(s)
- Jill T Jamison
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K(+) homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding 'penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple 'mini-cores' associated with multiple 'mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
21
|
Degracia DJ. Towards a dynamical network view of brain ischemia and reperfusion. Part I: background and preliminaries. ACTA ACUST UNITED AC 2010; 3:59-71. [PMID: 21528102 DOI: 10.6030/1939-067x-3.1.59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The general failure of neuroprotectants in clinical trials of ischemic stroke points to the possibility of a fundamental blind spot in the current conception of ischemic brain injury, the "ischemic cascade". This is the first in a series of four papers whose purpose is to work towards a revision of the concept of brain ischemia by applying network concepts to develop a bistable model of brain ischemia. This first paper sets the stage for developing the bistable model of brain ischemia. Necessary background in network theory is introduced using examples from developmental biology which, perhaps surprisingly, can be adapted to brain ischemia with only minor modification. Then, to move towards a network model, we extract two core generalizations about brain ischemia from the mass of empirical data. First, we conclude that all changes induced in the brain by ischemia can be classified as either damage mechanisms that contribute to cell death, or stress responses that contribute to cell survival. Second, we move towards formalizing the idea of the "amount of ischemia", I, as a continuous, nonnegative, monotonically increasing quantity. These two generalizations are necessary precursors to reformulating brain ischemia as a bistable network.
Collapse
Affiliation(s)
- Donald J Degracia
- Department of Physiology, Wayne State University, Detroit, MI 48201, U.S.A
| |
Collapse
|
22
|
Abstract
The mechanisms of brain ischemic insult include glutamate excitoxicity, calcium toxicity, free radicals, nitric oxide, inflammatory reactions, as well as dysfunctions of endoplasmic reticulum and mitochondrion. These injury cascades are interconnected in complex ways, thus it is hard to compare their pathogenic importances in ischemia models. And the research in cellular and molecular pathways has spurred the studies in potential neuroprotections mainly in pharmacological fields, such as anti-excitotoxic treatment, calcium-channel antagonism, approaches for inhibition of oxidation, inflammation and apoptosis, etc. Besides, other protective interventions including thrombolysis, arteriogenesis, regeneration therapy, and ischemia preconditioning or postconditioning, are also under investigations. Despite the present difficulties, we are quite optimistic towards future clinical applications of neuroprotective agents, by optimizing experimental approaches and clinical trials.
Collapse
|
23
|
The endoplasmic reticulum and neurological diseases. Exp Neurol 2009; 219:376-81. [DOI: 10.1016/j.expneurol.2009.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 12/21/2022]
|
24
|
DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106:2288-301. [PMID: 18627434 DOI: 10.1111/j.1471-4159.2008.05561.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A persistent translation arrest (TA) correlates precisely with the selective vulnerability of post-ischemic neurons. Mechanisms of post-ischemic TA that have been assessed include ribosome biochemistry, the link between TA and stress responses, and the inactivation of translational components via sequestration in subcellular structures. Each of these approaches provides a perspective on post-ischemic TA. Here, we develop the notion that mRNA regulation via RNA-binding proteins, or ribonomics, also contributes to post-ischemic TA. We describe the ribonomic network, or structures involved in mRNA regulation, including nuclear foci, polysomes, stress granules, embryonic lethal abnormal vision/Hu granules, processing bodies, exosomes, and RNA granules. Transcriptional, ribonomic, and ribosomal regulation together provide multiple layers mediating cell reprogramming. Stress gene induction via the heat-shock response, immediate early genes, and endoplasmic reticulum stress represents significant reprogramming of post-ischemic neurons. We present a model of post-ischemic TA in ischemia-resistant neurons that incorporates ribonomic considerations. In this model, selective translation of stress-induced mRNAs contributes to translation recovery. This model provides a basis to study dysfunctional stress responses in vulnerable neurons, with a key focus on the inability of vulnerable neurons to selectively translate stress-induced mRNAs. We suggest a ribonomic approach will shed new light on the roles of mRNA regulation in persistent TA in vulnerable post-ischemic neurons.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
25
|
Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 2008; 38:303-10. [PMID: 16076486 DOI: 10.1016/j.ceca.2005.06.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The concentration of Ca2+ inside the lumen of endoplasmic reticulum (ER) regulates a vast array of spatiotemporally distinct cellular processes, from intracellular Ca2+ signals to intra-ER protein processing and cell death. This review summarises recent data on the mechanisms of luminal Ca2+-dependent regulation of Ca2+ release and uptake as well as ER regulation of cellular adaptive processes. In addition we discuss general biophysical properties of the ER membrane, as trans-endomembrane Ca2+ fluxes are subject to basic electrical forces, determined by factors such as the membrane potential of the ER and the ease with which Ca2+ fluxes are able to change this potential (i.e. the resistance of the ER membrane). Although these electrical forces undoubtedly play a fundamental role in shaping [Ca2+](ER) dynamics, at present there is very little direct experimental information about the biophysical properties of the ER membrane. Further studies of how intraluminal [Ca2+] is regulated, best carried out with direct measurements, are vital for understanding how Ca2+ orchestrates cell function. Direct monitoring of [Ca2+](ER) under conditions where the cytosolic [Ca2+] is known may also help to capture elusive biophysical information about the ER, such as the potential difference across the ER membrane.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
26
