1
|
Munshi R, Panchal F, Desai U, Utpat K, Rajoria K. A study of N-acetyltransferase 2 gene polymorphisms in the Indian population and its relationship with serum isoniazid concentrations in a cohort of tuberculosis patients. Monaldi Arch Chest Dis 2024. [PMID: 39704240 DOI: 10.4081/monaldi.2024.3181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 12/21/2024] Open
Abstract
The N-acetyltransferase 2 (NAT2) gene exhibits substantial genetic diversity, leading to distinct acetylator phenotypes among individuals. In this study, we determine NAT2 gene polymorphisms in tuberculosis (TB) patients and analyze serum isoniazid (INH) concentrations across the various genotypes. An observational prospective cohort study involving 217 patients with pulmonary or extrapulmonary TB was carried out. The NAT2 genotypes were identified using real-time polymerase chain reaction technology. INH concentrations at baseline and 2 hours post-dosing were estimated using high-performance liquid chromatography. The association between the acetylator status and INH concentrations was evaluated using odds ratios (OR) and the occurrence of adverse events across the different patient genotypes was also assessed. The genotype frequency of fast, intermediate, and slow acetylators was 7.37%, 39.17%, and 53.46%, respectively, while allele frequency was 27% for fast acetylators and 73% for slow acetylators. All the alleles followed the Hardy-Weinberg equilibrium. Patients with slow acetylator status had significantly increased serum INH concentrations 2 hours post-drug administration, followed by intermediate acetylators as compared to fast acetylators. 69 (31.8%) patients developed adverse drug reactions post-therapy. Patients with slow acetylator status had the highest (OR: 9.66) risk of developing drug-induced hepatoxicity, especially those with raised serum INH concentrations (OR: 1.34). Understanding the correlation between genetics and serum antitubercular drug levels in antitubercular drug-induced hepatotoxicity will provide valuable information to the medical community, minimizing the risk of adverse reactions and hospitalizations.
Collapse
Affiliation(s)
- Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College And Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College And Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai
| | - Unnati Desai
- Department of Pulmonary Medicine, Topiwala National Medical College And Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai
| | - Ketaki Utpat
- Department of Pulmonary Medicine, Topiwala National Medical College And Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai
| | - Kirti Rajoria
- Department of Clinical Pharmacology, Topiwala National Medical College And Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai
| |
Collapse
|
2
|
Abdelgawad N, Chirehwa M, Schutz C, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, McIlleron H, Maartens G, Meintjes G, Denti P. Pharmacokinetics of antitubercular drugs in patients hospitalized with HIV-associated tuberculosis: a population modeling analysis. Wellcome Open Res 2024; 7:72. [PMID: 37008250 PMCID: PMC10050909 DOI: 10.12688/wellcomeopenres.17660.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Background Early mortality among hospitalized HIV-associated tuberculosis (TB/HIV) patients is high despite treatment. The pharmacokinetics of rifampicin, isoniazid, and pyrazinamide were investigated in hospitalized TB/HIV patients and a cohort of outpatients with TB (with or without HIV) to determine whether drug exposures differed between groups. Methods Standard first-line TB treatment was given daily as per national guidelines, which consisted of oral 4-drug fixed-dose combination tablets containing 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol. Plasma samples were drawn on the 3rd day of treatment over eight hours post-dose. Rifampicin, isoniazid, and pyrazinamide in plasma were quantified and NONMEM ® was used to analyze the data. Results Data from 60 hospitalized patients (11 of whom died within 12 weeks of starting treatment) and 48 outpatients were available. Median (range) weight and age were 56 (35 - 88) kg, and 37 (19 - 77) years, respectively. Bioavailability and clearance of the three drugs were similar between TB/HIV hospitalized and TB outpatients. However, rifampicin's absorption was slower in hospitalized patients than in outpatients; mean absorption time was 49.9% and 154% more in hospitalized survivors and hospitalized deaths, respectively, than in outpatients. Higher levels of conjugated bilirubin correlated with lower rifampicin clearance. Isoniazid's clearance estimates were 25.5 L/h for fast metabolizers and 9.76 L/h for slow metabolizers. Pyrazinamide's clearance was more variable among hospitalized patients. The variability in clearance among patients was 1.70 and 3.56 times more for hospitalized survivors and hospitalized deaths, respectively, than outpatients. Conclusions We showed that the pharmacokinetics of first-line TB drugs are not substantially different between hospitalized TB/HIV patients and TB (with or without HIV) outpatients. Hospitalized patients do not seem to be underexposed compared to their outpatient counterparts, as well as hospitalized patients who survived vs who died within 12 weeks of hospitalization.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L3 5QA, UK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Saskia Janssen
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 19268, The Netherlands
| | - Rosie Burton
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Khayelitsha Hospital, Department of Medicine, Khayelitsha, 7784, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
3
|
Lopes MQP, Teixeira RLF, Cabello PH, Nery JAC, Sales AM, Nahn J. R. EP, Moreira MV, Stahlke EVR, Possuelo LG, Rossetti MLR, Rabahi MF, Silva LFM, Leme PA, Woods WJ, Nobre ML, de Oliveira MLWDR, Narahashi K, Cavalcanti M, Suffys PN, Boukouvala S, Gallo MEN, Santos AR. Human N-acetyltransferase 2 ( NAT2) gene variability in Brazilian populations from different geographical areas. Front Pharmacol 2023; 14:1278720. [PMID: 38035025 PMCID: PMC10684696 DOI: 10.3389/fphar.2023.1278720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Several polymorphisms altering the NAT2 activity have already been identified. The geographical distribution of NAT2 variants has been extensively studied and has been demonstrated to vary significantly among different ethnic population. Here, we describe the genetic variability of human N-acetyltransferase 2 (NAT2) gene and the predominant genotype-deduced acetylation profiles of Brazilians. Methods: A total of 964 individuals, from five geographical different regions, were genotyped for NAT2 by sequencing the entire coding exon. Results: Twenty-three previously described NAT2 single nucleotide polymorphisms (SNPs) were identified, including the seven most common ones globally (c.191G>A, c.282C>T, c.341T>C, c.481C>T, c.590G>A, c.803A>G and c.857G>A). The main allelic groups were NAT2*5 (36%) and NAT2*6 (18.2%), followed to the reference allele NAT2*4 (20.4%). Combined into genotypes, the most prevalent allelic groups were NAT2*5/*5 (14.6%), NAT2*5/*6 (11.9%) and NAT2*6/*6 (6.2%). The genotype deduced NAT2 slow acetylation phenotype was predominant but showed significant variability between geographical regions. The prevalence of slow acetylation phenotype was higher in the Northeast, North and Midwest (51.3%, 45.5% and 41.5%, respectively) of the country. In the Southeast, the intermediate acetylation phenotype was the most prevalent (40.3%) and, in the South, the prevalence of rapid acetylation phenotype was significantly higher (36.7%), when compared to other Brazilian states (p < 0.0001). Comparison of the predicted acetylation profile among regions showed homogeneity among the North and Northeast but was significantly different when compared to the Southeast (p = 0.0396). The Southern region was significantly different from all other regions (p < 0.0001). Discussion: This study contributes not only to current knowledge of the NAT2 population genetic diversity in different geographical regions of Brazil, but also to the reconstruction of a more accurate phenotypic picture of NAT2 acetylator profiles in those regions.
Collapse
Affiliation(s)
- Márcia Quinhones P. Lopes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Raquel Lima F. Teixeira
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Pedro Hernan Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Augusto C. Nery
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Lia Gonçalves Possuelo
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Lucia R. Rossetti
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo F. Rabahi
- Anuar Auad Infectious Disease Reference Hospital, Goiania, GO, Brazil
| | | | | | | | | | | | | | | | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sotiria Boukouvala
- Laboratory of Molecular Genetics and Pharmacogenomics - Toxicogenomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Eugênia N. Gallo
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Li J, Cai X, Chen Y, Wang C, Jiao Z. Parametric population pharmacokinetics of isoniazid: a systematic review. Expert Rev Clin Pharmacol 2023; 16:467-489. [PMID: 36971782 DOI: 10.1080/17512433.2023.2196401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Isoniazid (INH) plays an important role in prevention and treatment of tuberculosis (TB). However, large pharmacokinetic (PK) variations are observed in patients receiving standard INH dosages. Considering the influence of PK variations on INH efficacy or adverse reactions, we reviewed the population PK studies of INH and explored significant covariates that influence INH PK. METHODS The PubMed and Embase databases were systematically searched from their inception to 30 January 2023. PPK studies on INH using a parametric nonlinear mixed-effect approach were included in this review. The characteristics and identified significant covariates of the included studies were summarized. RESULTS Twenty-one studies conducted in adults, and seven in pediatrics were included. A two-compartment model with first-order absorption and elimination was the frequently used structural model for INH. NAT2 genotype, body size, and age were identified as significant covariates affecting INH PK variation. The median clearance (CL) value in the fast metabolizers was 2.55-fold higher than that in the slow metabolizers. Infants and children had higher CL per weight values than adults with the same metabolic phenotype. In pediatric patients, CL value increased with postnatal age. CONCLUSIONS Compared with slow metabolizers, the daily dose of INH should be increased by 200-600 mg in fast metabolizers. To achieve effective treatment, pediatric patients need a higher dose per kilogram than adults. Further PPK studies of anti-tuberculosis drugs are needed to comprehensively understand the covariates that affect their PK characteristics and to achieve accurate dose adjustments.
