1
|
Lee J, Jeon BS, Kang S, Son Y, Lim YB, Bae MJ, Jo WS, Lee CG, Shin IS, Moon C, Lee HJ, Kim JS. Protective effects of tauroursodeoxycholate against radiation-induced intestinal injury in a mouse model. Biochem Biophys Res Commun 2024; 724:150226. [PMID: 38865815 DOI: 10.1016/j.bbrc.2024.150226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.
Collapse
Affiliation(s)
- Jeongmin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byung-Suk Jeon
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Young-Bin Lim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Wol Soon Jo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Chang-Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - In Shik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hae-June Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
3
|
Garg S, Garg TK, Miousse IR, Wise SY, Fatanmi OO, Savenka AV, Basnakian AG, Singh VK, Hauer-Jensen M. Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model. Antioxidants (Basel) 2022; 11:1895. [PMID: 36290618 PMCID: PMC9598988 DOI: 10.3390/antiox11101895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.
Collapse
Affiliation(s)
- Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
He L, Zhou S, Li W, Wang Q, Qi Z, Zhou P, Wang Z, Chen J, Li Y, Lin Z. BPIFA2 as a Novel Early Biomarker to Identify Fatal Radiation Injury After Radiation Exposure. Dose Response 2022; 20:15593258221086478. [PMID: 35431693 PMCID: PMC9006374 DOI: 10.1177/15593258221086478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background Current dosimeters cannot cope with the two tasks of medical rescue in the early stage of nuclear accident, the accurate determination of radiation exposure and the identification of patients with fatal radiation injury. As radiation can cause alterations in serum components, it is feasible to develop biomarkers for radiation injury from serum. This study aims to investigate whether serum BPIFA2 could be used as a potential biomarker of predicting fatal radiation injury in the early stage after nuclear accident. Methods A rabbit anti-mouse BPIFA2 polyclonal antibody was prepared to detect the expression of BPIFA2. C57BL/6J female mice were exposed to total body radiation (TBI) at different dose and Partial body radiation (PBI) at lethal dose to detect the dynamic changes of BPIFA2 in serum at different time points after irradiation by Western blot assay. Results BPIFA2 in mice serum were significantly increased at 1–12 h post-irradiation at .5–10 Gy, and increased again significantly at 3 d after 10 Gy irradiation with associated with mortality closely. It also increased rapidly after PBI and was closely related to injury degree, regardless whether the salivary glands were irradiated. Conclusions The increase of serum BPIFA2 is a novel early biomarker not only for identifying radiation exposure, but also for fatal radiation injury playing a vital role in rational use of medical resources, and greater efficiency of medical treatment to minimize casualties.
Collapse
Affiliation(s)
- Lexin He
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shixiang Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weihong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingkun Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhongwu Lin
- Science Research Management Department of the Academy of Military Sciences, Beijing, China
| |
Collapse
|
6
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
7
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
8
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Di Gregorio E, Miolo G, Saorin A, Muraro E, Cangemi M, Revelant A, Minatel E, Trovò M, Steffan A, Corona G. Radical Hemithoracic Radiotherapy Induces Systemic Metabolomics Changes That Are Associated with the Clinical Outcome of Malignant Pleural Mesothelioma Patients. Cancers (Basel) 2021; 13:cancers13030508. [PMID: 33572739 PMCID: PMC7866164 DOI: 10.3390/cancers13030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Radical hemithoracic radiotherapy represents a promising new advance in the field of radiation oncology and encouraging results have been achieved in the treatment of malignant pleural mesothelioma patients. This study showed that this radiotherapy modality produces significant changes in serum metabolomics profile mainly affecting arginine and polyamine biosynthesis pathways. Interestingly, individual metabolomics alterations were found associated with the clinical overall survival outcome of the radiotherapy treatment. These results highlight metabolomics profile analysis as a powerful prognostic tool useful to better understand the mechanisms underlying the interpatients variability and to identify patients who may receive the best benefit from this specific radiotherapy treatment. Abstract Radical hemithoracic radiotherapy (RHRT) represents an advanced therapeutic option able to improve overall survival of malignant pleural mesothelioma patients. This study aims to investigate the systemic effects of this radiotherapy modality on the serum metabolome and their potential implications in determining the individual clinical outcome. Nineteen patients undergoing RHRT at the dose of 50 Gy in 25 fractions were enrolled. Serum targeted metabolomics profiles were investigated at baseline and the end of radiotherapy by liquid chromatography and tandem mass spectrometry. Univariate and multivariate OPLS-DA analyses were applied to study the serum metabolomics changes induced by RHRT while PLS regression analysis to evaluate the association between such changes and overall survival. RHRT was found to affect almost all investigated metabolites classes, in particular, the amino acids citrulline and taurine, the C14, C18:1 and C18:2 acyl-carnitines as well as the unsaturated long chain phosphatidylcholines PC ae 42:5, PC ae 44:5 and PC ae 44:6 were significantly decreased. The enrichment analysis showed arginine metabolism and the polyamine biosynthesis as the most perturbed pathways. Moreover, specific metabolic changes encompassing the amino acids and acyl-carnitines resulted in association with the clinical outcome accounting for about 60% of the interpatients overall survival variability. This study highlighted that RHRT can induce profound systemic metabolic effects some of which may have a significant prognostic value. The integration of metabolomics in the clinical assessment of the malignant pleural mesothelioma could be useful to better identify the patients who can achieve the best benefit from the RHRT treatment.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Emilio Minatel
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Marco Trovò
- Radiation Oncology Department, Azienda Sanitaria Integrata, 33100 Udine, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
- Correspondence: ; Tel.: +39-0434-659-666
| |
Collapse
|
10
|
Kumar P, Wang P, Tudor G, Booth C, Farese AM, MacVittie TJ, Kane MA. Evaluation of Plasma Biomarker Utility for the Gastrointestinal Acute Radiation Syndrome in Non-human Primates after Partial Body Irradiation with Minimal Bone Marrow Sparing through Correlation with Tissue and Histological Analyses. HEALTH PHYSICS 2020; 119:594-603. [PMID: 32947487 PMCID: PMC7546578 DOI: 10.1097/hp.0000000000001348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to total- and partial-body irradiation following a nuclear or radiological incident result in the potentially lethal acute radiation syndromes of the gastrointestinal and hematopoietic systems in a dose- and time-dependent manner. Radiation-induced damage to the gastrointestinal tract is observed within days to weeks post-irradiation. Our objective in this study was to evaluate plasma biomarker utility for the gastrointestinal acute radiation syndrome in non-human primates after partial body irradiation with minimal bone marrow sparing through correlation with tissue and histological analyses. Plasma and jejunum samples from non-human primates exposed to partial body irradiation of 12 Gy with bone marrow sparing of 2.5% were evaluated at various time points from day 0 to day 21 as part of a natural history study. Additionally, longitudinal plasma samples from non-human primates exposed to 10 Gy partial body irradiation with 2.5% bone marrow sparing were evaluated at timepoints out to 180 d post-irradiation. Plasma and jejunum metabolites were quantified via liquid chromatography-tandem mass spectrometry and histological analysis consisted of corrected crypt number, an established metric to assess radiation-induced gastrointestinal damage. A positive correlation of metabolite levels in jejunum and plasma was observed for citrulline, serotonin, acylcarnitine, and multiple species of phosphatidylcholines. Citrulline levels also correlated with injury and regeneration of crypts in the small intestine. These results expand the characterization of the natural history of gastrointestinal acute radiation syndrome in non-human primates exposed to partial body irradiation with minimal bone marrow sparing and also provide additional data toward the correlation of citrulline with histological endpoints.