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008; 37:7-38. [PMID: 18066503 DOI: 10.1007/s12035-007-8013-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/05/2007] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
27
|
Lindl KA, Akay C, Wang Y, White MG, Jordan-Sciutto KL. Expression of the endoplasmic reticulum stress response marker, BiP, in the central nervous system of HIV-positive individuals. Neuropathol Appl Neurobiol 2007; 33:658-69. [PMID: 17931354 DOI: 10.1111/j.1365-2990.2007.00866.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The prevalence of HIV-associated neurocognitive impairment (NCI), which includes HIV-associated dementia (HAD) and minor cognitive and motor disorder (MCMD), has been increasing. HIV-infected and/or activated macrophages/microglia in the brain initiate the neurodegeneration seen in HIV-associated NCI via soluble neurotoxic mediators, including reactive oxygen species, viral proteins and excitotoxins. Neurotoxic factors released by macrophages/microglia injure neurones directly and alter astrocytic homeostatic functions, which can lead to excitotoxicity and oxidative stress-mediated neuronal injury. Often, cells respond to oxidative stress by initiating the endoplasmic reticulum (ER) stress response. Thus, we hypothesize that ER stress response is activated in HIV-infected cortex. We used immunofluorescence and immunoblotting to assess expression patterns of the ER stress proteins, BiP and ATF6, in HIV-positive cortical autopsy tissue. Additionally, we performed immunofluorescence using cell type-specific markers to examine BiP staining in different cell types, including neurones, astrocytes and macrophages/microglia. We observed a significant increase in BiP expression by both immunoblotting and immunofluorescence in HIV-positive cortex compared with control tissue. Additionally, phenotypic analysis of immunofluorescence showed cell type-specific increases in BiP levels in neurones and astrocytes. Further, ATF-6beta, an ER stress response initiator, is up-regulated in the same patient group, as assessed by immunoblotting. These results suggest that ER stress response is activated in HIV-infected cortex. Moreover, data presented here indicate for the first time that numbers of macrophages/microglia increase in brains of MCMD patients, as has been observed in HAD.
Collapse
Affiliation(s)
- K A Lindl
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
29
|
Iwashita A, Muramatsu Y, Yamazaki T, Muramoto M, Kita Y, Yamazaki S, Mihara K, Moriguchi A, Matsuoka N. Neuroprotective Efficacy of the Peroxisome Proliferator-Activated Receptor δ-Selective Agonists in Vitro and in Vivo. J Pharmacol Exp Ther 2006; 320:1087-96. [PMID: 17167170 DOI: 10.1124/jpet.106.115758] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and function as ligand-modulated transcription factors that regulate gene expression in many important biological processes. The PPARdelta subtype has the highest expression in the brain and is postulated to play a major role in neuronal cell function; however, the precise physiological roles of this receptor remain to be elucidated. Herein, we show that the high-affinity PPARdelta agonists L-165041 [4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)-propoxyl]phenoxy]-acetic acid] and GW501516 [2-methyl4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-triazol-5-yl)-methylsulfanyl)phenoxy acetic acid] protect against cytotoxin-induced SH-SY5Y cell injury in vitro and both ischemic brain injury and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in vivo. In the SH-SY5Y studies, treatment with L-165041 or GW501516 significantly and concentration-dependently attenuated cell death following thapsigargin, 1-methyl-4-phenylpyridinium, or staurosporine exposure, with the extent of damage correlated with the level of caspase-3 inhibition. In the transient (90 min) middle cerebral artery occlusion model of ischemic brain injury in rats, i.c.v. infusion of L-165041 or GW501516 significantly attenuated the ischemic brain damage measured 24 h after reperfusion. Moreover, the PPARdelta agonists also significantly attenuated MPTP-induced depletion of striatal dopamine and related metabolite contents in mouse brain. These results demonstrate that subtype-selective PPARdelta agonists possess antiapoptotic properties in vitro, which may underlie their potential neuroprotective potential in in vivo experimental models of cerebral ischemia and Parkinson's disease (PD). These findings suggest that PPARdelta agonists could be useful tools for understanding the role of PPARdelta in other neurodegenerative disorders, as well as attractive therapeutic candidates for stroke and neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Akinori Iwashita
- Neuroscience Discovery Research, Pharmacology Research Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006; 26:1057-83. [PMID: 16710759 DOI: 10.1007/s10571-006-9008-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/23/2006] [Indexed: 12/28/2022]
Abstract
1. Stroke is the neurological evidence of a critical reduction of cerebral blood flow in a circumscribed part of the brain, resulting from the sudden or gradually progressing obstruction of a large brain artery. Treatment of stroke requires the solid understanding of stroke pathophysiology and involves a broad range of hemodynamic and molecular interventions. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. 2. The first chapter deals with the hemodynamics of focal ischemia with particular emphasis on the collateral circulation of the brain, the regulation of blood flow and the microcirculation. In the second chapter the penumbra concept of ischemia is discussed, providing a detailed list of the physiological, biochemical and structural viability thresholds of ischemia and examples of how these thresholds can be applied for imaging the penumbra. The third chapter summarizes the pathophysiology of infarct progression, focusing on the role of peri-infarct depolarisation, the multitude of putative molecular injury pathways, brain edema and inflammation. Finally, the fourth chapter provides an overview of currently discussed therapeutic approaches, notably the effect of mechanical or thrombolytic reperfusion, arteriogenesis, pharmacological neuroprotection, ischemic preconditioning and regeneration. 3. The main emphasis of the review is placed on the balanced differentiation between hemodynamic and molecular factors contributing to the manifestation of ischemic injury in order to provide a rational basis for future therapeutic interventions.