Collapse
|
5
|
Abdelgawad N, Chirehwa M, Schutz C, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, McIlleron H, Maartens G, Meintjes G, Denti P. Pharmacokinetics of antitubercular drugs in patients hospitalized with HIV-associated tuberculosis: a population modeling analysis. Wellcome Open Res 2022; 7:72. [PMID: 37008250 PMCID: PMC10050909 DOI: 10.12688/wellcomeopenres.17660.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Early mortality among hospitalized HIV-associated tuberculosis (TB/HIV) patients is high despite treatment. The pharmacokinetics of rifampicin, isoniazid, and pyrazinamide were investigated in hospitalized TB/HIV patients and a cohort of outpatients with TB (with or without HIV) to determine whether drug exposures differed between groups. METHODS Standard first-line TB treatment was given daily as per national guidelines, which consisted of oral 4-drug fixed-dose combination tablets containing 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol. Plasma samples were drawn on the 3rd day of treatment over eight hours post-dose. Rifampicin, isoniazid, and pyrazinamide in plasma were quantified and NONMEM ® was used to analyze the data. RESULTS Data from 60 hospitalized patients (11 of whom died within 12 weeks of starting treatment) and 48 outpatients were available. Median (range) weight and age were 56 (35 - 88) kg, and 37 (19 - 77) years, respectively. Bioavailability and clearance of the three drugs were similar between TB/HIV hospitalized and TB outpatients. However, rifampicin's absorption was slower in hospitalized patients than in outpatients; mean absorption time was 49.9% and 154% more in hospitalized survivors and hospitalized deaths, respectively, than in outpatients. Higher levels of conjugated bilirubin correlated with lower rifampicin clearance. Isoniazid's clearance estimates were 25.5 L/h for fast metabolizers and 9.76 L/h for slow metabolizers. Pyrazinamide's clearance was more variable among hospitalized patients. The variability in clearance among patients was 1.70 and 3.56 times more for hospitalized survivors and hospitalized deaths, respectively, than outpatients. Conclusion. We showed that the pharmacokinetics of first-line TB drugs are not substantially different between hospitalized TB/HIV patients and TB (with or without HIV) outpatients. Hospitalized patients do not seem to be underexposed compared to their outpatient counterparts, as well as hospitalized patients who survived vs who died within 12 weeks of hospitalization.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L3 5QA, UK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Saskia Janssen
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 19268, The Netherlands
| | - Rosie Burton
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Khayelitsha Hospital, Department of Medicine, Khayelitsha, 7784, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
6
|
Chen B, Shi HQ, Feng MR, Wang XH, Cao XM, Cai WM. Population Pharmacokinetics and Pharmacodynamics of Isoniazid and its Metabolite Acetylisoniazid in Chinese Population. Front Pharmacol 2022; 13:932686. [PMID: 35928262 PMCID: PMC9343941 DOI: 10.3389/fphar.2022.932686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: We aimed to establish a population pharmacokinetic (PPK) model for isoniazid (INH) and its major metabolite Acetylisoniazid (AcINH) in healthy Chinese participants and tuberculosis patients and assess the role of the NAT2 genotype on the transformation of INH to AcINH. We also sought to estimate the INH exposure that would achieve a 90% effective concentration (EC90) efficiency for patients with various NAT2 genotypes. Method: A total of 45 healthy participants and 157 tuberculosis patients were recruited. For healthy subjects, blood samples were collected 0–14 h after administration of 300 mg or 320 mg of the oral dose of INH; for tuberculosis patients who received at least seven days therapy with INH, blood samples were collected two and/or six hours after administration. The plasma concentration of INH and AcINH was determined by the reverse-phase HPLC method. NAT2 genotypes were determined by allele-specific amplification. The integrated PPK model of INH and AcINH was established through nonlinear mixed-effect modeling (NONMEM). The effect of NAT2 genotype and other covariates on INH and AcINH disposition was evaluated. Monte Carlo simulation was performed for estimating EC90 of INH in patients with various NAT2 genotypes. Results: The estimated absorption rate constant (Ka), oral clearance (CL/F), and apparent volume of distribution (V2/F) for INH were 3.94 ± 0.44 h−1, 18.2 ± 2.45 L⋅h−1, and 56.8 ± 5.53 L, respectively. The constant of clearance (K30) and the volume of distribution (V3/F) of AcINH were 0.33 ± 0.11 h−1 and 25.7 ± 1.30 L, respectively. The fraction of AcINH formation (FM) was 0.81 ± 0.076. NAT2 genotypes had different effects on the CL/F and FM. In subjects with only one copy of NAT2 *5, *6, and *7 alleles, the CL/F values were approximately 46.3%, 54.9%, and 74.8% of *4/*4 subjects, respectively. The FM values were approximately 48.7%, 63.8%, and 86.9% of *4/*4 subjects, respectively. The probability of target attainment of INH EC90 in patients with various NAT2 genotypes was different. Conclusion: The integrated parent-metabolite PPK model accurately characterized the disposition of INH and AcINH in the Chinese population sampled, which may be useful in the individualized therapy of INH.
Collapse
Affiliation(s)
- Bing Chen
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Chen,
| | - Hao-Qiang Shi
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meihua Rose Feng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Xi-Han Wang
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao-Mei Cao
- Department of Clinical Pharmacology, Nanjin Jinling Hospital, Nanjing, China
| | - Wei-Min Cai
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Abdelgawad N, Chirehwa M, Schutz C, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, McIlleron H, Maartens G, Meintjes G, Denti P. A comparison of the population pharmacokinetics of rifampicin, isoniazid and pyrazinamide between hospitalized and non-hospitalized tuberculosis patients with or without HIV. Wellcome Open Res 2022; 7:72. [PMID: 37008250 PMCID: PMC10050909 DOI: 10.12688/wellcomeopenres.17660.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Early mortality among hospitalized HIV-associated tuberculosis (TB/HIV) patients is high despite treatment. The pharmacokinetics of rifampicin, isoniazid, and pyrazinamide were investigated in hospitalized TB/HIV patients and a cohort of outpatients with TB (with or without HIV) to determine whether drug exposures differed between groups. METHODS Standard first-line TB treatment was given daily as per national guidelines, which consisted of oral 4-drug fixed-dose combination tablets containing 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol. Plasma samples were drawn on the 3rd day of treatment over eight hours post-dose. Rifampicin, isoniazid, and pyrazinamide in plasma were quantified and NONMEM ® was used to analyze the data. RESULTS Data from 60 hospitalized patients (11 of whom died within 12 weeks of starting treatment) and 48 outpatients were available. Median (range) weight and age were 56 (35 - 88) kg, and 37 (19 - 77) years, respectively. Bioavailability and clearance of the three drugs were similar between TB/HIV hospitalized and TB outpatients. However, rifampicin's absorption was slower in hospitalized patients than in outpatients; mean absorption time was 49.9% and 154% more in hospitalized survivors and hospitalized deaths, respectively, than in outpatients. Higher levels of conjugated bilirubin correlated with lower rifampicin clearance. Isoniazid's clearance estimates were 25.5 L/h for fast metabolizers and 9.76 L/h for slow metabolizers. Pyrazinamide's clearance was more variable among hospitalized patients. The variability in clearance among patients was 1.70 and 3.56 times more for hospitalized survivors and hospitalized deaths, respectively, than outpatients. Conclusion. We showed that the pharmacokinetics of first-line TB drugs are not substantially different between hospitalized TB/HIV patients and TB (with or without HIV) outpatients. Hospitalized patients do not seem to be underexposed compared to their outpatient counterparts.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L3 5QA, UK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Saskia Janssen
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 19268, The Netherlands
| | - Rosie Burton
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Khayelitsha Hospital, Department of Medicine, Khayelitsha, 7784, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
8
|
Swart C, Meldau S, Centner CM, Marais AD, Omar F. Validation of PHASE for deriving N-acetyltransferase 2 haplotypes in the Western Cape mixed ancestry population. Afr J Lab Med 2020; 9:988. [PMID: 33392048 PMCID: PMC7756977 DOI: 10.4102/ajlm.v9i1.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background There is a shortage of data on the accuracy of statistical methods for the prediction of N-acetyltransferase 2 (NAT2) haplotypes in the mixed ancestry population of the Western Cape. Objective This study aimed to identify the NAT2 haplotypes and assess the accuracy of PHASE version 2.1.1 in assigning NAT2 haplotypes to a mixed ancestry population from the Western Cape. Methods This study was conducted between 2013 and 2016. The NAT2 gene was amplified and sequenced from the DNA of 100 self-identified mixed ancestry participants. Haplotyping was performed by molecular and computational techniques. Agreement was assessed between the two techniques. Results Haplotypes were assigned to 93 samples, of which 67 (72%) were ambiguous. Haplotype prediction by PHASE demonstrated 94.6% agreement (kappa 0.94, p < 0.001) with those assigned using molecular techniques. Five haplotype combinations (from 10 chromosomes) were incorrectly predicted, four of which were flagged as uncertain by the PHASE software. Only one resulted in the assignment of an incorrect acetylation phenotype (intermediate to slow), although the software flagged this for further analysis. The most common haplotypes were NAT2*4 (28%) followed by NAT2*5B (27.4%), NAT2*6A (21.5%) and NAT2*12A (7.5%). Four rare single nucleotide variants (c.589C>T, c.622T>C, c.809T>C and c.387C>T) were detected. Conclusion PHASE accurately predicted the phenotype in 92 of 93 samples (99%) from genotypic data in our mixed ancestry sample population, and is therefore a suitable alternative to molecular methods to individualise isoniazid therapy in this high burden tuberculosis setting.
