1
|
De Schoenmacker I, Costa Marques D, Scheuren PS, Lütolf R, Gorrell LM, Mehli SC, Curt A, Rosner J, Hubli M. Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions. Clin Neurophysiol 2024; 166:31-42. [PMID: 39094528 DOI: 10.1016/j.clinph.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - David Costa Marques
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay M Gorrell
- Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| | - Sarah C Mehli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hou J, Nelson R, Mohammad N, Mustafa G, Plant D, Thompson FJ, Bose P. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:1999-2013. [DOI: 10.1089/neu.2019.6961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Rachel Nelson
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Naweed Mohammad
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Golam Mustafa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Daniel Plant
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Floyd J. Thompson
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Prodip Bose
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Lopes PSS, Campos ACP, Fonoff ET, Britto LRG, Pagano RL. Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats. Behav Brain Funct 2019; 15:5. [PMID: 30909927 PMCID: PMC6432755 DOI: 10.1186/s12993-019-0156-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.
Collapse
Affiliation(s)
- Patrícia Sanae Souza Lopes
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Erich Talamoni Fonoff
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Neurology, School of Medicine, University of São Paulo, São Paulo, SP, 01060-970, Brazil
| | - Luiz Roberto Giorgetti Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.
| |
Collapse
|
4
|
Jørgensen KB, Krogh-Jensen K, Pickering DS, Kanui TI, Abelson KSP. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:7-15. [PMID: 26520141 PMCID: PMC4698283 DOI: 10.1007/s00359-015-1048-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
Abstract
The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m1–5 of the naked mole-rat were compared to that of the house mouse (Mus musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies with [3H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in the formalin test. Administration of 50 mg/kg VU0152100 resulted in a non-significant tendency towards antinociception. The antinociceptive effects were reversed by the muscarinic acetylcholine receptor antagonist atropine. Binding studies indicated presence of muscarinic acetylcholine receptors with a radioligand affinity comparable to that reported in mice. In conclusion, muscarinic acetylcholine receptor subtypes are present in the naked mole-rat and contribute to antinociception in the naked mole-rat.
Collapse
Affiliation(s)
- Kristine B Jørgensen
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark
| | - Karen Krogh-Jensen
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Titus I Kanui
- School of Agricultural and Veterinary Sciences, South Eastern Kenya University, P.O. BOX 170-90200, Kitui, Kenya
| | - Klas S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Curatolo M, Arendt-Nielsen L. Central Hypersensitivity in Chronic Musculoskeletal Pain. Phys Med Rehabil Clin N Am 2015; 26:175-84. [DOI: 10.1016/j.pmr.2014.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P. Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 2014; 31:1088-106. [PMID: 24552465 DOI: 10.1089/neu.2013.3096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spasticity and gait impairments are two common disabilities after cervical spinal cord injury (C-SCI). In this study, we tested the therapeutic effects of early treadmill locomotor training (Tm) initiated at postoperative (PO) day 8 and continued for 6 weeks with injury site transcranial magnetic stimulation (TMSsc) on spasticity and gait impairments after low C6/7 moderate contusion C-SCI in a rat model. The combined treatment group (Tm+TMSsc) showed the most robust decreases in velocity-dependent ankle torques and triceps surae electromyography burst amplitudes that were time locked to the initial phase of lengthening, as well as the most improvement in limb coordination quantitated using three-dimensional kinematics and CatWalk gait analyses, compared to the control or single-treatment groups. These significant treatment-associated decreases in measures of spasticity and gait impairment were also accompanied by marked treatment-associated up-regulation of dopamine beta-hydroxylase, glutamic acid decarboxylase 67, gamma-aminobutyric acid B receptor, and brain-derived neurotrophic factor in the lumbar spinal cord (SC) segments of the treatment groups, compared to tissues from the C-SCI nontreated animals. We propose that the treatment-induced up-regulation of these systems enhanced the adaptive plasticity in the SC, in part through enhanced expression of pre- and postsynaptic reflex regulatory processes. Further, we propose that locomotor exercise in the setting of C-SCI may decrease aspects of the spontaneous maladaptive segmental and descending plasticity. Accordingly, TMSsc treatment is characterized as an adjuvant stimulation that may further enhance this capacity. These data are the first to suggest that a combination of Tm and TMSsc across the injury site can be an effective treatment modality for C-SCI-induced spasticity and gait impairments and provided a pre-clinical demonstration for feasibility and efficacy of early TMSsc intervention after C-SCI.
Collapse
Affiliation(s)
- Jiamei Hou
- 1 Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | | | | | | | | |
Collapse
|
7
|
ALS and oxidative stress: the neurovascular scenario. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:635831. [PMID: 24367722 PMCID: PMC3866720 DOI: 10.1155/2013/635831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS.
Collapse
|
8
|
Bose PK, Hou J, Parmer R, Reier PJ, Thompson FJ. Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training. Front Physiol 2012; 3:258. [PMID: 22934014 PMCID: PMC3429034 DOI: 10.3389/fphys.2012.00258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/20/2012] [Indexed: 11/13/2022] Open
Abstract
Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612-49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8-12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350-612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field locomotor ability) and reflex rate-depression, a quantitative assessment of neurophysiological processes that regulate segmental reflex excitability, compared with those of untrained injured controls. Light microscopic qualitative studies of spared tissue revealed better preservation of myelin, axons, and collagen morphology in both locomotor trained animals. Both locomotor trained groups revealed decreased lesion volume (rostro-caudal extension) and more spared tissue at the lesion site. These improvements were accompanied by marked upregulation of BDNF, GABA/GABA(b), and monoamines (e.g., norepinephrine and serotonin) which might account for these improved functions. These data are the first to indicate that the therapeutic efficacy of ergonomically practical cycle training is equal to that of the more labor-intensive treadmill training in reducing spasticity and improving locomotion following SCI in an animal model.