Collapse
|
31
|
Koumenis C, Wouters BG. "Translating" tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 2006; 4:423-36. [PMID: 16849518 DOI: 10.1158/1541-7786.mcr-06-0150] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poor oxygenation (hypoxia) is present in the majority of human tumors and is associated with poor prognosis due to the protection it affords to radiotherapy and chemotherapy. Hypoxia also elicits multiple cellular response pathways that alter gene expression and affect tumor progression, including two recently identified separate pathways that strongly suppress the rates of mRNA translation during hypoxia. The first pathway is activated extremely rapidly and is mediated by phosphorylation and inhibition of the eukaryotic initiation factor 2alpha. Phosphorylation of this factor occurs as part of a coordinated endoplasmic reticulum stress response program known as the unfolded protein response and activation of this program is required for hypoxic cell survival and tumor growth. Translation during hypoxia is also inhibited through the inactivation of a second eukaryotic initiation complex, eukaryotic initiation factor 4F. At least part of this inhibition is mediated through a Redd1 and tuberous sclerosis complex 1/2-dependent inhibition of the mammalian target of rapamycin kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia-induced proteins. Consequently, both arms of translational control during hypoxia influence gene expression and phenotype. These hypoxic response pathways show differential activation requirements that are dependent on the level of oxygenation and duration of hypoxia and are themselves highly dynamic. Thus, the severity and duration of hypoxia can lead to different biological and therapeutic consequences.
Collapse
Affiliation(s)
- Constantinos Koumenis
- Department of Radiation Oncology, Maastricht Radiation Oncology (Maastro) Laboratory, GROW Research Institute, USN50/23 University of Maastricht, the Netherlands
| | | |
Collapse
|
32
|
Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 2006; 16:487-501. [PMID: 15896987 DOI: 10.1016/j.semcdb.2005.03.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypoxia is a common feature of most solid tumors which negatively impacts their treatment response. This is due in part to the biological changes that result from a coordinated cellular response to hypoxia. A large part of this response is driven by a transcriptional program initiated via stabilization of HIF, promoting both angiogenesis and cell survival. However, hypoxia also results in a rapid inhibition of protein synthesis which occurs through the repression of the initiation step of mRNA translation. This inhibition is fully reversible and occurs in all cell lines tested to date. Inhibition of translation is mediated by two distinct mechanisms during hypoxia. The first is through phosphorylation and inhibition of an essential eukaryotic initiation factor, eIF2alpha. Phosphorylation of this factor occurs through activation of the PERK kinase as part of a coordinated ER stress response program known as the UPR. Activation of this program promotes cell survival during hypoxia and facilitates tumor growth. Translation during hypoxia can also be inhibited through the inactivation of a second eukaryotic initiation complex, eIF4F. At least part of this inhibition is mediated through a REDD1 and TSC1/TSC2 dependent inhibition of the mTOR kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia induced proteins. Consequently, both arms of translational control during hypoxia influence hypoxia induced gene expression and the hypoxic phenotype.
Collapse
Affiliation(s)
- Bradly G Wouters
- Department of Radiation Oncology, Maastricht Radiation Oncology (Maastro) Lab, GROW Research Institute, USN50/23 University of Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Yamazaki T, Muramoto M, Oe T, Morikawa N, Okitsu O, Nagashima T, Nishimura S, Katayama Y, Kita Y. Diclofenac, a non-steroidal anti-inflammatory drug, suppresses apoptosis induced by endoplasmic reticulum stresses by inhibiting caspase signaling. Neuropharmacology 2006; 50:558-67. [PMID: 16388830 DOI: 10.1016/j.neuropharm.2005.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 10/07/2005] [Accepted: 10/26/2005] [Indexed: 12/21/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in the treatment of inflammation and pain. In many reports, NSAIDs have induced apoptosis in a variety of cell lines such as colon cancer cells. On the other hand, more recently a few reports have found that NSAIDs protect against apoptosis. Here we investigate endoplasmic reticulum (ER)-stress-induced apoptosis of neuronal cells. The aim of this study is to examine the involvement of NSAIDs, in particular diclofenac, on ER-stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. Diclofenac significantly suppressed SH-SY5Y cell death induced by two types of ER-stress-inducing agents: thapsigargin, an inhibitor of Ca2+-ATPase on the endoplasmic reticulum membrane, and tunicamycin, a glycosylation blocker. Other NSAIDs, such as indomethacin, ibuprofen, aspirin, and ketoprofen, also suppressed ER-stress-induced SH-SY5Y cell death. The dose-dependent anti-apoptotic effect of diclofenac did not correlate with the reduction of prostaglandin release. Administration of prostaglandin E2, which was a primary product of arachidonic metabolism, showed no effects against anti-apoptotic effects produced by diclofenac. Thapsigargin and tunicamycin each significantly activated caspase-3, -9, and -2 in the intrinsic apoptotic pathway in SH-SY5Y cells. Diclofenac suppressed the activation of caspases induced by both ER stresses. Thapsigargin and tunicamycin decreased the mitochondrial membrane potential in SH-SY5Y cells. Diclofenac suppressed the mitochondrial depolarization induced by both ER stresses. Diclofenac inhibited ER-stress-induced apoptosis of SH-SY5Y cells by suppressing the activation of caspases in the intrinsic apoptotic pathway. This is the first report to find that diclofenac has protective effects against ER-stress-induced apoptosis.