Collapse
Affiliation(s)
- Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | | | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
11
|
Ye F, Ning J, Fardous Z, Katsube T, Li Q, Wang B. Citrulline, A Potential Biomarker of Radiation-Induced Small Intestine Damage. Dose Response 2020; 18:1559325820962341. [PMID: 33013253 PMCID: PMC7513408 DOI: 10.1177/1559325820962341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation damage assessment of the small intestine is important in nuclear accidents or routine radiotherapy of abdominal tumors. This article reviews the clinical symptoms and molecular mechanisms of radiation-induced small intestinal damage and summarizes recent research on biomarkers of such damage. Citrulline is the most promising biomarker for the evaluation of radiation-induced small intestinal damage caused by radiotherapy and nuclear accidents. This article also summarizes the factors influencing plasma citrulline measurement investigated in the latest research, as well as new findings on the concentration of citrulline in saliva and urine after different types of radiation.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Jing Ning
- Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Zeenath Fardous
- Institute of Food and Radiation
Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy
Commission, Dhaka, Bangladesh
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Miousse IR, Ewing LE, Skinner CM, Pathak R, Garg S, Kutanzi KR, Melnyk S, Hauer-Jensen M, Koturbash I. Methionine dietary supplementation potentiates ionizing radiation-induced gastrointestinal syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 318:G439-G450. [PMID: 31961718 PMCID: PMC7099489 DOI: 10.1152/ajpgi.00351.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M. Skinner
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stepan Melnyk
- 6Arkansas Children’s Research Institute, Little Rock, Arknsas
| | - Martin Hauer-Jensen
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
13
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Khayyal MT, El-Baz FK, Meselhy MR, Ali GH, El-Hazek RM. Intestinal injury can be effectively prevented by Dunaliella salina in gamma irradiated rats. Heliyon 2019; 5:e01814. [PMID: 31193849 PMCID: PMC6543095 DOI: 10.1016/j.heliyon.2019.e01814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Dunaliella salina (D. salina) is one of the most common microalgae that is used as human food. It is isolated from the salty lakes in El-Fayoum and Lake of Bardawil-Sinai in Egypt and can withstand very high concentrations of salt: The potentiality of D. salina, a unicellular biflagellate green alga to protect against intestinal injury induced after radiation exposure was studied. D. salina was given orally in doses of 100 and 200 mg/kg to male Wistar rats for 5 days before exposure to 6 Gray (Gy) gamma radiation and continued for a further two days. Rats were sacrificed 24 h later and intestinal segments were dissected out. One segment was examined histologically and another was used to prepare homogenates to assess relevant biochemical parameters reflecting intestinal injury. Radiation exposure led to a rise in the histological damage score, an increase in tissue tumor necrosis factor (TNF-α), interleukin (IL-1β) and thiobarbituric acid reactive substances (TBARS) but a reduction in tissue reduced glutathione (GSH) and in serum citrulline. Pretreatment with either dose of D. salina effectively reduced the severity of intestinal mucositis induced by gamma radiation.
Collapse
Affiliation(s)
- Mohamed T. Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Egypt
| | - Farouk K. El-Baz
- Department of Plant Biochemistry, National Research Centre, Giza, Egypt
| | - Meselhy R. Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt
| | - Gamila H. Ali
- Department of Water Pollution, National Research Centre, Giza, Egypt
| | - Rania M. El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
15
|
Abstract
Current chemical-fuel-driven nanomotors are driven by gas (e.g. H2, O2, NH3) which only provides motion ability, and can produce waste (e.g. Mg(OH)2, Pt). Here, inspired by endogenous biochemical reactions in the human body involving conversion of amino acid L-arginine to nitric oxide (NO) by NO synthase (NOS) or reactive oxygen species (ROS), we report on a nanomotor made of hyperbranched polyamide/L-arginine (HLA). The nanomotor utilizes L-arginine as fuel for the production of NO both as driving force and to provide beneficial effects, including promoting endothelialisation and anticancer effects, along with other beneficial by-products. In addition, the HLA nanomotors are fluorescent and can be used to monitor the movement of nanomotors in vivo in the future. This work presents a zero-waste, self-destroyed and self-imaging nanomotor with potential biological application for the treatment of various diseases in different tissues including blood vessels and tumours. Depletion of propellant in chemical-fuel-driven nanomotors is a limiting factor in device design and application. Here, the authors create a nitric-oxide-generating nanoparticle and explore cellular uptake and application of the nanomotors in nitric oxide treatments.
Collapse
|
16
|
Stricklin D, Prins R, Bellman J. Development of age-dependent dose modification factors for acute radiation lethality. Int J Radiat Biol 2019; 96:67-80. [DOI: 10.1080/09553002.2018.1547438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Robert Prins
- Applied Research Associates, Inc., Arlington, VA, USA
| | - Jacob Bellman
- Applied Research Associates, Inc., Arlington, VA, USA
| |
Collapse
|
17
|
King GL, Sandgren DJ, Mitchell JM, Bolduc DL, Blakely WF. System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques ( Macaca mulatta). Comp Med 2018; 68:474-488. [PMID: 30305197 PMCID: PMC6310201 DOI: 10.30802/aalas-cm-17-000106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022]
Abstract
We developed a clinical assessment tool for use in an NHP radiation model to 1) quantify severity responses for subsyndromes of the acute radiation syndrome (ARS; that is, hematopoietic and others) and 2) identify animals that required enhanced monitoring. Our assessment tool was based primarily on the MEdical TREatment ProtocOLs for Radiation Accident Victims (METREPOL) scoring system but was adapted for NHP to include additional indices (for example, behaviors) for use in NHP studies involving limited medical intervention. Male (n = 16) and female (n = 12) rhesus macaques (Macaca mulatta; 5 groups: sham and 1.0, 3.5, 6.5, and 8.5 Gy; n = 6 per group) received sham- or bilateral 60Co γ-irradiation at approximately 0.6 Gy/mn. Clinical signs of ARS and blood analysis were obtained before and serially for clinical assessment during the period of 6 h to 60 d after sham or 60Co irradiation. Minimal supportive care (that is, supplemental nutrition, subcutaneous fluid, loperamide, acetaminophen, and topical antibiotic ointment) was prescribed based on clinical observations. Results from clinical signs and assays for assessment of relevant organ systems in individual animals were stratified into ARS severity scores of normal (0), mild (1), moderate (2), and severe (3 or 4). Individual NHP were scored for maximal subsyndrome ARS severity in multiple organ systems by using the proposed ARS scoring system to obtain an overall ARS response category. One NHP died unexpectedly. The multiple-parameter ARS severity scoring tool aided in the identification of animals in the high-dose (6.5 and 8.5 Gy) groups that required enhanced monitoring.