Collapse
Affiliation(s)
- Celeste Swart
- Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Groote Schuur Hospital, Cape Town, South Africa
| | - Surita Meldau
- National Health Laboratory Service (NHLS), Groote Schuur Hospital, Cape Town, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| | - Chad M Centner
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Medical Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Adrian D Marais
- Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| | - Fierdoz Omar
- Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
N-Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment. Antimicrob Agents Chemother 2020; 64:AAC.02376-19. [PMID: 31964788 PMCID: PMC7179278 DOI: 10.1128/aac.02376-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
The distribution of N-acetyltransferase 2 gene (NAT2) polymorphisms varies considerably among different ethnic groups. Information on NAT2 single-nucleotide polymorphisms in the South African population is limited. We investigated NAT2 polymorphisms and their effect on isoniazid pharmacokinetics (PK) in Zulu black HIV-infected South Africans in Durban, South Africa. HIV-infected participants with culture-confirmed pulmonary tuberculosis (TB) were enrolled from two unrelated studies. Participants with culture-confirmed pulmonary TB were genotyped for the NAT2 polymorphisms 282C>T, 341T>C, 481C>T, 857G>A, 590G>A, and 803A>G using Life Technologies prevalidated TaqMan assays (Life Technologies, Paisley, UK). Participants underwent sampling for determination of plasma isoniazid and N-acetyl-isoniazid concentrations. Among the 120 patients, 63/120 (52.5%) were slow metabolizers (NAT2*5/*5), 43/120 (35.8%) had an intermediate metabolism genotype (NAT2*5/12), and 12/120 (11.7%) had a rapid metabolism genotype (NAT2*4/*11, NAT2*11/12, and NAT2*12/12). The NAT2 alleles evaluated in this study were *4, *5C, *5D, *5E, *5J, *5K, *5KA, *5T, *11A, *12A/12C, and *12M. NAT2*5 was the most frequent allele (70.4%), followed by NAT2*12 (27.9%). Fifty-eight of 60 participants in study 1 had PK results. The median area under the concentration-time curve from 0 to infinity (AUC0-∞) was 5.53 (interquartile range [IQR], 3.63 to 9.12 μg h/ml), and the maximum concentration (C max) was 1.47 μg/ml (IQR, 1.14 to 1.89 μg/ml). Thirty-four of 40 participants in study 2 had both PK results and NAT2 genotyping results. The median AUC0-∞ was 10.76 μg·h/ml (IQR, 8.24 to 28.96 μg·h/ml), and the C max was 3.14 μg/ml (IQR, 2.39 to 4.34 μg/ml). Individual polymorphisms were not equally distributed, with some being represented in small numbers. The genotype did not correlate with the phenotype, with those with a rapid acetylator genotype showing higher AUC0-∞ values than those with a slow acetylator genotype, but the difference was not significant (P = 0.43). There was a high prevalence of slow acetylator genotypes, followed by intermediate and then rapid acetylator genotypes. The poor concordance between genotype and phenotype suggests that other factors or genetic loci influence isoniazid metabolism, and these warrant further investigation in this population.
Collapse
|
10
|
Population Pharmacokinetic Analysis of Isoniazid among Pulmonary Tuberculosis Patients from China. Antimicrob Agents Chemother 2020; 64:AAC.01736-19. [PMID: 31907179 DOI: 10.1128/aac.01736-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
The blood concentration of isoniazid (INH) is evidently affected by polymorphisms in N-acetyltransferase 2 (NAT2), an enzyme that is primarily responsible for the trimodal (i.e., fast, intermediate, and slow) INH elimination. The pharmacokinetic (PK) variability, driven largely by NAT2 activity, creates a challenge for the deployment of a uniform INH dosage in tuberculosis (TB) patients. Although acetylator-specific INH dosing has long been suggested, well-recognized dosages according to acetylator status remain elusive. In this study, 175 blood samples were collected from 89 pulmonary TB patients within 0.5 to 6 h after morning INH administration. According to their NAT2 genotypes, 32 (36.0%), 38 (42.7%), and 19 (21.3%) were fast, intermediate, and slow acetylators, respectively. The plasma INH concentration was detected by liquid chromatography-tandem mass spectrometry. Population pharmacokinetic (PPK) analysis was conducted using NONMEM and R software. A two-compartment model with first-order absorption and elimination well described the PK parameters of isoniazid. Body weight and acetylator status significantly affected the INH clearance rate. The dosage simulation targeting three indicators, including the well-recognized efficacy-safety indicator maximum concentration in serum (C max; 3 to 6 μg/ml), the reported area under the concentration-time curve from 0 h to infinity (AUC0-∞; ≥10.52 μg·h/ml), and the 2-h INH serum concentrations (≥2.19 μg/ml), was associated with the strongest early bactericidal activity. The optimal dosages targeting the different indicators varied from 700 to 900 mg/day, 500 to 600 mg/day, and 300 mg/day for the rapid, intermediate, and slow acetylators, respectively. Furthermore, a PPK model for isoniazid among Chinese tuberculosis patients was established for the first time and suggested doses of approximately 800 mg/day, 500 mg/day, and 300 mg/day for fast, intermediate, and slow acetylators, respectively, after a trade-off between efficacy and the occurrence of side effects.
Collapse
|
11
|
Yuliwulandari R, Susilowati RW, Razari I, Viyati K, Umniyati H, Prayuni K. N-acetyltransferase 2 polymorphism and acetylation profiles in Buginese ethnics of Indonesia. Ann Hum Genet 2019; 83:465-471. [PMID: 31332782 DOI: 10.1111/ahg.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/05/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND N-acetyltransferase 2 (NAT2) is a key enzyme involved in the phase II metabolism of aromatic amines and heterocyclic aromatic amines present in a wide range of xenobiotics. The aim of this study was to investigate the NAT2 polymorphism in the Buginese ethnic group of Indonesia to determine the frequency of NAT2 alleles in this population. RESULTS We found six haplotypes consisting of six single-nucleotide polymorphisms and 12 NAT2 genotype variations. NAT2*6A haplotype (42%) showed the highest frequency, followed by NAT2*4 (33%), NAT2*7B (15%), NAT2*5B (5%), NAT2*12A (3%), and NAT2*13 (2%). In terms of phenotypes, the Buginese population comprised 18% rapid acetylators, 40% intermediate acetylators, and 42% slow acetylators. CONCLUSION We confirmed the high-frequency slow acetylator phenotype in the Buginese population. The NAT2*6A/*6A genotype was the most frequent slow acetylator genotype, followed by NAT2*6A/*7B. The pattern of NAT2 alleles of Buginese is similar to Southeast Asian populations but not Northeast Asian populations. However, the slow acetylator frequencies in the Buginese population were higher than those in Northeast Asian populations and lower than those in Caucasians and some American populations.
Collapse
Affiliation(s)
- Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, DKI Jakarta, Indonesia.,Genetic/Genomic Research Center, Yarsi Research Institute, YARSI University, DKI Jakarta, Indonesia.,The Indonesian Pharmacogenomics Working Group, Indonesia
| | - Retno Wilujeng Susilowati
- Genetic/Genomic Research Center, Yarsi Research Institute, YARSI University, DKI Jakarta, Indonesia.,Department of Histology, Faculty of Medicine, YARSI University, DKI Jakarta, Indonesia
| | - Intan Razari
- Genetic/Genomic Research Center, Yarsi Research Institute, YARSI University, DKI Jakarta, Indonesia
| | - Kencono Viyati
- Genetic/Genomic Research Center, Yarsi Research Institute, YARSI University, DKI Jakarta, Indonesia.,Department of Histology, Faculty of Medicine, YARSI University, DKI Jakarta, Indonesia
| | | | - Kinasih Prayuni
- Genetic/Genomic Research Center, Yarsi Research Institute, YARSI University, DKI Jakarta, Indonesia
| |
Collapse
|
12
|
Rogers Z, Hiruy H, Pasipanodya JG, Mbowane C, Adamson J, Ngotho L, Karim F, Jeena P, Bishai W, Gumbo T. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism. EBioMedicine 2016; 11:118-126. [PMID: 27528266 PMCID: PMC5049930 DOI: 10.1016/j.ebiom.2016.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022] Open
Abstract
N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax) and affinity (Km) in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥ 5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm. We identified the NAT2 Km and Vmax in children treated with isoniazid. Artificial intelligence (AI) algorithms were used to find predictors of Km and Vmax. Isoniazid concentration affected Vmax and Km, and superseded NAT2 genotype. Age non-linearly modified NAT2 genotype contribution until maturation at ≥ 5.3 years. AI output is in the form of equations that allow multiscale systems modeling.
The effects of maturation on drug metabolism have not been studied for the type phase II enzymes such as NAT2, which metabolizes the drug isoniazid. Genes have been found to control speed of isoniazid metabolism. Studies to characterize affinity and maximum velocity for isoniazid metabolism in people were last performed in two individuals' livers in the 1960s. We identified NAT2 affinity and maximum velocity in 30 tuberculosis children treated with isoniazid. Artificial intelligence methods found that metabolism was affected by the drug's concentration more than by genes, which were affected by age up to 5.3 years.