Collapse
Affiliation(s)
- Takao Yamazaki
- Pharmacology Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 300-2698, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Paschen W, Mengesdorf T. Cellular abnormalities linked to endoplasmic reticulum dysfunction in cerebrovascular disease—therapeutic potential. Pharmacol Ther 2005; 108:362-75. [PMID: 16140387 DOI: 10.1016/j.pharmthera.2005.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/26/2005] [Indexed: 01/20/2023]
Abstract
Unfolded proteins accumulate in the lumen of the endoplasmic reticulum (ER) as part of the cellular response to cerebral hypoxia/ischemia and also to the overexpression of the mutant genes responsible for familial forms of degenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyothrophic lateral sclerosis, and Huntington's disease, as well as other disorders that are caused by an expanded CAG repeat. This accumulation arises from an imbalance between the load of proteins that need to be folded and processed in the ER lumen and the ER folding/processing capacity. To withstand such potentially lethal conditions, stress responses are activated that includes the shutdown of translation to reduce the ER work load and the activation of the expression of genes coding for proteins involved in the folding and processing reactions, to increase folding/processing capacity. In transient cerebral ischemia, ER stress-induced suppression of protein synthesis is believed to be too severe to permit sufficient activation of the genetic arm of the ER stress response. Mutations associated with Alzheimer's disease down-regulate the ER stress response and make cells more vulnerable to conditions associated with ER stress. When the functioning of the ER is severely impaired and affected cells can no longer withstand these stressful conditions, programmed cell death is induced, including a mitochondria-driven apoptotic pathway. Raising the resistance of cells to conditions that interfere with ER functions and activating the degradation and refolding of unfolded proteins accumulated in the ER lumen are possible strategies for blocking the pathological process leading to cell death at an early stage.
Collapse
Affiliation(s)
- Wulf Paschen
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Department of Anesthesiology, 132 Sands Building, Research Drive, Durham, NC 27710, USA.
| | | |
Collapse
|
35
|
Himeda T, Hayakawa N, Tounai H, Sakuma M, Kato H, Araki T. Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Neuropsychopharmacology 2005; 30:2014-25. [PMID: 15970948 DOI: 10.1038/sj.npp.1300798] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the immunohistochemical alterations of parvalbumin (PV)-expressing interneurons in the hippocampus after transient cerebral ischemia in gerbils in comparison with neuronal nitric oxide synthase (nNOS)-expressing interneurons. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the damage of neurons and interneurons in the hippocampus after cerebral ischemia. Severe neuronal damage was observed in the hippocampal CA1 pyramidal neurons 5 and 14 days after ischemia. The PV immunoreactivity was unchanged up to 2 days after ischemia. At 5 and 14 days after ischemia, in contrast, a conspicuous reduction of PV immunoreactivity was observed in interneurons of the hippocampal CA1 sector. Furthermore, a significant decrease of PV immunoreactivity was found in interneurons of the hippocampal CA3 sector. No damage of nNOS-immunopositive interneurons was detected in the gerbil hippocampus up to 1 day after ischemia. Thereafter, a decrease of nNOS immunoreactive interneurons was found in the hippocampal CA1 sector up to 14 days after ischemia. Pitavastatin significantly prevented the neuronal cell loss in the hippocampal CA1 sector 5 days after ischemia. Our immunohistochemical study also showed that pitavastatin prevented significant decrease of PV- and nNOS-positive interneurons in the hippocampus after ischemia. Double-labeled immunostainings showed that PV immunoreactivity was not found in nNOS-immunopositive interneurons of the brain. The present study demonstrates that cerebral ischemia can cause a loss of both PV- and nNOS-immunoreactive interneurons in the hippocampal CA1 sector. Our findings also show that the damage to nNOS-immunopositive interneurons may precede the neuronal cell loss in the hippocampal CA1 sector after ischemia and nNOS-positive interneurons may play some role in the pathogenesis of cerebral ischemic diseases. Furthermore, our present study indicates that pitavastatin can prevent the damage of interneurons in the hippocampus after cerebral ischemia. Thus, our study provides valuable information for the pathogenesis after cerebral ischemia.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Drug Metabolism and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Larsen GA, Skjellegrind HK, Moe MC, Vinje ML, Berg-Johnsen J. Endoplasmic reticulum dysfunction and Ca2+ deregulation in isolated CA1 neurons during oxygen and glucose deprivation. Neurochem Res 2005; 30:651-9. [PMID: 16176069 DOI: 10.1007/s11064-005-2753-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intracellular calcium ([Ca2+]i) plays a pivotal role in neuronal ischemia. The aim of the present study was to investigate the routes of Ca2+ entry during non-excitotoxic oxygen and glucose deprivation (OGD) in acutely dissociated rat CA1 neurons. During OGD the fluo-3/fura red ratio reflecting [Ca2+]i increased rapidly and irreversibly. [Ca2+]i increased to the same degree in Ca2 + depleted medium, and also when both the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate (IP3) receptors were blocked. When the endoplasmic reticulum (ER) Ca2+ stores were emptied with thapsigargin no increase in [Ca2+]i was observed independent of extracellular Ca2+. The OGD induced Ca2+ deregulation in isolated CA1 neurons is not prevented by removing Ca2+, or by blocking the IP3- or RyR receptors. However, when SERCA was blocked, no increase in [Ca2+]i was observed suggesting that SERCA dysfunction represents an important mechanism for ischemic Ca2+ overload.