Collapse
Affiliation(s)
- Prodip K Bose
- Brain Rehabilitation Research Center, North Florida/South Georgia VA Medical Center Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
9
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
10
|
Ishii H, Kohno T, Yamakura T, Ikoma M, Baba H. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. Eur J Neurosci 2008; 27:3182-90. [PMID: 18554299 PMCID: PMC2658019 DOI: 10.1111/j.1460-9568.2008.06260.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dexmedetomidine is a highly specific, potent and selective alpha(2)-adrenoceptor agonist. Although intrathecal and epidural administration of dexmedetomidine has been found to produce analgesia, whether this analgesia results from an effect on spinal cord substantia gelatinosa (SG) neurons remains unclear. Here, we investigated the effects of dexmedetomidine on postsynaptic transmission in SG neurons of rat spinal cord slices using the whole-cell patch-clamp technique. In 92% of the SG neurons examined (n = 84), bath-applied dexmedetomidine induced outward currents at -70 mV in a concentration-dependent manner, with the value of effective concentration producing a half-maximal response (0.62 microM). The outward currents induced by dexmedetomidine were suppressed by the alpha(2)-adrenoceptor antagonist yohimbine, but not by prazosin, an alpha(1)-, alpha(2B)- and alpha(2C)-adrenoceptor antagonist. Moreover, the dexmedetomidine-induced currents were partially suppressed by the alpha(2C)-adrenoceptor antagonist JP-1302, while simultaneous application of JP-1302 and the alpha(2A)-adrenoceptor antagonist BRL44408 abolished the current completely. The action of dexmedetomidine was mimicked by the alpha(2A)-adrenoceptor agonist oxymetazoline. Plots of the current-voltage relationship revealed a reversal potential at around -86 mV. Dexmedetomidine-induced currents were blocked by the addition of GDP-beta-S [guanosine-5'-O-(2-thiodiphosphate)] or Cs+ to the pipette solution. These findings suggest that dexmedetomidine hyperpolarizes the membrane potentials of SG neurons by G-protein-mediated activation of K+ channels through alpha(2A)- and alpha(2C)-adrenoceptors. This action of dexmedetomidine might contribute, at least in part, to its antinociceptive action in the spinal cord.
Collapse
Affiliation(s)
- Hideaki Ishii
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
11
|
Walker SM, Fitzgerald M. Characterization of spinal alpha-adrenergic modulation of nociceptive transmission and hyperalgesia throughout postnatal development in rats. Br J Pharmacol 2007; 151:1334-42. [PMID: 17533423 PMCID: PMC2189833 DOI: 10.1038/sj.bjp.0707290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The selective alpha(2)-adrenergic agonist dexmedetomidine is used clinically for analgesia and sedation, but effects in early life are not well characterized. Investigation of age-related effects of dexmedetomidine is important for evaluating responses to exogenously administered analgesics and provides insight into postnatal function of noradrenergic pathways. EXPERIMENTAL APPROACH We examined effects of epidural dexmedetomidine in anaesthetized rat pups (3, 10 and 21 postnatal days) using a quantitative model of nociception and C-fibre induced hyperalgesia. Electromyographic recordings of withdrawal responses to hindpaw mechanical stimuli measured effects of dexmedetomidine upon the baseline reflex and the response to mustard oil application on the hindpaw (primary hyperalgesia) or hindlimb (secondary hyperalgesia). In addition, we compared epidural with systemic administration, examined effects of spinal transection and evaluated heart rate changes following dexmedetomidine. KEY RESULTS Epidural dexmedetomidine dose-dependently prevented mustard oil-induced hyperalgesia at all ages but dose requirements were lower in the youngest pups. Higher doses also suppressed the baseline nociceptive reflex when given epidurally, but had no effect when given systemically. Analgesic efficacy was the same for primary and secondary hyperalgesia, and was not diminished by spinal cord transection. CONCLUSIONS AND IMPLICATIONS Our laboratory studies predict that spinally mediated alpha(2)-agonist analgesia would be effective throughout postnatal development, dose requirements would be lower in early life and selective anti-hyperalgesic effects could be achieved with epidural administration at doses lower than associated with antinociceptive or cardiovascular effects. Clinical trials of alpha(2) agonists in neonates and infants should consider developmentally regulated changes.
Collapse
Affiliation(s)
- S M Walker
- Portex Anaesthesia Unit, UCL Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
12
|
Abstract
The under-treatment of postoperative pain has been recognised to delay patient recovery and discharge from hospital. Despite recognition of the importance of effective pain control, up to 70% of patients still complain of moderate to severe pain postoperatively. The mechanistic approach to pain management, based on current understanding of the peripheral and central mechanisms involved in nociceptive transmission, provides newer options for clinicians to manage pain effectively. In this article we review the rationale for a multimodal approach with combinations of analgesics from different classes and different sites of analgesic administration. The pharmacological options of commonly used analgesics, such as opioids, NSAIDs, paracetamol, tramadol and other non-opioid analgesics, and their combinations is discussed. These analgesics have been shown to provide effective pain relief and their combinations demonstrate a reduction in opioid consumption. The basis for using non-opioid analgesic adjuvants is to reduce opioid consumption and consequently alleviate opioid-related adverse effects. We review the evidence on the opioid-sparing effect of ketamine, clonidine, gabapentin and other novel analgesics in perioperative pain management. Most available data support the addition of these adjuvants to routine analgesic techniques to reduce the need for opioids and improve quality of analgesia by their synergistic effect. Local anaesthetic infiltration, epidural and other regional techniques are also used successfully to enhance perioperative analgesia after a variety of surgical procedures. The use of continuous perineural techniques that offer prolonged analgesia with local anaesthetic infusion has been extended to the care of patients beyond hospital discharge. The use of nonpharmacological options such as acupuncture, relaxation, music therapy, hypnosis and transcutaneous nerve stimulation as adjuvants to conventional analgesia should be considered and incorporated to achieve an effective and successful perioperative pain management regimen.
Collapse
Affiliation(s)
- Srinivas Pyati
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
13
|
Lu Y, Perl ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol 2007; 582:127-36. [PMID: 17463043 PMCID: PMC2075283 DOI: 10.1113/jphysiol.2007.131565] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The superficial dorsal horn of the spinal cord (SDH; laminae I and II) receives strong input from thin primary afferent fibres and is involved in nociception, pain, temperature sensing and other experiences. The SDH also is the target of serotonergic and adrenergic projections from the brain stem. The interaction between descending pathways that utilize particular mediators and the neurone population of the SDH is poorly understood. To explore this issue, in rat spinal cord slices during whole-cell recordings from identified SDH neurones, noradrenaline (NA) or serotonin (5HT) were briefly applied in the superfusing artificial cerebrospinal fluid. The action of these agents proved specifically related to the type of SDH neurone and its dorsal-root afferent input. Vertical, radial and tonic central lamina II cells consistently expressed outward current to both NA and 5HT, but transient central and Substance P (SP)-insensitive lamina I cells were unaffected directly by either NA or 5HT. Extended islet cells responded with outward current to NA and inward current to 5HT. Lamina I SP-sensitive cells expressed an outward current regularly to NA. 5HT had inhibitory effects on Adelta and C fibre input to all types of SDH neurones. NA inhibited C fibre input to transient central neurones. The present results support the idea that descending systems may have multiple functions, including but not limited to nociceptive modulation.