Collapse
Affiliation(s)
- Zoe Rogers
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Hiwot Hiruy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA
| | - Chris Mbowane
- Dept of Pediatrics, Nelson Mandela School of Medicine, UKZN, Durban 4001, South Africa
| | - John Adamson
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Lihle Ngotho
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Farina Karim
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Prakash Jeena
- Dept of Pediatrics, Nelson Mandela School of Medicine, UKZN, Durban 4001, South Africa
| | - William Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA; Department of Medicine, University of Cape Town, Observatory, South Africa.
| |
Collapse
|
13
|
Abstract
Esophageal cancer (EC) is one of the most common malignancies in low- and medium-income countries and represents a disease of public health importance because of its poor prognosis and high mortality rate in these regions. The striking variation in the prevalence of EC among different ethnic groups suggests a significant contribution of population-specific environmental and dietary factors to susceptibility to the disease. Although individuals within a demarcated geographical area are exposed to the same environment and share similar dietary habits, not all of them will develop the disease; thus genetic susceptibility to environmental risk factors may play a key role in the development of EC. A wide range of xenobiotic-metabolizing enzymes are responsible for the metabolism of carcinogens introduced via the diet or inhaled from the environment. Such dietary or environmental carcinogens can bind to DNA, resulting in mutations that may lead to carcinogenesis. Genes involved in the biosynthesis of these enzymes are all subject to genetic polymorphisms that can lead to altered expression or activity of the encoded proteins. Genetic polymorphisms may, therefore, act as molecular biomarkers that can provide important predictive information about carcinogenesis. The aim of this review is to discuss our current knowledge on the genetic risk factors associated with the development of EC in different populations; it addresses mainly the topics of genetic polymorphisms, gene-environment interactions, and carcinogenesis. We have reviewed the published data on genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and discuss some of the potential gene-environment interactions underlying esophageal carcinogenesis. The main enzymes discussed in this review are the glutathione S-transferases (GSTs), N-acetyltransferases (NATs), cytochrome P450s (CYPs), sulfotransferases (SULTs), UDP-glucuronosyltransferases (UGTs), and epoxide hydrolases (EHs), all of which have key roles in the detoxification of environmental and dietary carcinogens. Finally, we discuss recent advances in the study of genetic polymorphisms associated with EC risk, specifically with regard to genome-wide association studies, and examine possible challenges of case-control studies that need to be addressed to better understand the interaction between genetic and environmental factors in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Marco Matejcic
- a International Centre for Genetic Engineering and Biotechnology, Cape Town Component , Observatory , Cape Town , South Africa , and
| | | |
Collapse
|
14
|
N-acetyltransferase genotypes and the pharmacokinetics and tolerability of para-aminosalicylic acid in patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother 2015; 59:4129-38. [PMID: 25963985 DOI: 10.1128/aac.04049-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/20/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to examine the relationships between N-acetyltransferase genotypes, pharmacokinetics, and tolerability of granular slow-release para-aminosalicylic acid (GSR-PAS) in tuberculosis patients. The study was a randomized, two-period, open-label, crossover design wherein each patient received 4 g GSR-PAS twice daily or 8 g once daily alternately. The PAS concentration-time profiles were modeled by a one-compartment disposition model with three transit compartments in series to describe its absorption. Patients' NAT1 and NAT2 genotypes were determined by sequencing and restriction enzyme analysis, respectively. The number of daily vomits was modeled by a Poisson probability mass function. Comparisons of other tolerability measures by regimens, gender, and genotypes were evaluated by a linear mixed-effects model. The covariate effects associated with efavirenz, gender, and NAT1*3, NAT1*14, and NAT2*5 alleles corresponded to 25, 37, -17, -48, and -27% changes, respectively, in oral clearance of PAS. The NAT1*10 allele did not influence drug clearance. The time above the MIC of 1 mg/liter was significantly different between the two regimens but not influenced by the NAT1 or NAT2 genotypes. The occurrence and intensity of intolerance differed little between regimens. Four grams of GSR-PAS twice daily but not 8 g once daily ensured concentrations exceeding the MIC (1 mg/liter) throughout the dosing interval; PAS intolerance was not related to maximum PAS concentrations over the doses studied and was not more frequent after once-daily dosing. We confirm that the slow phenotype conferred by the NAT1*14 and NAT1*3 alleles resulted in higher PAS exposure but found no evidence of increased activity of the NAT1*10 allele.
Collapse
|
15
|
Matejcic M, Vogelsang M, Wang Y, Iqbal Parker M, Parker IM. NAT1 and NAT2 genetic polymorphisms and environmental exposure as risk factors for oesophageal squamous cell carcinoma: a case-control study. BMC Cancer 2015; 15:150. [PMID: 25886288 PMCID: PMC4379954 DOI: 10.1186/s12885-015-1105-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Tobacco smoking and red meat consumption are some of the known risk factors associated with the development of oesophageal cancer. N-acetytransferases (NAT1 and NAT2) play a key role in metabolism of carcinogenic arylamines present in tobacco smoke and overcooked red meat. We hypothesized that NAT1 and NAT2 genetic polymorphisms may influence the risk of oesophageal cancer upon exposure to environmental carcinogens. Methods Single nucleotide polymorphisms (SNPs) in the NAT1 and NAT2 genes were investigated by genotyping 732 cases and 768 healthy individuals from two South African populations to deduce the acetylator phenotype (slow, intermediate or rapid) from the combination of the genotyped SNPs. Results The 341 CC genotype (rs1801280) was significantly associated with a reduced risk for oesophageal cancer in the Mixed Ancestry population (OR = 0.31; 95% CI 0.11-0.87). The NAT2 slow/intermediate acetylator status significantly increased the risk among cigarette smokers in the Black population (OR = 2.76; 95% CI 1.69-4.52), as well as among alcohol drinkers in the Mixed Ancestry population (OR = 2.77; 95% CI 1.38-5.58). Similarly, the NAT1 slow/intermediate acetylator status was a risk factor for tobacco smokers in the Black population (OR = 3.41; 95% CI 1.95-5.96) and for alcohol drinkers in the Mixed Ancestry population (OR = 3.41; 95% CI 1.70-6.81). In a case-only analysis, frequent red meat consumption was associated with a significantly increased cancer risk for NAT2 slow/intermediate acetylators in the Mixed Ancestry population (OR = 3.55; 95% CI 1.29-9.82; P = 0.019), whereas daily white meat intake was associated with an increased risk among NAT1 slow/intermediate acetylators in the Black population (OR = 1.82; 95% CI 1.09-3.04; P = 0.023). Conclusions Our findings indicate that N-acetylation polymorphisms may modify the association between environmental risk factors and oesophageal cancer risk and that N-acetyltransferases may play a key role in detoxification of carcinogens. Prevention strategies in lifestyle and dietary habits may reduce the incidence of oesophageal cancer in high-risk populations. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1105-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Matejcic
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Matjaz Vogelsang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Yabing Wang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - M Iqbal Parker
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | | |
Collapse
|
16
|
Khan N, Pande V, Das A. NAT2 sequence polymorphisms and acetylation profiles in Indians. Pharmacogenomics 2013; 14:289-303. [PMID: 23394391 DOI: 10.2217/pgs.13.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND NAT2, a broad-spectrum drug-metabolizing gene, is of high pharmacogenetic interest. Based on seven different mutations in the NAT2 gene, an individual can either be categorized as a slow or fast acetylator. MATERIALS & METHODS In order to characterize acetylation profiles of Indians, where data are poorly available, we sequenced the 873 bp NAT2 coding region in 250 Indians, covering the whole of India including three tribes. RESULTS Altogether, 35 NAT2 alleles forming two acetylator phenotypes (distributed almost in equal proportion in India) were found; while the alleles determining slow acetylators were highly differentiated, the fast acetylator alleles were less in number but highly frequent. CONCLUSION Interestingly, distribution of two different acetylation phenotypes correlated well with historical dietary pattern in India. The neighbor-joining phylogenetic tree based on NAT2 gene polymorphisms in worldwide humans revealed genetic affinities among populations with similar acetylation phenotypes, which also placed Indians and Africans together in a single cluster.
Collapse
Affiliation(s)
- Naazneen Khan
- Evolutionary Genomics & Bioinformatics Laboratory, Division of Genomics & Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | | | | |
Collapse
|
17
|
Hein DW, Doll MA. TaqMan real time-polymerase chain reaction methods for determination of nucleotide polymorphisms in human N-acetyltransferase-1 (NAT1) and -2 (NAT2). ACTA ACUST UNITED AC 2013; Chapter 4:Unit4.15. [PMID: 23045122 DOI: 10.1002/0471140856.tx0415s22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) exhibit allelic variation and genetic polymorphism associated with increased susceptibility towards drug toxicity and environmental disease. TaqMan allelic discrimination methods are described to rapidly determine NAT1 and NAT2 genotypes. The SNPs selected for NAT1 genotype determinations are: C(97)T (R(33)Stop), C(190)T (R(64)W), G(445)A (V(149)I), C(559)T (R(187)Stop), G(560)A (R(187)Q), A(752)T (D(251)V), T(1088)A (3'UTR), and C(1095)A (3'UTR). The SNPs selected for NAT2 genotyping determinations are: G(191)A (R(64)Q), C(282)T (silent), T(341)C (I(114)T), C(481)T (silent), G(590)A (R(197)Q), A(803)G (K(268)R), and G(857)A (G(286)T). All NAT2 and NAT1 alleles, except very rare ones, are detected with these assays. Major advantages of the methods described in this unit are that they do not require post-PCR processing (such as enzyme digestion) or the use of radioactivity. Since the methods amplify relatively small segments of NAT1 or NAT2, they are effective for human DNA samples derived from buccal cells or paraffin-embedded tissues.