Collapse
Affiliation(s)
- Geir Arne Larsen
- Institute for Surgical Research, Department of Neurosurgery, National Hospital, Rikshospitalet, N-0027, Oslo, Norway.
| | | | | | | | | |
Collapse
|
37
|
Shin H, Hwang IK, Yoo KY, Song JH, Jung JY, Kang TC, Choi SY, Han BH, Kim JS, Won MH. Expression and changes of Ca2+-ATPase in neurons and astrocytes in the gerbil hippocampus after transient forebrain ischemia. Brain Res 2005; 1049:43-51. [PMID: 15922996 DOI: 10.1016/j.brainres.2005.04.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Ca2+-ATPase is one of the most powerful modulators of intracellular calcium levels. In this study, we focused on chronological changes in the immunoreactivity and protein levels of Ca2+-ATPase in the hippocampus after 5 min of transient forebrain ischemia. Ca2+-ATPase immunoreactivity was significantly altered in the hippocampal CA1 region and in the dentate gyrus, but not in the CA2/3 region after ischemic insult. In the sham-operated group, Ca2+-ATPase immunoreactivity was detected in the hippocampus. Ca2+-ATPase immunoreactivity in the CA1 region and in the dentate gyrus, and its protein levels peaked 3 h after ischemic insult. At this time, CA1 pyramidal cells and dentate polymorphic cells showed strong Ca2+-ATPase immunoreactivity. Thereafter, Ca2+-ATPase immunoreactivity reduced in the CA1 region and in the dentate gyrus. One day after ischemic insult, Ca2+-ATPase immunoreactivity was observed in some CA1 non-pyramidal cells, and 4 days after ischemic insult, Ca2+-ATPase immunoreactivity was detected in astrocytes throughout the CA1 region, but Ca2+-ATPase immunoreactivity in the dentate gyrus had nearly disappeared. Our results suggest that Ca2+-ATPase changes may be associated with a response to ischemic damage in hippocampal CA1 pyramidal cells, and that increased Ca2+-ATPase immunoreactivity in the reactive astrocytes may be associated with the maintenance of intracellular calcium levels.
Collapse
Affiliation(s)
- Hyoseon Shin
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Castellá M, Buckberg GD, Tan Z. Neurologic Preservation by Na+-H+ Exchange Inhibition Prior to 90 Minutes of Hypothermic Circulatory Arrest. Ann Thorac Surg 2005; 79:646-54; discussion 646-54. [PMID: 15680853 DOI: 10.1016/j.athoracsur.2004.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/29/2022]
Abstract
BACKGROUND The effects of pretreatment with cariporide (HOE 642 Aventis Pharma, Strasbourg-Cedex, France), a Na+-H+ exchanger (NHE) blocker, were studied in a cerebral ischemia-reperfusion model of hypothermic arrest. METHODS Fifteen Yorkshire-Duroc pigs (37.1 +/- 4.2 kg) underwent femoral-jugular bypass and 90 minutes of deep hypothermic circulatory arrest at 19 degrees C. Ten animals were untreated, whereas 5 received 5 mg/kg of intravenous cariporide before cooling. After rewarming and off cardiopulmonary bypass, the pigs were weaned from anesthesia and followed for 24 hours. A standardized neurologic scoring system assessed brain functional recovery. Biochemical markers were used to analyze cellular injury. Control studies without circulatory arrest were done in 2 animals that underwent similar cooling and rewarming. RESULTS Neurologic recovery was rapid and complete in the nonischemic controls and in all pretreated animals. Conversely, at 24 hours, all untreated pigs exhibited a cloudy or stuporous level of consciousness, abnormal positioning, and with only one exception, could not sit or stand. The gradation of neurologic score (evaluating central nervous system, motor and sensory functions, respiration condition, level of consciousness, and behavior) was 0 +/- 0 (0 = normal, 500 = brain death) in the treated group, compared with 124 +/- 59 in the untreated animals. Biochemical analysis showed every variable of whole-body injury (including conjugated dienes (p < 0.05), serum aspartate amino transferase (p < 0.01), creatine kinase p < 0.001) and endothelin-1 (p < 0.001) to be higher in the untreated group. CONCLUSIONS NHE function alters experimental brain ischemia-reperfusion damage. These observations imply that NHE inhibition therapy before ischemia may improve neurologic protection in adult and infant patients undergoing cerebral ischemia during procedures that use hypothermic circulatory arrest.