Collapse
Affiliation(s)
- Yan Lu
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 5133 NRB - CB 7545, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
14
|
Abstract
Adrenergic and cholinergic signalling contributes significantly to the endogenous antinociceptive system. Exogenous alpha 2 adrenergic agonists have a well-established analgesic profile; however, recent investigations suggest that this class of agents is underused, and herein we highlight the potential for both current application and future development of these agents. Nicotinic and muscarinic cholinergic ligands represent a novel class of agents with much promise for the management of problematic pain. In this chapter we review advances in both preclinical and clinical arenas and highlight potential avenues for further research.
Collapse
Affiliation(s)
- R D Sanders
- Academic Anaesthetics, Imperial College, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | | |
Collapse
|
15
|
Scott JA, Wood M, Flood P. The pronociceptive effect of ondansetron in the setting of P-glycoprotein inhibition. Anesth Analg 2006; 103:742-6. [PMID: 16931690 DOI: 10.1213/01.ane.0000228861.80314.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ondansetron is a potent antiemetic drug that acts through inhibition of the 5HT3 receptors for serotonin. Minimum alveolar concentration (MAC) for isoflurane is not affected by systemic ondansetron; however ondansetron is a substrate of P-glycoprotein, a transport pump expressed in the blood-brain barrier. Thus, we hypothesized that central nervous system concentrations of ondansetron might be reduced by the P-gp protein. As potent inhibitors of P-gp are in clinical trials to improve access of desirable chemotherapeutic and antibiotic drugs to the central nervous system, we studied the effect of ondansetron in the absence of extrusion by P-gp. Normal rats were given lumbar intrathecal ondansetron or vehicle. P-gp knockout mice and wild-type controls were treated with systemic ondansetron in the presence and absence of clinically used P-gp inhibitors. Nociception was assessed as thermal hindpaw withdrawal latency and immobility was assessed as isoflurane MAC. In rats, intrathecal ondansetron (20 g) increased thermal pain sensitivity by 20.0% +/- 5.8% (P < 0.01). Systemic ondansetron (2 mg/kg) increased pain sensitivity in P-gp knockout mice but had no effect in wild-type mice (P < 0.01). Systemic ondansetron had a small but statistically significant pronociceptive effect after treatment of wild-type mice with the P-gp inhibitor quinidine but not with cyclosporine or verapamil. Isoflurane MAC was not changed by intrathecal ondansetron in rats or systemically administered ondansetron in P-gp knockout mice. Intrathecal ondansetron can enhance thermal pain sensitivity. In the absence of P-gp protein, ondansetron can reach concentrations sufficient to increase pain sensitivity. Even with direct spinal application, ondansetron does not alter isoflurane MAC, supporting the idea that 5HT3 modulation does not play a role in general anesthetic immobility.
Collapse
Affiliation(s)
- Jason A Scott
- Department of Anesthesiology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
16
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central Hypersensitivity in Chronic Pain: Mechanisms and Clinical Implications. Phys Med Rehabil Clin N Am 2006; 17:287-302. [PMID: 16616268 DOI: 10.1016/j.pmr.2005.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The available literature consistently shows increased pain sensitivity after sensory stimulation of healthy tissues in patients who have various chronic pain conditions. This indicates a state of hypersensitivity of the CNS that amplifies the nociceptive input arising from damaged tissues. Experimental data indicate that central hypersensitivity is probably induced primarily by nociceptive input arising from a diseased tissue. In patients, imbalance of descending modulatory systems connected with psychologic distress may play a role. There is experimental support in animal studies for the persistence of central hypersensitivity after complete resolution of tissue damage. This is particularly true for neuropathic pain conditions, whereby potentially irreversible plasticity changes of the CNS have been documented in animal studies. Whether such changes are present in musculoskeletal pain states is at present uncertain. Despite the likely importance of central hypersensitivity in the pathophysiology of chronic pain, this mechanism should not be used to justify the lack of understanding on the anatomic origin of the pain complaints in several pain syndromes, which is mostly due to limitations of the available diagnostic tools. Treatment strategies for central hypersensitivity in patients have been investigated mostly in neuropathic pain states. Possible therapy modalities for central hypersensitivity in chronic pain of musculoskeletal origin are largely unexplored. The limited evidence available and everyday practice show, at best, modest efficacy of the available treatment modalities for central hypersensitivity. The gap between basic knowledge and clinical benefits remains large and should stimulate further intensive research.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, Division of Pain Therapy, Inselspital, 3010 Bern, Switzerland.
| | | | | |
Collapse
|
17
|
Suarez-Roca H, Quintero L, Arcaya JL, Maixner W, Rao SG. Stress-induced muscle and cutaneous hyperalgesia: differential effect of milnacipran. Physiol Behav 2006; 88:82-7. [PMID: 16624346 DOI: 10.1016/j.physbeh.2006.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/08/2006] [Accepted: 03/08/2006] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that repeated swim stress produces long-term cutaneous hyperalgesia in rats. We have now determined the effect of stress upon muscle nociception and the anti-nociceptive efficacy of the norepinephrine-serotonin reuptake inhibitor, milnacipran (MIL) in this model. Rats were subjected to either 10-20 min daily sessions of forced swimming (FS) for 3 days, or sham swimming (SS) or control (CT). Maximal forelimb grip strength and hot plate response latencies were estimated before and after the conditioning to assess muscle and thermal nociception, respectively. MIL (1-30 mg/kg/i.p.) or vehicle was started 7 days before the conditioning protocol. There were significant reductions in maximal grip strength and hot plate latencies only in FS/vehicle rats. Subsequent carrageenan administration (2 mg/75 microl each triceps) diminished grip strength in all groups 24 h later, with grip strength lower in FS/vehicle and SS/vehicle rats than in CT/vehicle rats. Treatment with MIL before the stress prevented the reduction in grip strength in all groups but it was ineffective in preventing FS-induced reductions in hot plate response latencies. Thus, repeated stress produces muscle hyperalgesia that can be pharmacologically dissociated from cutaneous hyperalgesia, suggesting that different mechanisms may underlie these two phenomena.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Instituto de Investigaciones Clinicas, Section of Neuropharmacology, University of Zulia, Apartado 23, Maracaibo, 4001-A, Venezuela.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
19
|
Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, Xu H, Shum FWF, Jia YH, Zhuo M. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci 2006; 26:851-61. [PMID: 16421305 PMCID: PMC6675366 DOI: 10.1523/jneurosci.3292-05.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular signal-regulated kinase (Erk) cascades are suggested to contribute to excitatory synaptic plasticity in the CNS, including the spinal cord dorsal horn. However, many of their upstream signaling pathways remain to be investigated. Here, we demonstrate that glutamate and substance P (SP), two principal mediators of sensory information between primary afferent fibers and the spinal cord, activate Erk in dorsal horn neurons of both adult rat and mouse spinal cord. In genetic knock-out mice of calcium calmodulin-stimulated adenylyl cyclase subtypes 1 (AC1) and 8 (AC8), activation of Erk in dorsal horn neurons were significantly reduced or blocked, either after peripheral tissue inflammation or by glutamate or SP in spinal cord slices. Our studies suggest that AC1 and AC8 act upstream from Erk activation in spinal dorsal horn neurons and the calcium-AC1/AC8-dependent Erk signaling pathways may contribute to spinal sensitization, an underlying mechanism for the development of persistent pain after injury.