Collapse
Affiliation(s)
- David W Hein
- University of Louisville School of Medicine, Louisville, KY, USA
| | | |
Collapse
|
18
|
Tilak AV, Iyer SN, Mukherjee MS, Singhal RS, Lele SS. Full-gene-sequencing analysis of N-acetyltransferase-2 in an adult Indian population. Genet Test Mol Biomarkers 2012; 17:188-94. [PMID: 23216273 DOI: 10.1089/gtmb.2012.0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIMS Drug-metabolizing enzymes play a major role in determining the outcome of drug therapy. N-acetyltransferase-2 (NAT2) is one of the main enzymes involved in metabolism of isoniazid used in treatment of tuberculosis (TB). Several variations in the NAT2 gene give rise to multiple haplotypes that phenotypically code for different acetylator status. The objective was to generate a more unambiguous picture of the NAT2 scenario in India as compared to that obtained from polymerase chain reaction-restriction fragment length polymorphism methods. METHODS Full-gene-sequencing analysis of NAT2 was carried out in 181 healthy Indian subjects from different regional groups. RESULTS A total of 33 diplotypes were recorded from six known single-nucleotide polymorphisms. The overall frequency of the slow acetylator haplotypes detected in this study was 65%, followed by 26% and 9% intermediate and rapid acetylators, respectively. Of the slow acetylator alleles, the NAT2*5B/*6A occurred in 25% of the study subjects. CONCLUSIONS The study indicates that the frequency of slow acetylator alleles is high in the adult Indian population. Since the prevalence of TB is high in this population, pharmacogenetic testing for NAT2 alleles may be advisable before start of therapy with isoniazid to prevent drug toxicity.
Collapse
Affiliation(s)
- Ashwini V Tilak
- Food Engineering and Technology Department (FETD), Institute of Chemical Technology (ICT), Matunga, Mumbai, India.
| | | | | | | | | |
Collapse
|
19
|
Singh N, Dubey S, Chinnaraj S, Golani A, Maitra A. Study of NAT2 Gene Polymorphisms in an Indian Population. Mol Diagn Ther 2012; 13:49-58. [DOI: 10.1007/bf03256314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 2012; 56:3232-8. [PMID: 22411614 DOI: 10.1128/aac.05526-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reduced antituberculosis drug concentrations may contribute to unfavorable treatment outcomes among HIV-infected patients with more advanced immune suppression, and few studies have evaluated pharmacokinetics of the first-line antituberculosis drugs in such patients given fixed-dose combination tablets according to international guidelines using weight bands. In this study, pharmacokinetics were evaluated in 60 patients on 4 occasions during the first month of antituberculosis therapy. Multilevel linear mixed-effects regression analysis was used to examine the effects of age, sex, weight, drug dose/kilogram, CD4(+) lymphocyte count, treatment schedule (5 versus 7 days/week), and concurrent antiretrovirals (efavirenz plus lamivudine plus zidovudine) on the area under the concentration-time curve from 0 to 12 h (AUC(0-12)) of the respective antituberculosis drugs and to compare AUC(0-12)s at day 8, day 15, and day 29 with the day 1 AUC(0-12). Median (range) age, weight, and CD4(+) lymphocyte count were 32 (18 to 47) years, 55.2 (34.4 to 98.7) kg, and 252 (12 to 500)/μl. For every 10-kg increase in body weight, the predicted day 29 AUC(0-12) increased by 14.1% (95% confidence interval [CI], 7.5, 20.8), 14.1% (95% CI, -0.7, 31.1), 6.1% (95% CI, 2.7, 9.6) and 6.0% (95% CI, 0.8, 11.3) for rifampin, isoniazid, pyrazinamide, and ethambutol, respectively. Males had day 29 AUC(0-12)s 19.3% (95% CI, 3.6, 35.1) and 14.0% (95% CI, 5.6, 22.4) lower than females for rifampin and pyrazinamide, respectively. Level of immune suppression and concomitant antiretrovirals had little effect on the concentrations of the antituberculosis agents. As they had reduced drug concentrations, it is important to review treatment responses in patients in the lower weight bands and males to inform future treatment guidelines, and revision of doses in these patients should be considered.
Collapse
|
21
|
Wilkins JJ, Langdon G, McIlleron H, Pillai G, Smith PJ, Simonsson USH. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol 2011; 72:51-62. [PMID: 21320152 DOI: 10.1111/j.1365-2125.2011.03940.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM This study was designed to characterize the population pharmacokinetics of isoniazid in South African pulmonary tuberculosis patients. METHODS Concentration-time measurements obtained from 235 patients receiving oral doses of isoniazid as part of routine tuberculosis chemotherapy in two clinical studies were pooled and subjected to nonlinear mixed-effects analysis. RESULTS A two-compartmental model, including first-order absorption and elimination with allometric scaling, was found to describe the observed dose-exposure relationship for oral isoniazid adequately. A mixture model was used to characterize dual rates of isoniazid elimination. Estimates of apparent clearance in slow and fast eliminators were 9.70 and 21.6 l h(-1) , respectively. The proportion of fast eliminators in the population was estimated to be 13.2%. Central volume of distribution was estimated to be 10% smaller in female patients and clearance was found to be 17% lower in patients with HIV. Variability in absorption rate (90%) was completely interoccasional in nature, whereas in relative bioavailability, interoccasional variability (8.4%) was lower than interindividual variability (26%). Oral doses, given once daily according to dosing policies at the time, were sufficient to reach therapeutic concentrations in the majority of the studied population, regardless of eliminator phenotype. Simulations suggested that current treatment guidelines (5 mg kg(-1) ) may be suboptimal in fast eliminators with low body weight. CONCLUSIONS A population pharmacokinetic model was developed to characterize the highly variable pharmacokinetics of isoniazid in a South African pulmonary tuberculosis patient population. Current treatment guidelines may lead to underexposure in rapid isoniazid eliminators.
Collapse
Affiliation(s)
- Justin J Wilkins
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
22
|
Millner LM, Doll MA, Stepp MW, States JC, Hein DW. Functional analysis of arylamine N-acetyltransferase 1 (NAT1) NAT1*10 haplotypes in a complete NATb mRNA construct. Carcinogenesis 2011; 33:348-55. [PMID: 22114069 DOI: 10.1093/carcin/bgr273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
N-acetyltransferase 1 (NAT1) catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1*10 is the most common variant haplotype and is associated with increased risk for numerous cancers. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in messenger RNAs (mRNAs) with distinct 5'-untranslated regions (UTRs). To best mimic in vivo metabolism and the effect of NAT1*10 polymorphisms on polyadenylation usage, pcDNA5/Flp recombination target plasmid constructs were prepared for transfection of full-length human mRNAs including the 5'-UTR derived from NATb, the open reading frame and 888 nucleotides of the 3'-UTR. Following stable transfection of NAT1*4, NAT1*10 and an additional NAT1*10 variant (termed NAT1*10B) into nucleotide excision repair-deficient Chinese hamster ovary cells, N- and O-acetyltransferase activity (in vitro and in situ), mRNA and protein expression were higher in cells transfected with NAT1*10 and NAT1*10B than in cells transfected with NAT1*4 (P < 0.05). Consistent with NAT1 expression and activity, cytotoxicity and hypoxanthine phosphoribosyl transferase mutants following 4-aminobiphenyl exposures were higher in NAT1*10 than in NAT1*4 transfected cells. Ribonuclease protection assays showed no difference between NAT1*4 and NAT1*10. However, protection of one probe by NAT1*10B was not observed with NAT1*4 or NAT1*10, suggesting additional mechanisms that regulate NAT1*10B. The higher mutants in cells transfected with NAT1*10 and NAT1*10B are consistent with an increased cancer risk for individuals possessing NAT1*10 haplotypes.
Collapse
Affiliation(s)
- Lori M Millner
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center and Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
23
|
Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 2011; 13:31-41. [PMID: 22092036 DOI: 10.2217/pgs.11.122] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Humans exhibit genetic polymorphism in NAT2 resulting in rapid, intermediate and slow acetylator phenotypes. Over 65 NAT2 variants possessing one or more SNPs in the 870-bp NAT2 coding region have been reported. The seven most frequent SNPs are rs1801279 (191G>A), rs1041983 (282C>T), rs1801280 (341T>C), rs1799929 (481C>T), rs1799930 (590G>A), rs1208 (803A>G) and rs1799931 (857G>A). The majority of studies investigate the NAT2 genotype assay for three SNPs: 481C>T, 590G>A and 857G>A. A tag-SNP (rs1495741) recently identified in a genome-wide association study has also been proposed as a biomarker for the NAT2 phenotype. MATERIALS & METHODS Sulfamethazine N-acetyltransferase catalytic activities were measured in cryopreserved human hepatocytes from a convenience sample of individuals in the USA with an ethnic frequency similar to the 2010 US population census. These activities were segregated by the tag-SNP rs1495741 and each of the seven SNPs described above. We assessed the accuracy of the tag-SNP and various two-, three-, four- and seven-SNP genotyping panels for their ability to accurately infer NAT2 phenotype. RESULTS The accuracy of the various NAT2 SNP genotype panels to infer NAT2 phenotype were as follows: seven-SNP: 98.4%; tag-SNP: 77.7%; two-SNP: 96.1%; three-SNP: 92.2%; and four-SNP: 98.4%. CONCLUSION A NAT2 four-SNP genotype panel of rs1801279 (191G>A), rs1801280 (341T>C), rs1799930 (590G>A) and rs1799931 (857G>A) infers NAT2 acetylator phenotype with high accuracy, and is recommended over the tag-, two-, three- and (for economy of scale) the seven-SNP genotyping panels, particularly in populations of non-European ancestry.