Collapse
Affiliation(s)
- Gregory L King
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David J Sandgren
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer M Mitchell
- Departments of Veterinary Sciences, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David L Bolduc
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William F Blakely
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Rashidi A, Shanley R, Holtan SG, MacMillan ML, Blazar BR, Khoruts A, Weisdorf DJ. Pretransplant Serum Citrulline Predicts Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 24:2190-2196. [PMID: 30454871 PMCID: PMC6251308 DOI: 10.1016/j.bbmt.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Post-transplant biomarkers of acute graft-versus-host disease (aGVHD) and nonrelapse mortality (NRM) after allogeneic hematopoietic cell transplantation (allo-HCT) have been extensively studied. However, pretransplant biomarkers may provide a greater window of opportunity to intervene. We measured serum biomarkers of various aspects of gut barrier physiology before HCT (median, day -7) and 7 and 28 days post-HCT in 95 consecutive allo-HCT recipients enrolled in an open-label biorepository protocol. Biomarkers included citrulline for total functional enterocyte mass, Reg3a for antibacterial activity of the gut, and intestinal fatty acid binding protein (I-FABP) for enterocyte turnover. Compared to 16 healthy control subjects, we demonstrated that patients came to transplant with abnormal levels of all 3 biomarkers (P < .05), reflecting residual damage from prior chemotherapy. All 3 biomarkers initially declined from pre-HCT to day +7 (more pronounced after myeloablative than reduced-intensive conditioning) followed by a recovery phase and return toward pre-HCT values by day +28. A lower pre-HCT citrulline was independently associated with a higher risk of aGVHD grades II to IV (hazard ratio, 1.32; 95% confidence interval, 1.03 to 1.69; P = .02), and this association was not specific to gut GVHD. The strongest correlate of NRM was a higher level of Reg3a at day +7 (P < .001). I-FABP did not predict transplant outcomes. In conclusion, pre-HCT serum citrulline levels identify patients at high risk for developing aGVHD. Our results suggest that pre-HCT interventions to augment the gut barrier may decrease the risk of aGVHD.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Ryan Shanley
- Masonic Cancer Center Biostatistics Core, University of Minnesota, Minneapolis, Minnesota
| | - Shernan G Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L MacMillan
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Plasma citrulline is a sensitive safety biomarker for small intestinal injury in rats. Toxicol Lett 2018; 295:416-423. [DOI: 10.1016/j.toxlet.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/22/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
|
20
|
Walton BM, Jackson GW, Deutz N, Cote G. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:75002. [PMID: 28732094 PMCID: PMC5521305 DOI: 10.1117/1.jbo.22.7.075002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/30/2017] [Indexed: 05/15/2023]
Abstract
A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids. Download PDF SAVE FOR LATER
Collapse
Affiliation(s)
- Brian M. Walton
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - George W. Jackson
- BioTex, Inc., Houston, Texas, United States
- Base Pair Biotechnologies, Inc., Pearland, Texas, United States
| | - Nicolaas Deutz
- Texas A&M University, Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas, United States
| | - Gerard Cote
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
21
|
Kuiken NSS, Rings EHHM, Blijlevens NMA, Tissing WJE. Biomarkers and non-invasive tests for gastrointestinal mucositis. Support Care Cancer 2017; 25:2933-2941. [PMID: 28536886 PMCID: PMC5527064 DOI: 10.1007/s00520-017-3752-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Gastrointestinal mucositis is a complex inflammatory reaction of the mucous membranes, a side effect of both chemotherapy and radiotherapy. Currently, assessment scales are used to diagnose mucositis. However, a biomarker which would determine whether there is mucositis and thereby establish the severity objectively would be very useful. This will give the opportunity to evaluate studies, to determine risk factors and incidence, and it will make it possible to compare studies. Moreover, this biomarker might improve clinical management for patients. In this paper, we reviewed studies concerning potential biomarkers in blood samples and fecal samples, and potential tests in breath samples and urine samples. We include biomarkers and tests studied in animal models and/or in clinical trials, and discuss the validity, diagnostic accuracy, and applicability.
Collapse
Affiliation(s)
- N S S Kuiken
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.,Department of Pediatric Gastroenterology and Hepatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E H H M Rings
- Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.,Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - N M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wim J E Tissing
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
22
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
23
|
Castillo GM, Nishimoto-Ashfield A, Jones CC, Kabirov KK, Zakharov A, Lyubimov AV. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury. PLoS One 2017; 12:e0171703. [PMID: 28207794 PMCID: PMC5313194 DOI: 10.1371/journal.pone.0171703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.
Collapse
Affiliation(s)
| | | | | | - Kasim K. Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
24
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
25
|
Bolduc DL, Bünger R, Moroni M, Blakely WF. MODELING H-ARS USING HEMATOLOGICAL PARAMETERS: A COMPARISON BETWEEN THE NON-HUMAN PRIMATE AND MINIPIG. RADIATION PROTECTION DOSIMETRY 2016; 172:161-173. [PMID: 27466458 DOI: 10.1093/rpd/ncw159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multiple hematological biomarkers (i.e. complete blood counts and serum chemistry parameters) were used in a multivariate linear-regression fit to create predictive algorithms for estimating the severity of hematopoietic acute radiation syndrome (H-ARS) using two different species (i.e. Göttingen Minipig and non-human primate (NHP) (Macacca mulatta)). Biomarker data were analyzed prior to irradiation and between 1-60 days (minipig) and 1-30 days (NHP) after irradiation exposures of 1.6-3.5 Gy (minipig) and 6.5 Gy (NHP) 60Co gamma ray doses at 0.5-0.6 Gy min-1 and 0.4 Gy min-1, respectively. Fitted radiation risk and injury categorization (RRIC) values and RRIC prediction percent accuracies were compared between the two models. Both models estimated H-ARS severity with over 80% overall predictive power and with receiver operating characteristic curve area values of 0.884 and 0.825. These results based on two animal radiation models support the concept for the use of a hematopoietic-based algorithm for predicting the risk of H-ARS in humans.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - Rolf Bünger
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
26
|
Christensen DM, Iddins CJ, Parrillo SJ, Glassman ES, Goans RE. Management of ionizing radiation injuries and illnesses, part 4: acute radiation syndrome. J Osteopath Med 2016; 114:702-11. [PMID: 25170040 DOI: 10.7556/jaoa.2014.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To provide proper medical care for patients after a radiation incident, it is necessary to make the correct diagnosis in a timely manner and to ascertain the relative magnitude of the incident. The present article addresses the clinical diagnosis and management of high-dose radiation injuries and illnesses in the first 24 to 72 hours after a radiologic or nuclear incident. To evaluate the magnitude of a high-dose incident, it is important for the health physicist, physician, and radiobiologist to work together and to assess many variables, including medical history and physical examination results; the timing of prodromal signs and symptoms (eg, nausea, vomiting, diarrhea, transient incapacitation, hypotension, and other signs and symptoms suggestive of high-level exposure); and the incident history, including system geometry, source-patient distance, and the suspected radiation dose distribution.