Collapse
Affiliation(s)
- Manuel Castellá
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
39
|
Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 2005; 25:41-53. [PMID: 15678111 DOI: 10.1038/sj.jcbfm.9600005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endoplasmic reticulum (ER), which plays a role in apoptosis, is susceptible to oxidative stress. Because superoxide is produced in the brain after ischemia/reperfusion, oxidative injury to this organelle may be implicated in ischemic neuronal cell death. Activating transcription factor-4 (ATF-4) and C/EBP-homologous protein (CHOP), both of which are involved in apoptosis, are induced by severe ER stress. Using wild-type and human copper/zinc superoxide dismutase transgenic rats, we observed induction of these molecules in the brain after global cerebral ischemia and compared them with neuronal degeneration. In ischemic, wild-type brains, expression of ATF-4 and CHOP was increased in the hippocampal CA1 neurons that would later undergo apoptosis. Transgenic rats had a mild increase in ATF-4 and CHOP and minimal neuronal degeneration, indicating that superoxide was involved in ER stress-induced cell death. We further confirmed attenuation on induction of these molecules in transgenic mouse brains after focal ischemia. When superoxide was visualized with ethidium, signals for ATF-4 and superoxide overlapped in the same cells. Moreover, lipids in the ER were robustly peroxidized by ischemia but were attenuated in transgenic animals. This indicates that superoxide attacked and damaged the ER, and that oxidative ER damage is implicated in ischemic neuronal cell death.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | |
Collapse
|
40
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
41
|
Abstract
We review studies of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following cerebral ischemia and reperfusion (I/R). The UPR is a cell stress program activated when misfolded proteins accumulate in the ER lumen. UPR activation causes: (i) a PERK-mediated phosphorylation of eIF2alpha, inhibiting protein synthesis to prevent further accumulation of unfolded proteins in the ER and (ii) upregulation of genes coding for ER-resident enzymes and chaperones and others, via eIF2alpha(p), and ATF6 and IRE1 activation. UPR-induced transcription increases capacity of the ER to process misfolded proteins. If ER stress and the UPR are prolonged, apoptosis ensues. Multiple forms of ER stress have been observed following brain I/R. The UPR following brain I/R is not isomorphic between in vivo I/R models and in vitro cell culture systems with pharmacological UPR induction. Although PERK and IRE1 are activated in the initial hours of reperfusion, total PERK decreases, ATF6 is not activated, and there is delayed appearance of UPR-induced mRNAs. Thus, multiple damage mechanisms associated with brain I/R alter UPR expression and contribute to a pro-apoptotic phenotype in neurons. Insights resulting from these studies will be important for the development of therapies to halt neuronal death following brain I/R.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
42
|
Paschen W, Yatsiv I, Shoham S, Shohami E. Brain trauma induces X-box protein 1 processing indicative of activation of the endoplasmic reticulum unfolded protein response. J Neurochem 2004; 88:983-92. [PMID: 14756820 DOI: 10.1046/j.1471-4159.2003.02218.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain trauma was induced in mice using a closed head injury (CHI) model. At 1, 6 or 24 h after trauma, brains were dissected into the cortex, striatum and hippocampus. Changes in levels of processed X-box protein 1 (xbp1), glucose-regulated protein 78 (grp78), growth arrest and DNA damage-inducible gene 153 (gadd153) and heat-shock protein 70 (hsp70) mRNA, indicating impaired endoplasmic reticulum (ER) and cytoplasmic functioning, were evaluated by quantitative PCR. In the cortex, processed xbp1 mRNA levels rose to 2000% of control 1 h after CHI, and stayed high throughout the experiments. In the hippocampus and striatum, processed xbp1 mRNA levels rose in a delayed fashion, peaking at 6 h (1000% of control) and 24 h after CHI (1500% of control) respectively. Levels of grp78 mRNA were only slightly increased in the cortex 24 h after CHI (150% of control), and were unchanged or transiently decreased in the hippocampus and striatum. Levels of gadd153 mRNA did not change significantly after trauma. A transient rise in hsp70 mRNA levels was observed only in the cortex, peaking at 1 h after CHI (600% of control). Processing of xbp1 mRNA is a sign of activation of the unfolded protein response indicative of ER dysfunction. The results suggest that brain trauma induces ER dysfunction, which spreads from the ipsilateral cortex to the hippocampus and striatum. These observations may have clinical implications and should therefore be considered for future investigations on therapeutic intervention of brain injury caused by contusion-induced neurotrauma.
Collapse
Affiliation(s)
- Wulf Paschen
- Laboratory of Molecular Nurology, Max-Planck-Institute for Neurological Research, Koeln, Germany.