Collapse
Affiliation(s)
- Feng Wei
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kommalage M, Höglund AU. Involvement of spinal GABA receptors in the regulation of intraspinal acetylcholine release. Eur J Pharmacol 2005; 525:69-73. [PMID: 16297380 DOI: 10.1016/j.ejphar.2005.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/08/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
It has been shown that analgesics such as morphine, lidocaine and clonidine increase the release of spinal acetylcholine. Acetylcholine may therefore play an important role in the regulation of spinal pain threshold. Since behavioral as well as in vitro studies have shown a clear involvement of GABA (gamma-amino butyric acid) receptors in the regulation of spinal nociceptive mechanisms, the present study focused on the role of GABA receptors for spinal acetylcholine release control. GABA receptor agonists and antagonists were infused via a spinal microdialysis probe and acetylcholine release was measured. The GABA(A) receptor agonist muscimol decreased acetylcholine release and the antagonist bicuculline increased acetylcholine release. The GABA(B) receptor agonist baclofen decreased acetylcholine release whereas the antagonist saclofen did not change acetylcholine release. The results suggest that both GABA receptor subtypes have an inhibitory role on spinal dorsal horn acetylcholine release and that the GABA(A) receptors are tonically regulating acetylcholine release.
Collapse
Affiliation(s)
- Mahinda Kommalage
- Department of Neuroscience, Division of Comparative Medicine, Uppsala University, BMC, Box 572, S-75123, Uppsala, Sweden
| | | |
Collapse
|
21
|
Theiss RD, Heckman CJ. Systematic variation in effects of serotonin and norepinephrine on repetitive firing properties of ventral horn neurons. Neuroscience 2005; 134:803-15. [PMID: 15987664 DOI: 10.1016/j.neuroscience.2005.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 04/11/2005] [Accepted: 04/15/2005] [Indexed: 01/26/2023]
Abstract
Spinal interneurons are essential integrators of descending and peripheral input that receive profuse monoaminergic influence from brainstem nuclei. In this study, the effects of the monoamines serotonin and norepinephrine on the intrinsic properties of ventral horn interneurons were investigated in a slice preparation of the lumbar cord of 7-19 day old rats. Three cell groups with distinct firing patterns in response to steps of injected current were observed and classified as repetitive-firing, initial-burst or single-spiking. Input conductance tended to be largest in single-spiking cells whereas repetitive-firing cells showed the greatest tendency for spontaneous firing and had the fastest rate of rise for the action potential. Rhythmic firing behaviors were defined by the frequency-current relation evoked by linearly increasing current ramps. The monoaminergic modulation of firing patterns and frequency-current relations was primarily studied in repetitive-firing cells. The frequency-current threshold current was decreased in cells with high pre-drug values and increased in cells with low pre-drug values. Therefore, monoamine administration decreased the input-output heterogeneity of the repetitive-firing cells by compressing the range of frequency-current threshold currents. This action of monoamines may have a key role in the suppression of sensory-evoked reflexes and the production of coordinated movement.
Collapse
Affiliation(s)
- R D Theiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
22
|
Radhakrishnan R, Sluka KA. Deep Tissue Afferents, but not Cutaneous Afferents, Mediate Transcutaneous Electrical Nerve Stimulation–Induced Antihyperalgesia. THE JOURNAL OF PAIN 2005; 6:673-80. [PMID: 16202960 DOI: 10.1016/j.jpain.2005.06.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 05/16/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED In this study we investigated the involvement of cutaneous versus knee joint afferents in the antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) by differentially blocking primary afferents with local anesthetics. Hyperalgesia was induced in rats by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency to heat before and 4 hours after injection. Skin surrounding the inflamed knee joint was anesthetized using an anesthetic cream (EMLA). Low (4 Hz) or high (100 Hz) frequency TENS was then applied to the anesthetized skin. In another group, 2% lidocaine gel was injected into the inflamed knee joint, and low or high frequency TENS was applied. Control experiments were done using vehicles. In control and EMLA groups, both low and high frequency TENS completely reversed hyperalgesia. However, injection of lidocaine into the knee joint prevented antihyperalgesia produced by both low and high frequency TENS. Recordings of cord dorsum potentials showed that both low and high frequency TENS at sensory intensity activates only large diameter afferent fibers. Increasing intensity to twice the motor threshold recruits Adelta afferent fibers. Furthermore, application of EMLA cream to the skin reduces the amplitude of the cord dorsum potential by 40% to 70% for both high and low frequency TENS, confirming a loss of large diameter primary afferent input after EMLA is applied to the skin. Thus, inactivation of joint afferents, but not cutaneous afferents, prevents the antihyperalgesia effects of TENS. We conclude that large diameter primary afferent fibers from deep tissue are required and that activation of cutaneous afferents is not sufficient for TENS-induced antihyperalgesia. PERSPECTIVE Transcutaneous electrical nerve stimulation (TENS) is an accepted clinical modality used for pain relief. It is generally believed that TENS analgesia is caused mainly by cutaneous afferent activation. In this study by differentially blocking cutaneous and deep tissue primary afferents, we show that the activation of large diameter primary afferents from deep somatic tissues, and not cutaneous afferents, are pivotal in causing TENS analgesia.