Collapse
Affiliation(s)
- Doran M Christensen
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Carol J Iddins
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Steven J Parrillo
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Erik S Glassman
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Ronald E Goans
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| |
Collapse
|
27
|
Balasubramaniam S, Lewis B, Mock DM, Said HM, Tarailo-Graovac M, Mattman A, van Karnebeek CD, Thorburn DR, Rodenburg RJ, Christodoulou J. Leigh-Like Syndrome Due to Homoplasmic m.8993T>G Variant with Hypocitrullinemia and Unusual Biochemical Features Suggestive of Multiple Carboxylase Deficiency (MCD). JIMD Rep 2016; 33:99-107. [PMID: 27450367 DOI: 10.1007/8904_2016_559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Leigh syndrome (LS), or subacute necrotizing encephalomyelopathy, is a genetically heterogeneous, relentlessly progressive, devastating neurodegenerative disorder that usually presents in infancy or early childhood. A diagnosis of Leigh-like syndrome may be considered in individuals who do not fulfil the stringent diagnostic criteria but have features resembling Leigh syndrome.We describe a unique presentation of Leigh-like syndrome in a 3-year-old boy with elevated 3-hydroxyisovalerylcarnitine (C5-OH) on newborn screening (NBS). Subsequent persistent plasma elevations of C5-OH and propionylcarnitine (C3) as well as fluctuating urinary markers were suggestive of multiple carboxylase deficiency (MCD). Normal enzymology and mutational analysis of genes encoding holocarboxylase synthetase (HLCS) and biotinidase (BTD) excluded MCD. Biotin uptake studies were normal excluding biotin transporter deficiency. His clinical features at 13 months of age comprised psychomotor delay, central hypotonia, myopathy, failure to thrive, hypocitrullinemia, recurrent episodes of decompensation with metabolic keto-lactic acidosis and an episode of hyperammonemia. Biotin treatment from 13 months of age was associated with increased patient activity, alertness, and attainment of new developmental milestones, despite lack of biochemical improvements. Whole exome sequencing (WES) analysis failed to identify any other variants which could likely contribute to the observed phenotype, apart from the homoplasmic (100%) m.8993T>G variant initially detected by mitochondrial DNA (mtDNA) sequencing.Hypocitrullinemia has been reported in patients with the m.8993T>G variant and other mitochondrial disorders. However, persistent plasma elevations of C3 and C5-OH have previously only been reported in one other patient with this homoplasmic mutation. We suggest considering the m.8993T>G variant early in the diagnostic evaluation of MCD-like biochemical disturbances, particularly when associated with hypocitrullinemia on NBS and subsequent confirmatory tests. An oral biotin trial is also warranted.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital, Perth, WA, Australia. .,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia. .,Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - B Lewis
- PathWest Laboratories WA, Princess Margaret Hospital, Perth, WA, Australia
| | - D M Mock
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H M Said
- Department of Medicine, University of California School of Medicine Irvine, Irvine, CA, USA
| | - M Tarailo-Graovac
- Centre for Molecular Medicine, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Mattman
- Adult Metabolic Diseases Clinic, Division of Endocrinology and Metabolism, Vancouver General Hospital, UBC, Vancouver, BC, Canada
| | - C D van Karnebeek
- Centre for Molecular Medicine, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - D R Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - R J Rodenburg
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J Christodoulou
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Kalabat DY, Vitsky A, Scott W, Kindt E, Hayes K, John-Baptiste A, Huang W, Yang AH. Identification and Evaluation of Novel MicroRNA Biomarkers in Plasma and Feces Associated with Drug-induced Intestinal Toxicity. Toxicol Pathol 2016; 45:302-320. [PMID: 27189632 DOI: 10.1177/0192623316644992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gastrointestinal toxicity is dose limiting with many therapeutic and anticancer agents. Real-time, noninvasive detection of markers of toxicity in biofluids is advantageous. Ongoing research has revealed microRNAs as potential diagnostic and predictive biomarkers for the detection of select organ toxicities. To study the potential utility of microRNA biomarkers of intestinal injury in a preclinical toxicology species, we evaluated 3 rodent models of drug-induced intestinal toxicity, each with a distinct mechanism of toxicity. MiR-215 and miR-194 were identified as putative intestinal toxicity biomarkers. Both were evaluated in plasma and feces and compared to plasma citrulline, an established intestinal injury biomarker. Following intestinal toxicant dosing, microRNA changes in feces and plasma were detected noninvasively and correlated with histologic evidence of intestinal injury. Fecal miR-215 and miR-194 levels increased, and plasma miR-215 decreased in a dose- and time-dependent manner. Dose-dependent decreases in plasma miR-215 levels also preceded and correlated positively with plasma citrulline modulation, suggesting miR-215 is a more sensitive biomarker. Moreover, during the drug-free recovery phase, plasma miR-215 returned to predose levels, supporting a corresponding recovery of histologic lesions. Despite limitations, this study provides preliminary evidence that select microRNAs have the potential to act as noninvasive, sensitive, and quantitative biomarkers of intestinal injury.
Collapse
Affiliation(s)
- Dalia Y Kalabat
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Allison Vitsky
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Wesley Scott
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Erick Kindt
- 2 Pharmacokinetics, Dynamics and Metabolism, Pfizer Global R&D, San Diego, California, USA
| | - Kyle Hayes
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | | | - Wenhu Huang
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| | - Amy H Yang
- 1 Drug Safety R&D, Pfizer Global R&D, San Diego, California, USA
| |
Collapse
|
29
|
Bujold K, Hauer-Jensen M, Donini O, Rumage A, Hartman D, Hendrickson HP, Stamatopoulos J, Naraghi H, Pouliot M, Ascah A, Sebastian M, Pugsley MK, Wong K, Authier S. Citrulline as a Biomarker for Gastrointestinal-Acute Radiation Syndrome: Species Differences and Experimental Condition Effects. Radiat Res 2016; 186:71-8. [PMID: 27351760 DOI: 10.1667/rr14305.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Animal models of hematopoietic and gastrointestinal acute radiation syndromes (ARS) have been characterized to develop medical countermeasures. Acute radiation-induced decrease of intestinal absorptive function has been correlated to a decrease in the number of intestinal crypt cells resulting from apoptosis and enterocyte mass reduction. Citrulline, a noncoded amino acid, is produced almost exclusively by the enterocytes of the small intestine. Citrullinemia has been identified as a simple, sensitive and suitable biomarker for radiation-induced injury associated with gastrointestinal ARS (GI-ARS). Here we discuss the effect of radiation on plasma citrulline levels in three different species, C57BL/6 mice, Göttingen minipigs and rhesus nonhuman primates (NHPs), measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). The effects of experimental study conditions such as feeding and anesthesia were also examined on plasma citrulline levels in the NHPs. Both the mice and Göttingen minipigs were partial-body irradiated (PBI) with doses from 13-17 Gy and 8-16 Gy, respectively, whereas NHPs were total-body irradiated (TBI) with doses from 6.72-13 Gy. Blood samples were taken at different time points and plasma citrulline levels were measured in the three species at baseline and after irradiation. Basal plasma citrulline concentrations (mean ± SEM) in mice and minipigs were 57.8 ± 2.8 μM and 63.1 ± 2.1 μM, respectively. NHPs showed a basal plasma citrulline concentration of 32.6 ± 0.7 μM, very similar to that of humans (∼40 μM). Plasma citrulline progressively decreased after irradiation, reaching nadir values between day 3.5 and 7. The onset of citrulline recovery was observed earlier at lower radiation doses, while only partial citrulline recovery was noted at higher radiation doses in minipigs and NHPs, complete recovery was noted in mice at all doses. Plasma citrulline levels in NHPs anesthetized with ketamine and acepromazine significantly decreased by 35.5% (P = 0.0017), compared to unanesthetized NHPs. In the postprandial state, citrulline concentrations in NHPs were slightly but significantly decreased by 12.2% (P = 0.0287). These results suggest that plasma citrulline is affected by experimental conditions such as anesthesia and feeding.