Collapse
Affiliation(s)
- David W Hein
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202-1617, USA
| | | |
Collapse
|
24
|
Warnich L, Drögemöller BI, Pepper MS, Dandara C, Wright GEB. Pharmacogenomic Research in South Africa: Lessons Learned and Future Opportunities in the Rainbow Nation. ACTA ACUST UNITED AC 2011; 9:191-207. [PMID: 22563365 PMCID: PMC3228231 DOI: 10.2174/187569211796957575] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 12/11/2022]
Abstract
South Africa, like many other developing countries, stands to benefit from novel diagnostics and drugs developed by pharmacogenomics guidance due to high prevalence of disease burden in the region. This includes both communicable (e.g., HIV/AIDS and tuberculosis) and non-communicable (e.g., diabetes and cardiovascular) diseases. For example, although only 0.7% of the world's population lives in South Africa, the country carries 17% of the global HIV/AIDS burden and 5% of the global tuberculosis burden. Nobel Peace Prize Laureate Archbishop Emeritus Desmond Tutu has coined the term Rainbow Nation, referring to a land of wealth in its many diverse peoples and cultures. It is now timely and necessary to reflect on how best to approach new genomics biotechnologies in a manner that carefully considers the public health needs and extant disease burden in the region. The aim of this paper is to document and review the advances in pharmacogenomics in South Africa and importantly, to evaluate the direction that future research should take. Previous research has shown that the populations in South Africa exhibit unique allele frequencies and novel genetic variation in pharmacogenetically relevant genes, often differing from other African and global populations. The high level of genetic diversity, low linkage disequilibrium and the presence of rare variants in these populations question the feasibility of the use of current commercially available genotyping platforms, and may partially account for genotype-phenotype discordance observed in past studies. However, the employment of high throughput technologies for genomic research, within the context of large clinical trials, combined with interdisciplinary studies and appropriate regulatory guidelines, should aid in acceleration of pharmacogenomic discoveries in high priority therapeutic areas in South Africa. Finally, we suggest that projects such as the H3Africa Initiative, the SAHGP and PGENI should play an integral role in the coordination of genomic research in South Africa, but also other African countries, by providing infrastructure and capital to local researchers, as well as providing aid in addressing the computational and statistical bottlenecks encountered at present.
Collapse
Affiliation(s)
- Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
25
|
Stephenson N, Beckmann L, Chang-Claude J. Carcinogen metabolism, cigarette smoking, and breast cancer risk: a Bayes model averaging approach. EPIDEMIOLOGIC PERSPECTIVES & INNOVATIONS : EP+I 2010; 7:10. [PMID: 21080951 PMCID: PMC2999590 DOI: 10.1186/1742-5573-7-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/16/2010] [Indexed: 11/11/2022]
Abstract
Background Standard logistic regression with or without stepwise selection has the disadvantage of not incorporating model uncertainty and the dependency of estimates on the underlying model into the final inference. We explore the use of a Bayes Model Averaging approach as an alternative to analyze the influence of genetic variants, environmental effects and their interactions on disease. Methods Logistic regression with and without stepwise selection and Bayes Model Averaging were applied to a population-based case-control study exploring the association of genetic variants in tobacco smoke-related carcinogen pathways with breast cancer. Results Both regression and Bayes Model Averaging highlighted a significant effect of NAT1*10 on breast cancer, while regression analysis also suggested a significant effect for packyears and for the interaction of packyears and NAT2. Conclusions Bayes Model Averaging allows incorporation of model uncertainty, helps reduce dimensionality and avoids the problem of multiple comparisons. It can be used to incorporate biological information, such as pathway data, into the analysis. As with all Bayesian analysis methods, careful consideration must be given to prior specification.
Collapse
Affiliation(s)
- Nadine Stephenson
- Division of Cancer Epidemiology, German Cancer Research Center DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
26
|
Chen B, Cai W, Li J, Cao X. Estimating N-acetyltransferase metabolic activity and pharmacokinetic parameters of isoniazid from genotypes in Chinese subjects. Clin Chim Acta 2009; 405:23-9. [PMID: 19336229 DOI: 10.1016/j.cca.2009.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND To establish quantitative relationship between metabolic activity of N-acetyltransferase (NAT2) and single nucleotide polymorphisms (SNPs), and estimate pharmacokinetic parameters of isoniazid (INH) on the basis of NAT2 alleles in Chinese subjects. METHODS Concentrations of INH and acetylisoniazid in plasma of 24 subjects were measured 0-14 h after oral administration of INH. Pharmacokinetic parameters were simulated. NAT2 alleles were determined by a reversed dot blot method. Correlation between various NAT2 SNPs and metabolic ratio (MR) or INH pharmacokinetic parameters was studied by multiple linear regression analysis. RESULTS There was quantitative relationship between various NAT2 alleles and MR of sulphadimidine (r(2)=0.836, P<0.0001). The pharmacokinetic parameters such as k, C(max), AUC, Cl of INH and C(max), AUC of AcINH can be calculated by NAT2 variant patterns. There was good correlation between observed and calculated data (r(2)>0.75, P<0.0001) except for C(max) of INH (r(2)=0.35, P=0.021). The 95% confidence intervals for prediction error ranged from -3.3%-5.6% for k to -10.5%-37.0% for C(max) of INH. CONCLUSION NAT2 genotypes can be used to predict pharmacokinetic parameters of INH. It may be useful in the rational use of INH.
Collapse
Affiliation(s)
- Bing Chen
- Department of Clinical Pharmacology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, PR China.
| | | | | | | |
Collapse
|
27
|
Song DK, Xing DL, Zhang LR, Li ZX, Liu J, Qiao BP. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. ACTA ACUST UNITED AC 2009; 32:416-23. [PMID: 19303722 DOI: 10.1016/j.cdp.2009.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Dong-Kui Song
- Department of Urology, First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | | | | | | | | | | |
Collapse
|
28
|
Muscat JE, Pittman B, Kleinman W, Lazarus P, Stellman SD, Richie JP. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers. Biochem Pharmacol 2008; 76:929-37. [PMID: 18703023 PMCID: PMC2597011 DOI: 10.1016/j.bcp.2008.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X+1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2-0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites.
Collapse
Affiliation(s)
- Joshua E. Muscat
- Penn State Cancer Institute, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA 17036
| | - Brian Pittman
- Yale University School of Medicine, New Haven, CT 06510
| | - Wayne Kleinman
- Department of Neurology and Neuroscience, Cornell University Medical Center, Burke Medical Research Institute, White Plains, NY 10605
| | - Philip Lazarus
- Penn State Cancer Institute, Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17036
| | - Steven D. Stellman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - John P. Richie
- Penn State Cancer Institute, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA 17036
| |
Collapse
|
29
|
Butler LM, Millikan RC, Sinha R, Keku TO, Winkel S, Harlan B, Eaton A, Gammon MD, Sandler RS. Modification by N-acetyltransferase 1 genotype on the association between dietary heterocyclic amines and colon cancer in a multiethnic study. Mutat Res 2008; 638:162-74. [PMID: 18022202 PMCID: PMC2234436 DOI: 10.1016/j.mrfmmm.2007.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Colorectal cancer incidence is greater among African Americans, compared to whites in the U.S., and may be due in part to differences in diet, genetic variation at metabolic loci, and/or the joint effect of diet and genetic susceptibility. We examined whether our previously reported associations between meat-derived heterocyclic amine (HCA) intake and colon cancer were modified by N-acetyltransferase 1 (NAT1) or 2 (NAT2) genotypes and whether there were differences by race. METHODS In a population-based, case-control study of colon cancer, exposure to HCAs was assessed using a food-frequency questionnaire with a meat-cooking and doneness module, among African Americans (217 cases and 315 controls) and whites (290 cases and 534 controls). RESULTS There was no association with NAT1*10 versus NAT1-non*10 genotypes for colon cancer. Among whites, there was a positive association for NAT2-"rapid/intermediate" genotype [odds ratio (OR)=1.4; 95% confidence interval (CI)=1.0, 1.8], compared to the NAT2-"slow" that was not observed among African Americans. Colon cancer associations with HCA intake were modified by NAT1, but not NAT2, regardless of race. However, the "at-risk" NAT1 genotype differed by race. For example, among African Americans, the positive association with 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) was confined to those with NAT1*10 genotype (OR=1.8; 95% CI=1.0, 3.3; P for interaction=0.02, comparing highest to lowest intake), but among whites, an association with 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was confined to those with NAT1-non*10 genotype (OR=1.9; 95% CI=1.1, 3.1; P for interaction=0.03). CONCLUSIONS Our data indicate modification by NAT1 for HCA and colon cancer associations, regardless of race. Although the at-risk NAT1 genotype differs by race, the magnitude of the individual HCA-related associations in both race groups are similar. Therefore, our data do not support the hypothesis that NAT1 by HCA interactions contribute to differences in colorectal cancer incidence between African Americans and whites.