Collapse
Affiliation(s)
- Rajan Radhakrishnan
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
23
|
Holden JE, Farah EN, Jeong Y. Stimulation of the lateral hypothalamus produces antinociception mediated by 5-HT1A, 5-HT1B and 5-HT3 receptors in the rat spinal cord dorsal horn. Neuroscience 2005; 135:1255-68. [PMID: 16165284 DOI: 10.1016/j.neuroscience.2005.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 07/08/2005] [Accepted: 07/16/2005] [Indexed: 02/04/2023]
Abstract
The lateral hypothalamus is part of an efferent system that modifies pain at the spinal cord dorsal horn, but the mechanisms by which lateral hypothalamus-induced antinociception occur are not fully understood. Previous work has shown that antinociception produced from electrical stimulation of the lateral hypothalamus is mediated in part by spinally projecting 5-hydroxytryptamine (5-HT) neurons in the ventromedial medulla. To further examine the role of the lateral hypothalamus in antinociception, the cholinergic agonist carbamylcholine chloride (125 nmol) was microinjected into the lateral hypothalamus of female Sprague-Dawley rats and nociceptive responses measured on the tail-flick and foot-withdrawal tests. Intrathecal injections of the selective 5-HT1A, 5-HT1B, 5-HT3 receptor antagonists, WAY 100135, SB-224289, and tropisetron, respectively, and the non-specific antagonist methysergide, were given. Lateral hypothalamus stimulation with carbamylcholine chloride produced significant antinociception that was blocked by WAY 100135, tropisetron, and SB-224289 on both the tail-flick and foot-withdrawal tests. Methysergide was not different from controls on the tail flick test, but increased foot-withdrawal latencies compared with controls. These results suggest that the lateral hypothalamus modifies nociception in part by activating spinally projecting serotonin neurons that act at 5-HT1A, 5-HT1B, and 5-HT3 receptors in the dorsal horn.
Collapse
MESH Headings
- Animals
- Carbachol/administration & dosage
- Cholinergic Agonists/administration & dosage
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- Female
- Hypothalamus/drug effects
- Hypothalamus/physiology
- Injections, Intraventricular
- Injections, Spinal
- Microinjections
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/physiopathology
- Pain Measurement
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/drug effects
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptors, Serotonin, 5-HT3/drug effects
- Receptors, Serotonin, 5-HT3/metabolism
- Serotonin Antagonists/administration & dosage
Collapse
Affiliation(s)
- J E Holden
- The University of Illinois at Chicago, Department of Medical-Surgical Nursing, 718 College of Nursing (M/C 802), 845 South Damen Avenue, Chicago, IL 60612-7350, USA. jeholden.uin.edu
| | | | | |
Collapse
|
24
|
Dahlhaus A, Ruscheweyh R, Sandkühler J. Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro. J Physiol 2005; 566:355-68. [PMID: 15878938 PMCID: PMC1464766 DOI: 10.1113/jphysiol.2005.088567] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spinal lamina I projection neurones that transmit nociceptive information to the brain play a pivotal role in hyperalgesia in various animal models of inflammatory and neuropathic pain. Consistently, activity-dependent long-term potentiation can be induced at synapses between primary afferent C-fibres and lamina I projection neurones but not unidentified neurones in lamina I. The specific properties that enable projection neurones to undergo long-term potentiation and mediate hyperalgesia are not fully understood. Here, we have tested whether lamina I projection neurones differ from unidentified neurones in types or strength of primary afferent input and/or action potential-independent excitatory and inhibitory input. We used the whole-cell patch-clamp technique to record synaptic currents in projection and unidentified lamina I neurones in a transverse lumbar spinal cord slice preparation from rats between postnatal day 18 and 37. Lamina I neurones with a projection to the parabrachial area or the periaqueductal grey were identified by retrograde labelling with a fluorescent tracer. The relative contribution of NMDA receptors versus AMPA/kainate receptors to C-fibre-evoked excitatory postsynaptic currents of lamina I neurones significantly decreased with age between postnatal day 18 and 27, but was independent of the supraspinal projection of the neurones. We did not find a significant contribution of kainate receptors to C-fibre-evoked excitatory postsynaptic currents. Lamina I projection and unidentified neurones possessed functional GABAA and glycine receptors but received scarce action potential-independent spontaneous GABAergic and glycinergic inhibitory input as measured by miniature inhibitory postsynaptic currents. The miniature excitatory postsynaptic current frequencies were five times higher in projection than in unidentified neurones. The predominance of excitatory synaptic input to projection neurones, taken together with the previous finding that their membranes are more easily excitable than those of unidentified neurones, may facilitate the induction of synaptic long-term potentiation.
Collapse
Affiliation(s)
- Anne Dahlhaus
- Center for Brain Research, Department of Neurophysiology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
25
|
Bramness JG, Mørland J, Sørlid HK, Rudberg N, Jacobsen D. Carisoprodol intoxications and serotonergic features. Clin Toxicol (Phila) 2005; 43:39-45. [PMID: 15732445 DOI: 10.1081/clt-45020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The symptoms and signs of carisoprodol intoxications do not resemble those caused by its metabolite meprobamate. Meprobamate most probably produces its effects through the GABAergic neurotransmitter system. The signs and symptoms of carisoprodol intoxications, however, are not easily explained by interaction with this neurotransmitter system. In the present study, four cases of carisoprodol intoxications are presented with emphasis on the presence of serotonergic signs and symptoms. All four cases fulfilled three different sets of criteria for the diagnosis of serotonin syndrome. These findings could indicate that an increased serotonin level in the central nervous system could explain some of the symptoms and signs of carisoprodol intoxications. This may have implications for the clinical evaluation and treatment of such intoxications. Since few laboratories routinely screen for carisoprodol it is important to keep this drug in mind when encountering intoxications displaying serotonergic symptoms.
Collapse
Affiliation(s)
- Jørgen G Bramness
- Division of Forensic Toxicology and Drug Abuse, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
|
28
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Evidence, Mechanisms, and Clinical Implications of Central Hypersensitivity in Chronic Pain After Whiplash Injury. Clin J Pain 2004; 20:469-76. [PMID: 15502692 DOI: 10.1097/00002508-200411000-00013] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To provide insights into the mechanisms underlying central hypersensitivity, review the evidence on central hypersensitivity in chronic pain after whiplash injury, highlight reflections on the clinical relevance of central hypersensitivity, and offer a perspective of treatment of central hypersensitivity. METHODS A review of animal and human studies focusing on the mechanisms of postinjury central sensitization, an analysis of psychophysical investigations on central hypersensitivity in patients with chronic pain after whiplash injury, and a review of possible treatment modalities. RESULTS Animal data show that tissue damage produces plasticity changes at different neuronal structures that are responsible for amplification of nociception and exaggerated pain responses. Some of these changes are potentially irreversible. There is consistent psychophysical evidence for hypersensitivity of the central nervous system to sensory stimulation in chronic pain after whiplash injury. Tissue damage, detected or not by the available diagnostic methods, is probably the main determinant of central hypersensitivity. Psychologic distress could contribute to central hypersensitivity via imbalance of supraspinal and descending modulatory mechanisms. Although specific treatment strategies are limited, they are largely unexplored. IMPLICATIONS Central hypersensitivity may explain exaggerated pain in the presence of minimal nociceptive input arising from minimally damaged tissues. This could account for pain and disability in the absence of objective signs of tissue damage in patients with whiplash. Central hypersensitivity may provide a common neurobiological framework for the integration of peripheral and supraspinal mechanisms in the pathophysiology of chronic pain after whiplash. Therapy studies are needed.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, University Hospital of Bern, Switzerland.