Collapse
Affiliation(s)
- K Bujold
- a CiToxLAB North America, Laval, Canada
| | - M Hauer-Jensen
- b Division of Radiation Health, University of Arkansas for Medical Sciences and Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - O Donini
- c Soligenix, Inc., Princeton, New Jersey
| | - A Rumage
- c Soligenix, Inc., Princeton, New Jersey
| | - D Hartman
- d Avaxia Biologics, Inc., Lexington, Massachusetts
| | | | | | - H Naraghi
- a CiToxLAB North America, Laval, Canada
| | - M Pouliot
- a CiToxLAB North America, Laval, Canada
| | - A Ascah
- a CiToxLAB North America, Laval, Canada
| | | | | | - K Wong
- a CiToxLAB North America, Laval, Canada
| | - S Authier
- a CiToxLAB North America, Laval, Canada.,e University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
30
|
Goudarzi M, Chauthe S, Strawn SJ, Weber WM, Brenner DJ, Fornace AJ. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17050782. [PMID: 27213362 PMCID: PMC4881599 DOI: 10.3390/ijms17050782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023] Open
Abstract
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
Collapse
Affiliation(s)
- Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Siddheshwar Chauthe
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| | - Steven J Strawn
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Waylon M Weber
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA.
| | - David J Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, VC11-240, New York, NY 10032, USA.
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
31
|
Posaconazole plasma exposure correlated to intestinal mucositis in allogeneic stem cell transplant patients. Eur J Clin Pharmacol 2016; 72:953-63. [PMID: 27066958 DOI: 10.1007/s00228-016-2057-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Low posaconazole plasma concentrations (PPCs) are frequently encountered in allogeneic hematopoietic stem cell transplant (HSCT) patients, due to variable gastrointestinal absorption. In this study, the impact of intestinal mucositis on posaconazole exposure is investigated. PATIENTS AND METHODS A prospective pharmacokinetic study was performed including allogeneic HSCT patients receiving posaconazole prophylaxis with the oral suspension or tablets. Steady state PPCs were determined using high-performance liquid chromatography-fluorescence detection at the day of transplantation (=day 0), day +7, and +14. Citrulline was measured using liquid chromatography-tandem mass spectrometry to evaluate severity of mucositis, at baseline (day -7 or -6), and at day 0, +7 and +14. Additionally, citrulline plasma concentrations and steady state trough PPCs were determined in hematological patients without HSCT or mucositis. RESULTS Thirty-four HSCT patients received posaconazole oral suspension together with 25 cL of Coca Cola, 6 HSCT patients received posaconazole tablets and 33 hematological patients not receiving HSCT received posaconazole oral suspension. The median (interquartile range) average PPC was 0.26 mg/L (0.17-0.43), 0.67 mg/L (0.27-1.38), and 1.08 mg/L (0.96-1.38), with suspension in HSCT patients, suspension in hematological patients and tablets in HSCT patients, respectively. A higher trough PPC was encountered with the oral suspension when citrulline plasma concentrations were above 10 μmol/L compared to values below 10 μmol/L (p < 0.001), whereas for tablets, average PPCs remained high with citrulline plasma concentrations below or above 10 μmol/L (p = 0.64). CONCLUSION Posaconazole tablets should be preferred to suspension in HSCT patients immediately after transplantation to prevent insufficient plasma exposure due to intestinal mucositis.
Collapse
|
32
|
Kim YJ, Park JH, Yun IH, Kim YS. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer. Onco Targets Ther 2016; 9:1319-25. [PMID: 27022287 PMCID: PMC4790507 DOI: 10.2147/ott.s96646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To compare the acute intestinal toxicity of whole pelvic (WP) and small field (SF) intensity-modulated radiotherapy (IMRT) for prostate cancer using dosimetric and metabolic parameters as well as clinical findings. Methods Patients who received IMRT in either a definitive or postoperative setting were prospectively enrolled. Target volume and organs at risk including intestinal cavity (IC) were delineated in every patient by a single physician. The IC volume that received a 10–50 Gy dose at 5-Gy intervals (V10–V50) and the percentage of irradiated volume as a fraction of total IC volume were calculated. Plasma citrulline levels, as an objective biological marker, were checked at three time points: baseline and after exposure to 30 Gy and 60 Gy. Results Of the 41 patients, only six experienced grade 1 acute intestinal toxicity. Although all dose–volume parameters were significantly worse following WP than SF IMRT, there was no statistically significant relationship between these dosimetric parameters and clinical symptoms. Plasma citrulline levels did not show a serial decrease by radiotherapy volume difference (WP versus SF) and were not relevant to the irradiated doses. Conclusion Given that WP had comparable acute intestinal toxicities to those associated with SF, WP IMRT appears to be a feasible approach for the treatment of prostate cancer despite dosimetric disadvantages.
Collapse
Affiliation(s)
- Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jin-Hong Park
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ha Yun
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| |
Collapse
|
33
|
Jones JW, Tudor G, Li F, Tong Y, Katz B, Farese AM, MacVittie TJ, Booth C, Kane MA. Citrulline as a Biomarker in the Murine Total-Body Irradiation Model: Correlation of Circulating and Tissue Citrulline to Small Intestine Epithelial Histopathology. HEALTH PHYSICS 2015; 109:452-65. [PMID: 26425905 PMCID: PMC4727745 DOI: 10.1097/hp.0000000000000346] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The use of plasma citrulline as a biomarker for gastrointestinal acute radiation syndrome via exposure to total-body irradiation in a murine model was investigated. The radiation exposure covered lethal, mid-lethal, and sub-lethal gastrointestinal acute radiation syndrome. Plasma citrulline profiles were generated over the first 6 d following total-body irradiation exposure of 6-15 Gy. In addition, plasma citrulline was comprehensively evaluated in the context of matching small intestine citrulline and histopathology. Higher plasma citrulline was significantly associated with lower irradiation doses over the first 6 d following the irradiation insult. Furthermore, higher plasma citrulline was significantly associated with higher crypt survival. The correlation of the plasma citrulline to crypt survival was more robust for higher irradiation doses and for later time points. The data suggested plasma citrulline was most informative for reflecting gastrointestinal injury resulting from exposure to 9-15 Gy total-body irradiation covering time-points 2-5 d post the irradiation insult.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Fei Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Yan Tong
- Indiana University, School of Medicine and Richard M. Fairbanks School of Public Health, Department of Biostatistics, Indianapolis, IN
| | - Barry Katz
- Indiana University, School of Medicine and Richard M. Fairbanks School of Public Health, Department of Biostatistics, Indianapolis, IN
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
34
|
Khayyal MT, El-Hazek RM, El-Ghazaly MA. Propolis aqueous extract preserves functional integrity of murine intestinal mucosa after exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:901-906. [PMID: 26498266 DOI: 10.1016/j.etap.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The ability of a specially prepared water propolis extract (PWE) to preserve the functional activity of the intestinal mucosa after radiation exposure was studied. PWE was given orally (650 mg/kg) to rats five days prior to irradiation by 6 Gy and continued for further two days. Rats were sacrificed 24h later, intestinal segments were examined histologically and homogenates were used to assess relevant biochemical parameters reflecting intestinal injury. Irradiation led to a rise in the histological damage score, a rise in tissue TNF-α and TBARS, and a decrease in sucrase, alkaline phosphatase, GSH and cholecystokinin as well as a decrease in plasma citrulline. The findings reflect a decrease in intestinal functional activity. PWE preserved the intestinal integrity and largely protected against the changes induced in the histology damage score and all parameters measured, possibly as a result of the antioxidant and anti-inflammatory action of its caffeic acid content.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