| | | | | | | |
Collapse
|
43
|
Yamazaki T, Muramoto M, Nishimura S, Kita Y. Suppressive effects of FR167653, an inhibitor of p38 mitogen-activated kinase, on calreticulin mRNA expression induced by endoplasmic reticulum stresses. Eur J Pharmacol 2004; 484:147-56. [PMID: 14744598 DOI: 10.1016/j.ejphar.2003.11.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several endoplasmic reticulum chaperones are simultaneously transactivated in response to various forms of endoplasmic reticulum stresses. Calreticulin is one such chaperone. We here show that the compound FR167653 [1-[7-(4-fluorophenyl)-1,2,3,4-tetrahydro-8-(4-pyridyl)pyrazolo[5,1-c][1,2,4]triazin-2-yl]-2-phenylethanedione sulfate monohydrate] suppresses the transactivation of calreticulin following endoplasmic reticulum stress. FR167653, like SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole], has been reported to inhibit p38 mitogen-activated kinase (p38 MAPK). In this study, FR167653 concentration-dependently inhibited the up-regulation of the calreticulin mRNA level following an endoplasmic reticulum stress induced by thapsigargin in human embryonic kidney 293 (HEK293) cells and rat phechromocytoma PC12 cells. The compound concentration-dependently suppressed the transactivation of luciferase by thapsigargin in a reporter assay with a calreticulin promoter-luciferase conjugated reporter vector. SB203580 also significantly suppressed the transactivation of calreticulin by thapsigargin. Therefore, FR167653 regulated the mRNA expression of calreticulin at the transcriptional level without affecting the stability of the mRNA, as well as via inhibition of p38 MAPK activated by thapsigargin. FR167653 also inhibited the transactivation of calreticulin stimulated by two other endoplasmic reticulum stress inducers, tunicamycin and A23187. Moreover, the inhibitory action of the compound on the transactivation was observed in other cell lines. The calreticulin promoter region includes three sequential cis-acting endoplasmic reticulum stress response elements (ERSEs). As each of these ERSEs was sequentially deleted, there was an increasing loss of the transactivation by thapsigargin or tunicamycin. FR167653 inhibited the transactivation in all the reporter plasmid constructs containing the calreticulin promoter region with an ERSE/ERSEs. In conclusion, FR167653 is the first compound shown to inhibit the transactivation of calreticulin following various endoplasmic reticulum stresses. The suppressive effects of the compound were considered to be due to an inhibition of the signaling leading to ERSEs activation in the calreticulin promoter region via an inhibition of p38 MAPK, which is activated by endoplasmic reticulum stresses.
Collapse
Affiliation(s)
- Takao Yamazaki
- Advanced Technology Platform Research Laboratory, Fujisawa Pharmaceutical Co. Ltd., 5-2-3 Tokodai, Tsukuba, Ibaraki 300-2698, Japan
| | | | | | | |
Collapse
|
44
|
Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. Cell Calcium 2003; 34:305-10. [PMID: 12909077 DOI: 10.1016/s0143-4160(03)00138-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
45
|
Paschen W. Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 2003; 34:365-83. [PMID: 12909082 DOI: 10.1016/s0143-4160(03)00139-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in neuronal calcium activity in the various subcellular compartments have divergent effects on affected cells. In the cytoplasm and mitochondria, where calcium activity is normally low, a prolonged excessive rise in free calcium levels is believed to be toxic, in the endoplasmic reticulum (ER), in contrast, calcium activity is relatively high and severe stress is caused by a depletion of ER calcium stores. Besides its role in cellular calcium signaling, the ER is the site where membrane and secretory proteins are folded and processed. These calcium-dependent processes are fundamental to normal cell functioning. Under conditions of ER dysfunction unfolded proteins accumulate in the ER lumen, a signal responsible for activation of the unfolded protein response (UPR) and the ER-associated degradation (ERAD). UPR is characterized by activation of two ER-resident kinases, PKR-like ER kinase (PERK) and IRE1. PERK induces phosphorylation of the eukaryotic initiation factor (eIF2alpha), resulting in a shut-down of translation at the initiation step. This stress response is needed to block new synthesis of proteins that cannot be correctly folded, and thus to protect cells from the effect of unfolded proteins which tend to form toxic aggregates. IRE1, on the other hand, is turned after activation into an endonuclease that cuts out a sequence of 26 bases from the coding region of xbp1 mRNA. Processed xbp1 mRNA is translated into the respective protein, an active transcription factor specific for ER stress genes such as grp78. In acute disorders and degenerative diseases, the ER calcium pool is a primary target of toxic metabolites or intermediates, such as oxygen free radicals, produced during the pathological process. Affected neurons need to activate the entire UPR to cope with the severe form of stress induced by ER dysfunction. This stress response is however hindered under conditions where protein synthesis is suppressed to such an extent that processed xbp1 mRNA is not translated into the processed XBP1 protein (XBP1(proc)). Furthermore, activation of ERAD is important for the degradation of unfolded proteins through the ubiquitin/proteasomal pathway, which is impaired in acute disorders and degenerative diseases, resulting in further ER stress. ER functioning is thus impaired in two different ways: first by the direct action of toxic intermediates, produced in the course of the pathological process, hindering vital ER reactions, and second by the inability of cells to fully activate UPR and ERAD, leaving them unable to withstand the severe form of stress induced by ER dysfunction.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, 50931 Koeln, Germany.