| | | | | |
Collapse
|
29
|
Bruehl S, Chung OY. Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 2004; 28:395-414. [PMID: 15341037 DOI: 10.1016/j.neubiorev.2004.06.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 01/14/2023]
Abstract
Endogenous pain regulatory system dysfunction appears to play a role in the maintenance of chronic pain. An important component of the pain regulatory process is the functional interaction between the cardiovascular and pain regulatory systems, which results in an association between elevated resting blood pressure (BP) and diminished acute pain sensitivity. This BP/pain sensitivity relationship is proposed to reflect a homeostatic feedback loop helping restore arousal levels in the presence of painful stimuli. Evidence is emerging that this normally adaptive BP/pain sensitivity relationship is significantly altered in chronic pain conditions, affecting responsiveness to both acute and chronic pain stimuli. Several mechanisms that may underlie this adaptive relationship in healthy individuals are overviewed, including endogenous opioid, noradrenergic, and baroreceptor-related mechanisms. Theoretical models are presented regarding how chronic pain-related alterations in the mechanisms above and increased pain facilatory system activity (central sensitization) may contribute to altered BP/pain sensitivity interactions in chronic pain. Clinical implications are discussed.
Collapse
Affiliation(s)
- Stephen Bruehl
- Department of Anesthesiology, School of Medicine, Vanderbilt University, 1211 Twenty-First Avenue South, Nashville, TN 37212, USA.
| | | |
Collapse
|
30
|
Radhakrishnan R, Sluka K. Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology 2004; 45:1111-9. [PMID: 14614954 PMCID: PMC2746650 DOI: 10.1016/s0028-3908(03)00280-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological modality used clinically to relieve pain. Central involvement of serotonin and endogenous opioids are implicated in TENS-induced analgesia. Activation of spinal cholinergic receptors is antinociceptive and these receptors interact with opioid and serotonin receptors. In the current study, the possible involvement of spinal cholinergic receptors in TENS analgesia was investigated in rats. Hyperalgesia was induced by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency (PWL) to heat before and 4 h after injection. The non-selective nicotinic antagonist mecamylamine (50 microg), non-selective muscarinic antagonist atropine (30 microg) or one of the muscarinic subtype antagonists: pirenzepine (M1, 10 microg), methoctramine (M2, 10 microg), 4-DAMP (M3, 10 microg), or saline was administered intrathecally just prior to TENS treatment. Low or high frequency TENS was then applied to the inflamed knee and PWL was determined again. Atropine, pirenzepine and 4-DAMP significantly attenuated the antihyperalgesic effects of low and high frequency TENS while mecamylamine and methoctramine had no effects, compared to saline control. The results show that TENS-induced antihyperalgesia is mediated partially by activation of spinal muscarinic receptors but not spinal nicotinic receptors. Further, the results also indicate that spinal M1 and M3 muscarinic receptor subtypes mediate the muscarinic component of TENS antihyperalgesia.
Collapse
Affiliation(s)
| | - K.A. Sluka
- Corresponding author. Tel.: +1-319-335-9791; fax: +1-319-335-9707. E-mail address: (K.A. Sluka)
| |
Collapse
|
31
|
Banic B, Petersen-Felix S, Andersen OK, Radanov BP, Villiger PM, Arendt-Nielsen L, Curatolo M. Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia. Pain 2004; 107:7-15. [PMID: 14715383 DOI: 10.1016/j.pain.2003.05.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with chronic pain after whiplash injury and fibromyalgia patients display exaggerated pain after sensory stimulation. Because evident tissue damage is usually lacking, this exaggerated pain perception could be explained by hyperexcitability of the central nervous system. The nociceptive withdrawal reflex (a spinal reflex) may be used to study the excitability state of spinal cord neurons. We tested the hypothesis that patients with chronic whiplash pain and fibromyalgia display facilitated withdrawal reflex and therefore spinal cord hypersensitivity. Three groups were studied: whiplash (n=27), fibromyalgia (n=22) and healthy controls (n=29). Two types of transcutaneous electrical stimulation of the sural nerve were applied: single stimulus and five repeated stimuli at 2 Hz. Electromyography was recorded from the biceps femoris muscle. The main outcome measurement was the minimum current intensity eliciting a spinal reflex (reflex threshold). Reflex thresholds were significantly lower in the whiplash compared with the control group, after both single (P=0.024) and repeated (P=0.035) stimulation. The same was observed for the fibromyalgia group, after both stimulation modalities (P=0.001 and 0.046, respectively). We provide evidence for spinal cord hyperexcitability in patients with chronic pain after whiplash injury and in fibromyalgia patients. This can cause exaggerated pain following low intensity nociceptive or innocuous peripheral stimulation. Spinal hypersensitivity may explain, at least in part, pain in the absence of detectable tissue damage.
Collapse
Affiliation(s)
- Borut Banic
- Division of Pain Therapy, Department of Anesthesiology, University Hospital of Bern, Inselspital, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Kommalage M, Höglund AU. Nicotinic Acetylcholinergic Receptors Regulate the Intraspinal Release of Acetylcholine in Male Rats. ACTA ACUST UNITED AC 2003; 93:169-73. [PMID: 14629740 DOI: 10.1034/j.1600-0773.2003.930403.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of cholinergic receptors in the spinal cord increases the intraspinal release of acetylcholine (ACh) and produces potent analgesia. The mechanisms that regulate the release of spinal ACh are not fully known. In the present study, we investigated the role of nicotinic ACh receptors in the regulation of intraspinal ACh release. Using an in vivo intraspinal microdialysis technique, nicotine was administered alone and in combination with the nicotinic antagonists mecamylamine (50 microM), dihydro-beta-erythroidine (DbetaE) (500 microM) and methyllycaconitine (MLA) (40 nM). Administration of nicotine (1 microM-1 mM) produced a dose dependent increase of intraspinal ACh release, while 10 mM nicotine resulted in dramatic increase in ACh release followed by a decrease to baseline. Administration of mecamylamine or DbetaE also induced an increased ACh release while MLA caused a decreased release. Mecamylamine and DbetaE, but not MLA pretreatment attenuated the stimulatory effect of 100 microM nicotine on intraspinal ACh release. It is suggested that spinal ACh release is regulated by different nicotinic ACh receptors. These receptors may tonically regulate spinal ACh release either directly or indirectly via inhibitory interneurones. Some of these receptors may be desensitised by high nicotine concentrations leading to a reduction of ACh release.