Collapse
Affiliation(s)
- Lesley M Butler
- University of California-Davis, Department of Public Health Sciences, Division of Epidemiology, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sabbagh A, Génin E, Darlu P. Selecting Predictive Markers for Pharmacogenetic Traits: Tagging vs. Data-Mining Approaches. Hum Hered 2008; 66:10-8. [DOI: 10.1159/000114161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 08/16/2007] [Indexed: 11/19/2022] Open
|
31
|
Yuliwulandari R, Sachrowardi Q, Nishida N, Takasu M, Batubara L, Susmiarsih TP, Rochani JT, Wikaningrum R, Miyashita R, Miyagawa T, Sofro ASM, Tokunaga K. Polymorphisms of promoter and coding regions of the arylamine N-acetyltransferase 2 (NAT2) gene in the Indonesian population: proposal for a new nomenclature. J Hum Genet 2007; 53:201-209. [PMID: 18160997 DOI: 10.1007/s10038-007-0237-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/29/2007] [Indexed: 11/30/2022]
Abstract
Polymorphisms of arylamine N-acetyltransferase 2 (NAT2) are reportedly associated with the risk of drug toxicities and development of various diseases. The present study examined NAT2 polymorphisms in both promoter and coding regions in the Indonesian population using PCR direct sequencing. The promoter and coding regions of NAT2 displayed 23 polymorphisms/variations, including eight new ones. Seven haplotypes in the promoter region and six haplotypes in the coding region were inferred. The haplotypes in promoter and coding regions showed limited combinations, and 13 combined haplotypes were inferred. The most frequent haplotypes were U1 (38.9%), U2 (33.5%) in the promoter region and NAT2*4 (37.3%), NAT2*6A (36.8%) in the coding region. When converted to predicted phenotypes, the studied population comprised 65.4% rapid acetylators and 35.6% slow acetylators according to bimodal distribution. According to trimodal distribution, frequencies of predicted phenotypes were 13.6, 50.8 and 35.6% for rapid, intermediate and slow acetylators, respectively. Frequencies of NAT2 alleles for the Indonesian population resembled those of other Southeast Asian populations. We also propose a new NAT2 nomenclature composed of haplotypes in the promoter region and conventional NAT2 haplotypes in the coding region, symbolized by NAT2*4.U1, NAT2*4.U2, NAT2*4.U3, NAT2*4.U5, NAT2*4.U6, NAT2*4.U7, NAT2*6A.U1, NAT2*7B.U2, NAT2*7B.U3, NAT2*5B.U1, NAT2*5B.U4, NAT2*12A.U4 and NAT2*13.U1.
Collapse
Affiliation(s)
- Rika Yuliwulandari
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Medicine, Yarsi University, Jakarta, Indonesia
| | | | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Miwa Takasu
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | - Risa Miyashita
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taku Miyagawa
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
32
|
Nam MH, Won HH, Lee KA, Kim JW. Effectiveness of in silico tagSNP selection methods: virtual analysis of the genotypes of pharmacogenetic genes. Pharmacogenomics 2007; 8:1347-57. [PMID: 17979509 DOI: 10.2217/14622416.8.10.1347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION SNP tagging has been recently introduced, and the use of this strategy reduces the dimension of disease association studies and eventually saves on genotyping costs. There is no single set of tagging SNPs (tagSNPs) that will satisfy every association study design; thus, many different methods have been introduced. We evaluated various tagSNP selection methods using known haplotype data of pharmacogenetic genes. We also compared the selected tagSNPs among different ethnic groups. METHODS We collected genotype data for the NAT2 and CYP2D6 genes from the previously published literature where the linkage phase was resolved directly through molecular haplotyping. Three computational tagSNP selection methods (ldSelect, Tagger and TagIT software) were evaluated with these data sets. RESULTS Tagging effectiveness and efficiency were variable in all three tagSNP selection methods. No tagSNP sets were identical among the different ethnic groups. The haplotype r(2)-based method was more effective in determining genotype-phenotype correlation than the other methods employed. CONCLUSION All of the three computational tagSNP selection methods showed acceptable efficiency and effectiveness. The selected tagSNPs were different from each other among the different ethnic groups.
Collapse
Affiliation(s)
- Myung-Hyun Nam
- College of Medicine, Korea University, Department of Laboratory Medicine, Seoul 136-705, South Korea.
| | | | | | | |
Collapse
|
33
|
Wu FY, Wu HDI, Yang HL, Kuo HW, Ying JC, Lin CJ, Yang CC, Lin LY, Chiu TH, Lai JS. Associations among genetic susceptibility, DNA damage, and pregnancy outcomes of expectant mothers exposed to environmental tobacco smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 386:124-33. [PMID: 17610937 DOI: 10.1016/j.scitotenv.2007.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
This study determined the effects of environmental tobacco smoke (ETS) on fetal growth by measuring neonatal birth outcomes and the extent of maternal DNA damage, and investigating the relationships among gene polymorphisms, genotoxicity, and pregnancy outcomes of expectant mothers who had exposed to tobacco smoke. This prospective study enrolled 685 pregnant women who completed an initial questionnaire at three central Taiwan hospitals between 2003 and 2004. Genotype analyses of CYP1A1, GSTT1, GSTM1, and NAT2 were performed from 421 women. A total of 398 women completed the follow-up analysis and successfully delivered a live single baby (n=384). Comet assay was performed for 18 smokers, 143 ETS-exposed subjects and 130 non-smokers to measure DNA damage. Analytical findings indicated that the levels of DNA damage among smokers and ETS-exposed subjects were significantly higher than that of non-smokers. DNA damage score in the ETS-exposed group was 84.3+/-44.3 and 63.5+/35.0 [corrected] for the nonsmoking group (p<0.001). Risk of DNA damage (DNA strand breakage, sister chromatid exchange, cell transformation and escalation of cytotoxicity) for subjects exposed to ETS was 7.49 times (adjusted odds ratio; 95% CI, 1.27-44.20) [corrected] greater than that of non-exposed to tobacco smoke at home. Average birth weight of neonates born to subjects with extremely serious DNA damage (within the 90th percentile, DNA damage score >or =129.5) was 141 g lighter than that of those with DNA damage score <129.5 (p=0.068) [corrected] The degree of DNA lesion was not related to metabolic polymorphic genes. The results of this study suggest that comet assay are reliable biomarkers for monitoring pregnant women exposed to tobacco smoke and indicate fetal growth effects from environmental exposure to tobacco smoke.
Collapse
Affiliation(s)
- Fang-Yang Wu
- Institute of Environmental Health, China Medical University, No 91, Hsueh-Shin Rd, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Werely CJ, Donald PR, van Helden PD. NAT2 polymorphisms and their influence on the pharmacology and toxicity of isoniazid in TB patients. Per Med 2007; 4:123-131. [PMID: 29788627 DOI: 10.2217/17410541.4.2.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis is a global pandemic that threatens to overwhelm healthcare budgets in many developing countries. Despite the availability of adequate effective treatment, many patients default on treatment, experience adverse side effects from antibiotics or fail to respond rapidly and recover. Isoniazid, one of the most important first-line tuberculosis drugs, is acetylated in the liver to a variable degree in different individuals giving rise to fast, intermediate and slow acetylator phenotypes. We present the view that the acetylation status of individuals plays an important contributory role in the tuberculosis pandemic. It is important to study the acetylation alleles, and to understand isoniazid metabolism and the manner in which it could affect patient compliance, isoniazid-toxicity and the emergence of drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Cedric J Werely
- Stellenbosch University, Department of Biomedical Sciences, MRC Centre for Molecular and Cellular Biology and DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, Faculty of Health Sciences, PO Box 19063, Tygerberg 7505, South Africa.
| | - Peter R Donald
- Stellenbosch University, Department of Paediatrics, Faculty of Health Sciences, PO Box 19063, Tygerberg 7505, South Africa
| | - Paul D van Helden
- Stellenbosch University, Department of Biomedical Sciences, MRC Centre for Molecular and Cellular Biology and DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, Faculty of Health Sciences, PO Box 19063, Tygerberg 7505, South Africa.
| |
Collapse
|
35
|
Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2006; 25:1649-58. [PMID: 16550165 PMCID: PMC1434721 DOI: 10.1038/sj.onc.1209374] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A role for the N-acetyltransferase 2 (NAT2) genetic polymorphism in cancer risk has been the subject of numerous studies. Although comprehensive reviews of the NAT2 acetylation polymorphism have been published elsewhere, the objective of this paper is to briefly highlight some important features of the NAT2 acetylation polymorphism that are not universally accepted to better understand the role of NAT2 polymorphism in carcinogenic risk assessment. NAT2 slow acetylator phenotype(s) infer a consistent and robust increase in urinary bladder cancer risk following exposures to aromatic amine carcinogens. However, identification of specific carcinogens is important as the effect of NAT2 polymorphism on urinary bladder cancer differs dramatically between monoarylamines and diarylamines. Misclassifications of carcinogen exposure and NAT2 genotype/phenotype confound evidence for a real biological effect. Functional understanding of the effects of NAT2 genetic polymorphisms on metabolism and genotoxicity, tissue-specific expression and the elucidation of the molecular mechanisms responsible are critical for the interpretation of previous and future human molecular epidemiology investigations into the role of NAT2 polymorphism on cancer risk. Although associations have been reported for various cancers, this paper focuses on urinary bladder cancer, a cancer in which a role for NAT2 polymorphism was first proposed and for which evidence is accumulating that the effect is biologically significant with important public health implications.
Collapse
Affiliation(s)
- D W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
36
|
N-Acetyltransferase-1 gene polymorphisms and correlation between genotype and its activity in a central Chinese Han population. Clin Chim Acta 2006; 371:85-91. [PMID: 16600204 DOI: 10.1016/j.cca.2006.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the arylamine N-acetyltransferase-1 (NAT1) gene polymorphisms and the correlation between genotype and phenotype in a Chinese Han population. METHODS Peripheral blood from 140Han people were collected and analyzed for NAT1 genotypes by allele-specific PCR combining with PCR-based restriction fragment length polymorphism-based procedure. The NAT1 phenotype were determined according to the NAT1 enzyme kinetics in leukocytes by HPLC method and the values of intrinsic clearance (Cl(int)) and V(max) and Michaelis constant (K(m)) of NAT1 were calculated. RESULTS The NAT1 genotype of Chinese Han populations was distinguished accurately and the NAT1 activity were detected in 32 objects with different genotypes. The allelic frequencies of NAT1*3, NAT1*4, NAT1*10 and NAT1*11 from 140 Han people, were 0.082, 0.496, 0.40 and 0.022, respectively. Compared with the activity of wild genotype NAT1 *4/*4, the activity of the homozygote or heterozygote NAT1*10 genotype which includes the NAT1 *4/*10, the NAT1 *10/*10 and the NAT1 *3/*10 was significantly high (p<0.05). The activity of the NAT1 *11/*11 and NAT1 *4/*11 was lower than that of the homozygote or heterozygote NAT1*10 genotype (p<0.05), but no difference with the activity of wild genotype and the NAT1 *4/*3 and NAT1 *3/*3. CONCLUSION The distribution of the NAT1 genotype in a Chinese Han population was different from that in other countries. The activity of NAT1 showed significant variance from leukocytes with different genotypes.