35
|
Jones JW, Bennett A, Carter CL, Tudor G, Hankey KG, Farese AM, Booth C, MacVittie TJ, Kane MA. Citrulline as a Biomarker in the Non-human Primate Total- and Partial-body Irradiation Models: Correlation of Circulating Citrulline to Acute and Prolonged Gastrointestinal Injury. HEALTH PHYSICS 2015; 109:440-51. [PMID: 26425904 PMCID: PMC4593331 DOI: 10.1097/hp.0000000000000347] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of plasma citrulline as a biomarker for acute and prolonged gastrointestinal injury via exposure to total- and partial-body irradiation (6 MV LINAC-derived photons; 0.80 Gy min) in nonhuman primate models was investigated. The irradiation exposure covered gastrointestinal injuries spanning lethal, mid-lethal, and sub-lethal doses. The acute gastrointestinal injury was assessed via measurement of plasma citrulline and small intestinal histopathology over the first 15 d following radiation exposure and included total-body irradiation at 13.0 Gy, 10.5 Gy, and 7.5 Gy and partial-body irradiation at 11.0 Gy with 5% bone marrow sparing. The dosing schemes of 7.5 Gy total-body irradiation and 11.0 Gy partial-body irradiation included time points out to day 60 and day 180, respectively, which allowed for correlation of plasma citrulline to prolonged gastrointestinal injury and survival. Plasma citrulline values were radiation-dependent for all radiation doses under consideration, with nadir values ranging from 63-80% lower than radiation-naïve NHP plasma. The nadir values were observed at day 5 to 7 post irradiation. Longitudinal plasma citrulline profiles demonstrated prolonged gastrointestinal injury resulting from acute high-dose irradiation had long lasting effects on enterocyte function. Moreover, plasma citrulline did not discriminate between total-body or partial-body irradiation over the first 15 d following irradiation and was not predictive of survival based on the radiation models considered herein.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander Bennett
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
36
|
Wang J, Shao L, Hendrickson HP, Liu L, Chang J, Luo Y, Seng J, Pouliot M, Authier S, Zhou D, Allaben W, Hauer-Jensen M. Total Body Irradiation in the "Hematopoietic" Dose Range Induces Substantial Intestinal Injury in Non-Human Primates. Radiat Res 2015; 184:545-53. [PMID: 26495870 DOI: 10.1667/rr14191.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-human primate has been a useful model for studies of human acute radiation syndrome (ARS). However, to date structural changes in various parts of the intestine after total body irradiation (TBI) have not been systematically studied in this model. Here we report on our current study of TBI-induced intestinal structural injury in the non-human primate after doses typically associated with hematopoietic ARS. Twenty-four non-human primates were divided into three groups: sham-irradiated control group; and total body cobalt-60 (60Co) 6.7 Gy gamma-irradiated group; and total body 60Co 7.4 Gy gamma-irradiated group. After animals were euthanized at day 4, 7 and 12 postirradiation, sections of small intestine (duodenum, proximal jejunum, distal jejunum and ileum) were collected and fixed in 10% formalin. The intestinal mucosal surface length, villus height and crypt depths were assessed by computer-assisted image analysis. Plasma citrulline levels were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total bone marrow cells were counted and hematopoietic stem/progenitor cells in bone marrow were analyzed by flow cytometer. Histopathologically, all segments exhibited conspicuous disappearance of plicae circulares and prominent atrophy of crypts and villi. Intestinal mucosal surface length was significantly decreased in all intestinal segments on day 4, 7 and 12 after irradiation (P < 0.02-P < 0.001). Villus height was significantly reduced in all segments on day 4 and 7 (P = 0.02-0.005), whereas it had recovered by day 12 (P > 0.05). Crypt depth was also significantly reduced in all segments on day 4, 7 and 12 after irradiation (P < 0.04-P < 0.001). Plasma citrulline levels were dramatically reduced after irradiation, consistent with intestinal mucosal injury. Both 6.7 and 7.4 Gy TBI reduced total number of bone marrow cells. And further analysis showed that the number and function of CD45(+)CD34(+) hematopoietic stem/progenitors in bone marrow decreased significantly. In summary, TBI in the hematopoietic ARS dose range induces substantial intestinal injury in all segments of the small bowel. These findings underscore the importance of maintaining the mucosal barrier that separates the gut microbiome from the body's interior after TBI.
Collapse
Affiliation(s)
- Junru Wang
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lijian Shao
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Howard P Hendrickson
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Liya Liu
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jianhui Chang
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yi Luo
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John Seng
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | - Daohong Zhou
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William Allaben
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- a Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,c Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
37
|
Al-Saffar A, Nogueira da Costa A, Delaunois A, Leishman DJ, Marks L, Rosseels ML, Valentin JP. Gastrointestinal Safety Pharmacology in Drug Discovery and Development. Handb Exp Pharmacol 2015; 229:291-321. [PMID: 26091645 DOI: 10.1007/978-3-662-46943-9_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the basic structure of the gastrointestinal tract (GIT) is similar across species, there are significant differences in the anatomy, physiology, and biochemistry between humans and laboratory animals, which should be taken into account when conducting a gastrointestinal (GI) assessment. Historically, the percentage of cases of drug attrition associated with GI-related adverse effects is small; however, this incidence has increased over the last few years. Drug-related GI effects are very diverse, usually functional in nature, and not limited to a single pharmacological class. The most common GI signs are nausea and vomiting, diarrhea, constipation, and gastric ulceration. Despite being generally not life-threatening, they can greatly affect patient compliance and quality of life. There is therefore a real need for improved and/or more extensive GI screening of candidate drugs in preclinical development, which may help to better predict clinical effects. Models to identify drug effects on GI function cover GI motility, nausea and emesis liability, secretory function (mainly gastric secretion), and absorption aspects. Both in vitro and in vivo assessments are described in this chapter. Drug-induced effects on GI function can be assessed in stand-alone safety pharmacology studies or as endpoints integrated into toxicology studies. In silico approaches are also being developed, such as the gut-on-a-chip model, but await further optimization and validation before routine use in drug development. GI injuries are still in their infancy with regard to biomarkers, probably due to their greater diversity. Nevertheless, several potential blood, stool, and breath biomarkers have been investigated. However, additional validation studies are necessary to assess the relevance of these biomarkers and their predictive value for GI injuries.
Collapse
Affiliation(s)
- Ahmad Al-Saffar
- Faculty of Medicine, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Ó Broin P, Vaitheesvaran B, Saha S, Hartil K, Chen EI, Goldman D, Fleming WH, Kurland IJ, Guha C, Golden A. Intestinal microbiota-derived metabolomic blood plasma markers for prior radiation injury. Int J Radiat Oncol Biol Phys 2015; 91:360-7. [PMID: 25636760 DOI: 10.1016/j.ijrobp.2014.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. METHODS AND MATERIALS Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. RESULTS We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. CONCLUSIONS Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma.