Collapse
Affiliation(s)
- Mahinda Kommalage
- Department of Neuroscience, Division of Comparative Medicine, Uppsala University, Biomedical Centre, Box 572, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
33
|
Lang B, Li H, Kang JF, Li YQ. Alpha-2 adrenoceptor mediating the facilitatory effect of norepinephrine on the glycine response in the spinal dorsal horn neuron of the rat. Life Sci 2003; 73:893-905. [PMID: 12798415 DOI: 10.1016/s0024-3205(03)00352-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of norepinephrine (NE) on the glycine-mediated inhibitory response were investigated in neurons acutely dissociated from the rat spinal dorsal horn, using nystatin perforated patch recording mode under voltage-clamp conditions. NE reversibly and concentration dependently facilitated Cl(-) current induced by 3 x 10(-5) M glycine. NE neither changed the reversal potential of the glycine response nor affected the affinity of glycine to its receptor. This effect could be mimicked by clonidine (10(-7) M) and blocked by yohimbine (10(-6) M), respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), an inhibitor of protein kinase A, effectively mimicked the effect of NE on glycine response, whereas chelerythrine (an inhibitor of protein kinase C) failed. NE further enhanced glycine response even in the presence of chelerythrine or stearoylcarnitine chloride (another inhibitor of protein kinase C) or chelerythrine together with stearoylcarnitine chloride. The present results suggest that alpha2-adrenoceptor is involved in the potentiation of NE on glycine response in freshly isolated spinal dorsal horn neurons. Activation of alpha2-adrenoceptor down-regulates the activity of protein kinase A that results in the potentiation of the glycinergic inhibitory effects within the spinal dorsal horn.
Collapse
Affiliation(s)
- Bing Lang
- Department of Anatomy, The Fourth Military Medical University, Xi'an, 710032, PR China
| | | | | | | |
Collapse
|
34
|
Han F, Zhang YF, Li YQ. Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol 2003; 9:1045-50. [PMID: 12717853 PMCID: PMC4611369 DOI: 10.3748/wjg.v9.i5.1045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To prove that neurons in the different structures of the brainstem that express tyrosine hydroxylase (TH) are involved in the transmission and modulation of visceral or somatic nociceptive information in rat.
METHODS: Immunohistochemical double-staining method was used to co-localize TH and Fos expression in neurons of the rat brainstem in visceral or subcutaneous noxious stimulation models.
RESULTS: Neurons co-expressing TH/Fos were observed in lateral reticular nucleus (LRT), rostroventrolateral reticular nucleus (RVL), solitary tract nucleus (SOL), locus coeruleus (LC), A5, A7 neuronal groups and ventrolateral subdivision of the periaqueductal gray (vlPAG) in both models. But the proportion and number of the double-labeled neurons responding to the two noxious stimuli were significantly different in the LRT, RVL and LC nuclei. The proportion and number of the TH/Fos double-labeled neurons in the visceral pain model were smaller than that in the subcutaneous pain model. However, in the case of SOL, they were similar in the two models.
CONCLUSION: Differences of Fos expression in TH immunoreactive neurons in animals after visceral and somatic noxious stimulation indicate that the mechanisms of the transmission and modulation of visceral nociceptive information in the brainstem may be different from that of somatic nociceptive information.
Collapse
Affiliation(s)
- Feng Han
- Department of Anatomy and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, Shanxi Province, China
| | | | | |
Collapse
|
35
|
De la Calle JL, Mena MA, González-Escalada JR, Paíno CL. Intrathecal transplantation of neuroblastoma cells decreases heat hyperalgesia and cold allodynia in a rat model of neuropathic pain. Brain Res Bull 2002; 59:205-11. [PMID: 12431750 DOI: 10.1016/s0361-9230(02)00867-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrathecal grafting of cells as biological pumps to deliver monoamines, endorphins, and/or trophic factors, has been shown to be effective in treating chronic pain both in experimental animals and in clinical trials. We have tested whether intrathecal implantation of neuroblastoma cells reduces heat hyperalgesia and cold allodynia in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Behavioral tests and cerebrospinal fluid (CSF) collection were performed before CCI, 1 week later (after which, vehicle or NB69 cells were intrathecally injected) and at 4, 7, and 14 days post-injection. Both CSF sampling and injection of the cells were performed by direct lumbar puncture. Intrathecal grafting of 4 x 10(6) NB69 neuroblastoma cells reduced to basal levels the nociceptive response to heat in nerve-injured hindpaws, while the response of control limbs remained unchanged. Similarly, the allodynic response to cold elicited by acetone evaporation decreased in the animals implanted with NB69 cells. An increase in the concentrations of dopamine and serotonin metabolites of around 150% was observed in the CSF of animals that received grafts of NB69 cells. These data suggest that the monoamines released by NB69 cells in the intrathecal space produce analgesia to neuropathic pain in rats.
Collapse
|
36
|
Bruce JC, Oatway MA, Weaver LC. Chronic pain after clip-compression injury of the rat spinal cord. Exp Neurol 2002; 178:33-48. [PMID: 12460606 DOI: 10.1006/exnr.2002.8026] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain. Behavioral testing (n = 18 rats) demonstrated that moderate (35 g) or severe (50 g) SCI at the 12th thoracic spinal segment (T-12) reliably produces chronic tactile allodynia and hyperalgesia that can be evoked from the hindpaws and back. Quantitative morphometry (n = 37) revealed no changes after SCI in the density or distribution of Abeta-, Adelta-, and C-fiber central arbors of primary sensory neurons within the thoracolumbar segments T-6 to L-4. This observation rules out a mandatory relationship between pain-related behaviors and changes in the distribution or density of central afferent arbors. The area of serotonin immunoreactivity in the dorsal horn (n = 12) decreased caudal to the injury site (L1-4) and increased threefold rostral to it (T9-11). The decreased serotonin and presence of tactile allodynia and hyperalgesia caudal to the injury are consistent with disruption of descending antinociceptive serotonergic tracts that modulate pain transmission. The functional significance of the increased serotonin in rostral segments may relate to the development of tactile allodynia as serotonin also has known pronociceptive actions. Changes in the descending serotonergic pathway require further investigation, as a disruption of the balance of serotonergic input rostral and caudal to the injury site may contribute to the etiology of chronic pain after SCI.