Collapse
|
37
|
Sabbagh A, Darlu P. SNP selection at the NAT2 locus for an accurate prediction of the acetylation phenotype. Genet Med 2006; 8:76-85. [PMID: 16481889 DOI: 10.1097/01.gim.0000200951.54346.d6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Genetic polymorphisms in the N-acetyltransferase 2 gene determine the individual acetylator status, which influences both the toxicity and efficacy profile of acetylated drugs. Determination of an individual's acetylation phenotype prior to initiation of therapy, through DNA-based tests, should permit to improve therapy response and reduce adverse events. However, due to extensive linkage disequilibrium between markers within NAT2, the genotyping of closely spaced markers yields highly redundant data: testing them all is expensive and often unnecessary. The objective of this study is to establish the optimal strategy to define, in the genetic context of a given ethnic group, the most informative set of single-nucleotide polymorphisms that best enables accurate prediction of acetylation phenotype. METHODS Three classification methods have been investigated (classification trees, artificial neural networks and multifactor dimensionality reduction method) in order to find the optimal set of single-nucleotide polymorphisms enabling the most efficient classification of individuals in rapid and slow acetylators. RESULTS Our results show that, in almost all population samples, only one or two single-nucleotide polymorphisms would be enough to obtain a good predictive capacity with no or only a modest reduction in power relative to direct assays of all common markers. In contrast, in Black African populations, where lower levels of linkage disequilibrium are observed at NAT2, a larger number of single-nucleotide polymorphisms are required to predict acetylation phenotype. CONCLUSION The results of this study will be helpful for the design of time- and cost-effective pharmacogenetic tests (adapted to specific populations) that could be used as routine tools in clinical practice.
Collapse
Affiliation(s)
- Audrey Sabbagh
- Unité de Recherche en Génétique Epidémiologique et Structure des Populations Humaines, INSERM U535, Villejuif, France
| | | |
Collapse
|
38
|
Brandon EFA, Bosch TM, Deenen MJ, Levink R, van der Wal E, van Meerveld JBM, Bijl M, Beijnen JH, Schellens JHM, Meijerman I. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines. Toxicol Appl Pharmacol 2006; 211:1-10. [PMID: 15975613 DOI: 10.1016/j.taap.2005.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/12/2005] [Indexed: 11/26/2022]
Abstract
Human cell lines are often used for in vitro biotransformation and transport studies of drugs. In vivo, genetic polymorphisms have been identified in drug-metabolizing enzymes and ABC-drug transporters leading to altered enzyme activity, or a change in the inducibility of these enzymes. These genetic polymorphisms could also influence the outcome of studies using human cell lines. Therefore, the aim of our study was to pharmacogenotype four cell lines frequently used in drug metabolism and transport studies, HepG2, IGROV-1, CaCo-2 and LS180, for genetic polymorphisms in biotransformation enzymes and drug transporters. The results indicate that, despite the presence of some genetic polymorphisms, no real effects influencing the activity of metabolizing enzymes or drug transporters in the investigated cell lines are expected. However, this characterization will be an aid in the interpretation of the results of biotransformation and transport studies using these in vitro cell models.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Biological Transport
- Biotransformation
- Caco-2 Cells
- Carcinoma/enzymology
- Carcinoma/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/standards
- Female
- Humans
- Inactivation, Metabolic/genetics
- Liver Neoplasms/enzymology
- Liver Neoplasms/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/genetics
- Pharmacogenetics/methods
- Polymorphism, Genetic
- Transferases/genetics
- Transferases/metabolism
Collapse
Affiliation(s)
- Esther F A Brandon
- Department of Biomedical Analysis, Section of Drug Toxicology, Faculty of Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sabbagh A, Darlu P. Inferring haplotypes at the NAT2 locus: the computational approach. BMC Genet 2005; 6:30. [PMID: 15932650 PMCID: PMC1173101 DOI: 10.1186/1471-2156-6-30] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/02/2005] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Numerous studies have attempted to relate genetic polymorphisms within the N-acetyltransferase 2 gene (NAT2) to interindividual differences in response to drugs or in disease susceptibility. However, genotyping of individuals single-nucleotide polymorphisms (SNPs) alone may not always provide enough information to reach these goals. It is important to link SNPs in terms of haplotypes which carry more information about the genotype-phenotype relationship. Special analytical techniques have been designed to unequivocally determine the allocation of mutations to either DNA strand. However, molecular haplotyping methods are labour-intensive and expensive and do not appear to be good candidates for routine clinical applications. A cheap and relatively straightforward alternative is the use of computational algorithms. The objective of this study was to assess the performance of the computational approach in NAT2 haplotype reconstruction from phase-unknown genotype data, for population samples of various ethnic origin. RESULTS We empirically evaluated the effectiveness of four haplotyping algorithms in predicting haplotype phases at NAT2, by comparing the results with those directly obtained through molecular haplotyping. All computational methods provided remarkably accurate and reliable estimates for NAT2 haplotype frequencies and individual haplotype phases. The Bayesian algorithm implemented in the PHASE program performed the best. CONCLUSION This investigation provides a solid basis for the confident and rational use of computational methods which appear to be a good alternative to infer haplotype phases in the particular case of the NAT2 gene, where there is near complete linkage disequilibrium between polymorphic markers.
Collapse
Affiliation(s)
- Audrey Sabbagh
- Unité de Recherche en Génétique Epidémiologique et Structure des Populations Humaines, INSERM U535, Villejuif, France
| | - Pierre Darlu
- Unité de Recherche en Génétique Epidémiologique et Structure des Populations Humaines, INSERM U535, Villejuif, France
| |
Collapse
|
40
|
Arslan S, Degerli N, Bardakci F. Distribution of N-acetyltransferase Type 1 (NAT1) genotypes and alleles in a Turkish population. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Kukongviriyapan V, Prawan A, Warasiha B, Tassaneyakul W, Aiemsa-ard J. Polymorphism of N-acetyltransferase 1 and correlation between genotype and phenotype in a Thai population. Eur J Clin Pharmacol 2003; 59:277-281. [PMID: 12879167 DOI: 10.1007/s00228-003-0630-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 05/30/2003] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To analyze the common allele frequencies of the arylamine-N-acetyltransferase 1 (NAT1) and examine the relationship between genotype and phenotype in a Thai population. METHODS Peripheral blood samples from 233 Thai individuals were analyzed for genotype using polymerase chain reaction with restriction fragment-length polymorphism assays and for phenotype by determination of NAT1 enzyme kinetics in leukocytes using para-aminobenozic acid as a specific substrate. RESULTS Of 466 NAT1 alleles assayed, the frequency of the NAT1*4 allele (wild-type) was 0.504 (95%CI 0.458-0.551) and those of the NAT1*10, *3 and *11 alleles were 0.438 (0.392-0.484), 0.034 (0.02-0.055) and 0.024 (0.012-0.042), respectively. Neither NAT1*14A nor *14B alleles were found in this studied population. The activity of NAT1 enzyme from peripheral blood leukocytes determined in 47 subjects was found to vary widely. The intrinsic clearance and Vmax values of NAT1 enzymes with genotypes NAT1 *4/*4, *10/*10 and *4/ *10 were not significantly different. CONCLUSION The frequency distribution of the major NAT1 alleles in the Thai population has a similar pattern to some Asian populations; however, racial differences among Asian populations need further clarification.
Collapse
|
42
|
Cavaco I, Reis R, Gil JP, Ribeiro V. CYP3A4*1B and NAT2*14 alleles in a native African population. Clin Chem Lab Med 2003; 41:606-9. [PMID: 12747609 DOI: 10.1515/cclm.2003.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Single nucleotide polymorphisms were examined in the cytochrome 450 3A4 (CYP3A4) and N-acetyltransferase 2 (NAT2) genes, which code for major mediators of the metabolism of a wide variety of therapeutic drugs, as well as xenobiotics. We determined, in a population from Guinea-Bissau, the frequencies of CYP3A4 and NAT2 variants expected to be prevalent among Africans, due to the high frequency previously observed in African Americans. The observed frequencies were 72% for CYP3A4*1B and 19.2% for the NAT2 191 G>A variant. The high frequency found for these potentially function-altering polymorphisms suggests the possibility of impaired metabolism through CYP3A4 and NAT2 in this population. Strikingly, the frequency observed for the NAT2 191 G>A single nucleotide polymorphism (SNP), associated with the slow acetylator phenotype, was significantly higher than found in other African populations, suggesting the existence of a west to east gradient across Sub-Saharan Africa. The prevalence of these variants may be relevant with regard to therapeutic efficacy in African populations for it may potentially affect drug clearance and consequently, increase the incidence of side effects and drug-drug interactions.
Collapse
Affiliation(s)
- Isa Cavaco
- Laboratory of Molecular Toxicology, CMQA, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | | | | | | |
Collapse
|