Collapse
Affiliation(s)
- Pilib Ó Broin
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York; Department of Mathematical Sciences, Yeshiva University, New York, New York
| | - Bhavapriya Vaitheesvaran
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Kirsten Hartil
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Emily I Chen
- Department of Pharmacology, Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Devorah Goldman
- Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | | | - Irwin J Kurland
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York.
| | - Aaron Golden
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York; Department of Mathematical Sciences, Yeshiva University, New York, New York.
| |
Collapse
|
39
|
El-Ghazaly MA, El-Hazek RM, Khayyal MT. Protective effect of the herbal preparation, STW 5, against intestinal damage induced by gamma radiation in rats. Int J Radiat Biol 2015; 91:150-6. [DOI: 10.3109/09553002.2014.954059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Forteschi M, Sotgia S, Pintus G, Zinellu A, Carru C. Simultaneous determination of citrulline and arginine in human blood plasma by capillary electrophoresis with ultraviolet absorption detection. J Sep Sci 2014; 37:2418-23. [DOI: 10.1002/jssc.201400177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Forteschi
- Department of Biomedical Sciences; University of Sassari; Italy
| | | | | | - Angelo Zinellu
- Department of Biomedical Sciences; University of Sassari; Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences; University of Sassari; Italy
- Quality Control Unit; Hospital University of Sassari (AOU); Sassari Italy
| |
Collapse
|
41
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
42
|
Hauer-Jensen M. Toward development of interleukin-11 as a medical countermeasure for use in radiological/nuclear emergencies. Dig Dis Sci 2014; 59:1349-51. [PMID: 24591015 PMCID: PMC4071113 DOI: 10.1007/s10620-014-3074-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Martin Hauer-Jensen
- Surgical Service, Central Arkansas Veterans Healthcare System, and Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
43
|
Shim S, Jang WS, Lee SJ, Jin S, Kim J, Lee SS, Bang HY, Jeon BS, Park S. Development of a new minipig model to study radiation-induced gastrointestinal syndrome and its application in clinical research. Radiat Res 2014; 181:387-95. [PMID: 24786169 DOI: 10.1667/rr13207.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of insufficient clinical data regarding acute radiation damage after single high-dose radiation exposure, acute radiation-induced gastrointestinal (GI) syndrome remains difficult to treat. The goal of this study was to establish an appropriate and efficient minipig model to study high-dose radiation-induced GI syndrome after radiation exposure. For endoscopic access to the ileum, ileocutaneous anastomosis was performed 3 weeks before irradiation in six male Göttingen minipigs. Minipigs were locally irradiated at the abdominal area using a gamma source as follows: 1,000 cGy (n = 3) and 1,500 cGy (n = 3). Endoscopic evaluation for the terminal ileum was periodically performed via the ileocutaneous anastomosis tract. Pieces of tissue were serially taken for histological examination. The irradiated intestine presented characteristic morphological changes over time. The most obvious changes in the ileum were mucosal atrophy and telangiectasia from day 1 to day 17 after abdominal irradiation. Microscopic findings were characterized as architectural disorganization, loss of villi and chronic active inflammation. Increase in cyclooxygenase-2 (COX-2) expression was closely correlated with severity of tissue damage and inflammation. Particularly, the plasma citrulline level (PCL), a potential marker for radiation-induced intestinal damage, was significantly decreased the day after irradiation and recovered when irradiated mucosa was normalized. Our results also showed that PCL changes were positively correlated with microscopic changes and the endoscopic score in radiation-induced mucosal damage. In conclusion, the ileocutaneous anastomosis model using the minipig mimics human GI syndrome and allows the study of sequential changes in the ileum, the main target tissue of abdominal irradiation. In addition, PCL could be a simple biomarker for radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Sehwan Shim
- a National Radiation Emergency Medical Center, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 139-706, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ossetrova NI, Sandgren DJ, Blakely WF. Protein biomarkers for enhancement of radiation dose and injury assessment in nonhuman primate total-body irradiation model. RADIATION PROTECTION DOSIMETRY 2014; 159:61-76. [PMID: 24925901 DOI: 10.1093/rpd/ncu165] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Development and validation of early-response radiation injury biomarkers are critical for effective triage and medical management of irradiated individuals. Plasma protein and haematological profiles were evaluated using multivariate linear-regression analysis to provide dose-response calibration curves for photon-radiation dose assessment in 30 rhesus macaques total-body-irradiated to 1-8.5 Gy with (60)Co gamma rays (0.55 Gy min(-1)). Equations for radiation dose received were established based on different combinations of protein biomarkers [i.e. C-reactive protein (CRP), serum amyloid A (SAA), interleukin 6 (IL-6) and Flt3 Ligand (Flt3L)] at samples collection time-points 6 h, 1, 2, 3, 4 and 7 d post-total-body irradiation. Dynamic changes in the levels of CRP, SAA, IL-6 and Flt3L may function as prognostic indicators of the time course and severity of acute radiation sickness (ARS). The combination of protein biomarkers provides greater accuracy for early radiation assessment than any one biomarker alone.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5693, USA
| | - David J Sandgren
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5693, USA
| | - William F Blakely
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5693, USA
| |
Collapse
|
45
|
Ossetrova NI, Condliffe DP, Ney PH, Krasnopolsky K, Hieber KP, Rahman A, Sandgren DJ. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. HEALTH PHYSICS 2014; 106:772-786. [PMID: 24776912 DOI: 10.1097/hp.0000000000000094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nuclear accidents or terrorist attacks could expose large numbers of people to ionizing radiation. Early biomarkers of radiation injury will be critical for triage, treatment, and follow-up of such individuals. The authors evaluated the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (CD2F1, males) total-body irradiation (TBI) model exposed to ⁶⁰Co γ rays (0.6 Gy min⁻¹) over a broad dose range (0-14 Gy) and timepoints (4 h-5 d). Results demonstrate: 1) dose-dependent changes in hematopoietic cytokines: Flt-3 ligand (Flt3L), interleukin 6 (IL-6), granulocyte colony stimulating factor (G-CSF), thrombopoietin (TPO), erythropoietin (EPO), and acute phase protein serum amyloid A (SAA); 2) dose-dependent changes in blood cell counts: lymphocytes, neutrophils, platelets, and ratio of neutrophils to lymphocytes; 3) protein results coupled with peripheral blood cell counts established very successful separation of groups irradiated to different doses; and 4) enhanced separation of dose was observed as the number of biomarkers increased. Results show that the dynamic changes in the levels of SAA, IL-6, G-CSF, and Flt3L reflect the time course and severity of acute radiation syndrome (ARS) and may function as prognostic indicators of ARS outcome. These results also demonstrate proof-in-concept that plasma proteins show promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provide early diagnostic information to manage radiation casualty incidents effectively, closing a gap in capabilities to rapidly and effectively assess radiation exposure early, especially needed in case of a mass-casualty radiological incident.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- *Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), 8901 Wisconsin Avenue, Bethesda, MD 20889-5603
| | | | | | | | | | | | | |
Collapse
|
46
|
Cellini F, Morganti AG, Genovesi D, Silvestris N, Valentini V. Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules 2014; 19:5379-401. [PMID: 24879584 PMCID: PMC6271831 DOI: 10.3390/molecules19045379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNA) are small, non-coding, RNAs with gene expression regulator roles. As an important class of regulators of many cellular pathways, miRNAs are involved in many signaling pathways and DNA damage repair processes, affecting cellular radiosensitivity. Their role has led to interest in oncological implications to improve treatment results. MiRNAs represent a great opportunity to enhance the efficacy of radiotherapy treatments-they can be used to profile the radioresistance of tumors before radiotherapy, monitor their response throughout the treatment, thus helping to select intensification strategies, and also to define the final response to therapy along with risks of recurrence or metastatization. Even though many interesting studies support such potential, nowadays most studies on patient data are limited to experiments profiling tumor aggressiveness and response to radiotherapy. Moreover many studies report different although not conflicting results on the miRNAs evaluated for each tumor type. Without doubt, the clinical potential of such molecules for radiotherapy is striking and of high interest.