| |
Collapse
|
46
|
Page AB, Owen CR, Kumar R, Miller JM, Rafols JA, White BC, DeGracia DJ, Krause GS. Persistent eIF2alpha(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4 hours of reperfusion following 10-minute complete brain ischemia. Acta Neuropathol 2003; 106:8-16. [PMID: 12687390 DOI: 10.1007/s00401-003-0693-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 02/21/2003] [Accepted: 02/24/2003] [Indexed: 10/25/2022]
Abstract
Upon brain reperfusion following ischemia, there is widespread inhibition of neuronal protein synthesis that is due to phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha), which persists in selectively vulnerable neurons (SVNs) destined to die. Other investigators have shown that expression of mutant eIF2alpha (S51D) mimicking phosphorylated eIF2alpha induces apoptosis, and expression of non-phosphorylatable eIF2alpha (S51A) blocks induction of apoptosis. An early event in initiating apoptosis is the release of cytochrome c from mitochondria, and cytochrome c release corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. At present the signaling pathways leading to this are not well defined. We hypothesized that persistent eIF2alpha(P) reflects injury mechanisms that are causally upstream of release of cytochrome c and induction of apoptosis. At 4 h of reperfusion following 10-min cardiac arrest, vulnerable neurons in the striatum, hippocampal hilus and CA1 showed colocalized intense immunostaining for both persistent eIF2alpha(P) and cytoplasmic cytochrome c, while resistant neurons in the dentate gyrus and elsewhere did not immunostain for either. A lower intensity of persistent eIF2alpha(P) immunostaining was present in cortical layer V pyramidal neurons without cytoplasmic cytochrome c, possibly reflecting the lesser vulnerability of this area to ischemia. We did not observe cytoplasmic cytochrome c in any neurons that did not also display persistent eIF2alpha(P) immunostaining. Because phosphorylation of eIF2alpha during early brain reperfusion is carried out by PERK, these findings suggest that there is prolonged activation of the unfolded protein response in the reperfused brain.
Collapse
Affiliation(s)
- Andrea B Page
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Shutdown of translation is a highly conserved response of cells to a severe form of metabolic, thermal, or physical stress. After the metabolic stress induced by transient cerebral ischemia, translational recovery is observed only in cells that withstand the transient interruption of blood supply, implying that restoration of translation critically determines the final outcome. On the other hand, apoptosis is believed to play a role in ischemia-induced cell death. Apoptosis is an active process that is blocked by agents known to suppress protein synthesis. Thus, the question arises whether stress-induced suppression of protein synthesis is protective or toxic for the affected cells. Accepting the notion that endoplasmic reticulum (ER) dysfunction is the mechanism underlying shutdown of translation after transient cerebral ischemia, an attempt may be made to try to solve the protein synthesis paradox by understanding the role of protein synthesis suppression in conditions associated with ER dysfunction. Endoplasmic reticulum dysfunction-induced accumulation of unfolded proteins in the ER lumen is the trigger of two signal transduction pathways: PKR-like ER kinase-induced shutdown of translation to suppress new synthesis of proteins that cannot be correctly folded, and IRE1-induced expression of ER stress genes, a protein synthesis-dependent pathway needed to restore ER functions. Together these comprise the unfolded protein response. They are also induced after transient ischemia, implying a dual effect of protein synthesis suppression, a protective and a pathologic effect during early and prolonged reperfusion.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
48
|
Hwang IK, Kang TC, Lee JC, Park SK, An SJ, Lee IS, Lee YB, Sohn HS, Kang JH, Choi SY, Won MH. Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res 2003; 971:250-4. [PMID: 12706242 DOI: 10.1016/s0006-8993(03)02480-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated spatial and temporal alterations of calbindin D-28k (CB) immunoreactivity in the gerbil main olfactory bulb after transient ischemia-reperfusion. In sham-operated animals, CB-immunoreactive (IR) neurons were found in the periglomerular layer, external plexiform layer and granule cell layer. At 1-4 days after ischemic insult, the number of CB-IR neurons significantly increased. This result suggests that the increased CB may buffer the intracellular calcium at an early time point after the ischemic insult. In contrast, 10-30 days after the ischemic insult, the number of CB-IR neurons significantly decreased as compared to sham-operated animals. This result suggests that a malfunction in olfactory process may have occurred in the olfactory bulb at a later time point after the ischemic insult.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Paschen W, Aufenberg C, Hotop S, Mengesdorf T. Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 2003; 23:449-61. [PMID: 12679722 DOI: 10.1097/01.wcb.0000054216.21675.ac] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cells respond to conditions associated with endoplasmic reticulum (ER) dysfunction with activation of the unfolded protein response, characterized by a shutdown of translation and induction of the expression of genes coding for ER stress proteins. The genetic response is based on IRE1-induced processing of xbp1 messenger RNA (mRNA), resulting in synthesis of new XBP1proc protein that functions as a potent transcription factor for ER stress genes. xbp1 processing in models of transient global and focal cerebral ischemia was studied. A marked increase in processed xbp1 mRNA levels during reperfusion was observed, most pronounced (about 35-fold) after 1-h occlusion of the right middle cerebral artery. The rise in processed xbp1 mRNA was not paralleled by a similar increase in XBP1proc protein levels because transient ischemia induces severe suppression of translation. As a result, mRNA levels of genes coding for ER stress proteins were only slightly increased, whereas mRNA levels of heat-shock protein 70 rose about 550-fold. Under conditions associated with ER dysfunction, cells require activation of the entire ER stress-induced signal transduction pathway, to cope with this severe form of stress. After transient cerebral ischemia, however, the block of translation may prevent synthesis of new XBP1proc protein and thus hinder recovery from ischemia-induced ER dysfunction.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Köln, Germany.
| | | | | | | |
Collapse
|
50
|
Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 2002; 22:7405-16. [PMID: 12370288 PMCID: PMC135664 DOI: 10.1128/mcb.22.21.7405-7416.2002] [Citation(s) in RCA: 524] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Revised: 05/29/2002] [Accepted: 07/23/2002] [Indexed: 02/08/2023] Open
Abstract
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.
Collapse
Affiliation(s)
- Constantinos Koumenis
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|