Collapse
Affiliation(s)
- Francesco Cellini
- Radiation Oncology Department, Policlinico Universitario Campus Bio-Medico; Via Álvaro del Portillo 200, 00144 Rome, Italy.
| | - Alessio G Morganti
- Radiotherapy Department, Università Cattolica del Sacro Cuore; Fondazione di Ricerca e Cura "Giovanni Paolo II", Largo Agostino Gemelli 1, 86100 Campobasso, Italy.
| | - Domenico Genovesi
- Radiation Oncology Department, Università "G. D'Annunzio"; Via dei Vestini 31, 66100 Chieti, Italy.
| | - Nicola Silvestris
- Medical Oncology Unit - Cancer Institute "Giovanni Paolo II"; Viale Orazio Flacco, 65, 70124 Bari, Italy.
| | - Vincenzo Valentini
- Radiation Oncology Department, Università Cattolica del Sacro Cuore; L.go Francesco Vito 1, 00168 Roma, Italy.
| |
Collapse
|
47
|
Zhang Y, Zhou X, Li C, Wu J, Kuo JE, Wang C. Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. MOLECULAR BIOSYSTEMS 2014; 10:1441-9. [PMID: 24647718 DOI: 10.1039/c3mb70526a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid radiation injury early triage after a radiological or nuclear exposure is vital for treatment of a large number of wounded people. Owing to the high-throughput analysis and minimally invasive nature of sample collection, radiation metabolomics has been recently applied to radiation damage research. In the present study, exploring the feasibility of estimating the acute radiation injury for early triage by means of urinary amino acid target analysis was attempted using a high performance liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) technique combined with multivariate statistical analysis. The non-linear kernel partial least squares (KPLS) model was used to separate the control and different radiation dose groups. The classification of different groups was performed after feature selection instead of before feature selection, because of its better separation. The classification accuracy at various radiation injury levels at different time points (5, 24, 48 and 72 h) post-irradiation exposure was investigated. For most of the radiation damage levels, the classification accuracy at 72 h after exposure was superior to that at earlier time points. Additionally, the potential radiation injury biomarkers selected suggested that the urea cycle, glycine, serine and threonine metabolism, alanine, aspartate and glutamine metabolism and related metabolic pathways were involved. The findings suggest that non-invasive urinary biomarkers have great potential for serving as an effective tool for rapid triage of mass casualties in nuclear accidents and understanding the pathogenesis of radiation injury.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Garg S, Wang W, Prabath BG, Boerma M, Wang J, Zhou D, Hauer-Jensen M. Bone marrow transplantation helps restore the intestinal mucosal barrier after total body irradiation in mice. Radiat Res 2014; 181:229-39. [PMID: 24568131 DOI: 10.1667/rr13548.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow transplantation (BMT) substantially improves 10-day survival after total body irradiation (TBI), consistent with an effect on intestinal radiation death. Total body irradiation, in addition to injuring the intestinal epithelium, also perturbs the mucosal immune system, the largest immune system in the body. This study focused on how transplanted bone marrow cells (BMCs) help restore mucosal immune cell populations after sublethal TBI (8.0 Gy). We further evaluated whether transplanted BMCs: (a) home to sites of radiation injury using green fluorescent protein labeled bone marrow; and (b) contribute to restoring the mucosal barrier in vivo. As expected, BMT accelerated recovery of peripheral blood (PB) cells. In the intestine, BMT was associated with significant early recovery of mucosal granulocytes (P = 0.005). Bone marrow transplantation did not affect mucosal macrophages or lymphocyte populations at early time points, but enhanced the recovery of these cells from day 14 onward (P = 0.03). Bone marrow transplantation also attenuated radiation-induced increase of intestinal CXCL1 and restored IL-10 levels (P = 0.001). Most importantly, BMT inhibited the post-radiation increase in intestinal permeability after 10 Gy TBI (P = 0.02) and modulated the expression of tight junction proteins (P = 0.01-0.05). Green fluorescent protein-positive leukocytes were observed both in intestinal tissue and in PB. These findings strongly suggest that BMT, in addition to enhancing general hematopoietic and immune system recovery, helps restore the intestinal immune system and enhances intestinal mucosal barrier function. These findings may be important in the development and understanding of strategies to alleviate or treat intestinal radiation toxicity.
Collapse
Affiliation(s)
- Sarita Garg
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Malabsorption encompasses dysfunctions occurring during the digestion and absorption of nutrients. A small proportion of patients presents with chronic diarrhoea. A clinical history supportive of malabsorption may guide investigations toward either the small bowel or pancreas. Serological testing for coeliac disease will determine most cases without invasive investigations. In the clinical context of persisting weight loss and malnutrition, small bowel enteropathy may be investigated with small intestinal biopsies. Small bowel absorptive capacity and permeability might be measured by oral sugar-mix ingestion. Further, approaches to the investigation of malabsorption might also involve the detection in faeces of a substance that has not been absorbed. A variation of the latter is the use of breath testing which relies on the breakdown of the malabsorbed test substance by colonic flora. Measurement of protein absorption is difficult and unreliable; it is, therefore, rarely advocated in clinical settings. No single biological marker confirming a diagnosis of small bowel malabsorption or small bowel integrity is presently available in clinical practice. Plasma citrulline concentration, an amino acid not incorporated into endogenous or exogenous proteins, has been extensively used in research studies and supportive results are establishing its concentration as a reliable quantitative biomarker of enterocyte absorptive capacity.
Collapse
Affiliation(s)
- Cinzia Papadia
- Gastroenterology Unit, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy,
| | | | | | | |
Collapse
|
50
|
Tang X, Gu Y, Nie J, Fan S, Wang C. QUANTIFICATION OF AMINO ACIDS IN RAT URINE BY SOLID-PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/ELECTROSPRAY TANDEM MASS SPECTROMETRY: APPLICATION TO RADIATION INJURY RAT MODEL. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.765451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xinxing Tang
- a Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , P. R. China
- b School for Radiological and Interdisciplinary Sciences (RAD-X) , Suzhou , P. R. China
| | - Yuan Gu
- a Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , P. R. China
- b School for Radiological and Interdisciplinary Sciences (RAD-X) , Suzhou , P. R. China
| | - Jihua Nie
- c School of Public Health , Medical College of Soochow University , Suzhou , P. R. China
| | - Saijun Fan
- a Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , P. R. China
| | - Chang Wang
- a Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , P. R. China
- b School for Radiological and Interdisciplinary Sciences (RAD-X) , Suzhou , P. R. China
| |
Collapse
|