Collapse
Affiliation(s)
- Jamie C Bruce
- Spinal Cord Injury Laboratory, Biotherapeutics Research Group, The John P. Robarts Research Institute, 100 Perth Drive, P.O. Box 5015, London, Ontario, N6A 5K8 Canada
| | | | | |
Collapse
|
37
|
Bose P, Parmer R, Thompson FJ. Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course. J Neurotrauma 2002; 19:1231-49. [PMID: 12427331 DOI: 10.1089/08977150260338029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progressive neurophysiological changes in the excitability of the pathways that subserved ankle extensor stretch reflexes were observed following midthoracic contusion. The purpose of the present study was to determine the nature and time course of velocity-dependent changes in the excitability of the ankle stretch reflex following T(8) contusion injury. These studies were conducted in adult Sprague-Dawley rats using a 10-g 2.5-cm weight drop onto the exposed thoracic spinal cord (using an NYU injury device and a MASCIS protocol). Velocity-dependent ankle torques and triceps surae EMGs were measured in awake animals over a broad range of rotation velocities (49-612 deg/sec) using instrumentation and protocol previously reported. EMGs and ankle torques were measured before and at weekly intervals following injury. Statistical tests of the data included within group repeated measures ANOVA and between group one-way ANOVA comparisons with time-matched control animals. An alternating pattern of significant increase followed by significant decrease in velocity-dependent ankle torque was observed during the first postinjury month. An increase of 33% in the peak torque and 24% in peak EMG magnitude at 612 deg/sec was observed in the first week. EMG burst amplitudes, that were timed-locked to the dynamic phase of the rotation, were observed to increase and decrease in a manner, which indicated that the changes in torque included stretch-evoked active contractions of the ankle extensors. During the second and third postinjury months, consistent 24-40% increases in the peak torques and 17-107% increases in the EMG magnitudes at the highest velocity were observed. No significant increases in torques were observed in the slowest rotation velocity in these periods.
Collapse
Affiliation(s)
- Prodip Bose
- Department of Neuroscience, University of Florida McKnight Brain Institute, University of Florida Health Sciences Center, Gainesville 32610, USA
| | | | | |
Collapse
|
38
|
Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, Muglia LJ, Zhuo M. Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 2002; 540:593-606. [PMID: 11956346 PMCID: PMC2290243 DOI: 10.1113/jphysiol.2001.013492] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 01/23/2002] [Indexed: 11/08/2022] Open
Abstract
As a neurohormone and as a neurotransmitter, oxytocin has been implicated in the stress response. Descending oxytocin-containing fibres project to the dorsal horn of the spinal cord, an area important for processing nociceptive inputs. Here we tested the hypothesis that oxytocin plays a role in stress-induced analgesia and modulates spinal sensory transmission. Mice lacking oxytocin exhibited significantly reduced stress-induced antinociception following both cold-swim (10 degrees C, 3 min) and restraint stress (30 min). In contrast, the mice exhibited normal behavioural responses to thermal and mechanical noxious stimuli and morphine-induced antinociception. In wild-type mice, intrathecal injection of the oxytocin antagonist dOVT (200 microM in 5 microl) significantly attenuated antinociception induced by cold-swim. Immunocytochemical staining revealed that, in the mouse, oxytocin-containing neurones in the paraventricular nucleus of the hypothalamus are activated by stress. Furthermore, oxytocin-containing fibres were present in the dorsal horn of the spinal cord. To test whether descending oxytocin-containing fibres could alter nociceptive transmission, we performed intracellular recordings of dorsal horn neurones in spinal slices from adult mice. Bath application of oxytocin (1 and 10 microM) inhibited excitatory postsynaptic potentials (EPSPs) evoked by dorsal root stimulation. This effect was reversed by the oxytocin antagonist dOVT (1 microM). Whole-cell recordings of dorsal horn neurones in postnatal rat slices revealed that the effect of oxytocin could be blocked by the addition of GTP-gamma-S to the recording pipette, suggesting activation of postsynaptic oxytocin receptors. We conclude that oxytocin is important for both cold-swim and restraint stress-induced antinociception, acting by inhibiting glutamatergic spinal sensory transmission.
Collapse
Affiliation(s)
- D A Robinson
- Department of Anesthesiology, Washington University Pain Center, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Feng YP, Yang K, Li YQ. Norepinephrine depresses the capsaicin-evoked miniature excitatory postsynaptic currents in substantia gelatinosa of the rat spinal cord. Neurosci Lett 2002; 322:99-102. [PMID: 11958853 DOI: 10.1016/s0304-3940(02)00086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capsaicin selectively excites nociceptive primary afferent fibers and increases the frequency of glutaminergic miniature excitatory postsynaptic currents (mEPSCs) in the substantia gelatinosa of the spinal dorsal horn. The whole-cell voltage-clamp recording technique was used to examine the effect of norepinephrine (NE) on the capsaicin-induced increase in the frequency of mEPSCs. In the presence of tetrodotoxin, bath application of capsaicin (1 microM) remarkably enhanced the frequency of mEPSCs (295+/-52% of control). Following pretreatment with NE (10 microM), the capsaicin-induced frequency facilitation of mEPSCs was significantly depressed to 151+/-17% of the control. NE-induced depression in capsaicin action was blocked by yohimbine, a selective alpha(2)-adrenergic receptor antagonist, indicating that NE exerts depression by activating the alpha(2)-adrenergic receptor. As the postsynaptic action of NE has been precluded in the present study, the results suggest that NE inhibits nociceptive input at a presynaptic site, the primary afferent terminal, during the nociceptive transmission in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yu-Peng Feng
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | |
Collapse
|
40
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
41
|
Abstract
Glutamate is the fast excitatory transmitter in mammalian brains. It binds to two major classes of glutamate receptors: ionotropic and metabotropic receptors. Ionotropic receptors contain three subtype receptors, including N-methyl-d-aspartate (NMDA) receptors. Activation of NMDA receptors is important for initiating long-lasting changes in synapses. In the forebrain structures that are known to contribute to the formation and storage of information, NMDA receptors have an important role in persistent inflammatory pain by reinforcing glutamate sensory transmission. Mice with enhanced forebrain NMDA receptor function demonstrate selective enhancement of persistent pain and allodynia. Drugs targeting NMDA NR2B subunits in the forebrain could serve as a new class of medicine for controlling persistent pain in humans.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, 660 S. Euclid Ave., St Louis, MO 63110, USA.
| |
Collapse
|
42
|
Wang GD, Zhuo M. Synergistic enhancement of glutamate-mediated responses by serotonin and forskolin in adult mouse spinal dorsal horn neurons. J Neurophysiol 2002; 87:732-9. [PMID: 11826042 DOI: 10.1152/jn.00423.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate is the major excitatory amino acid neurotransmitter in the CNS, including the neocortex, hippocampus, and spinal cord. Normal synaptic transmission is mainly mediated by glutamate AMPA and/or kainate receptors. Glutamate N-methyl-D-aspartate (NMDA) receptors are normally inactive and only activated when a sufficient postsynaptic depolarization is induced by the activity. Here we show that in sensory synapses of adult mouse, some synaptic responses (26.3% of a total of 38 experiments) between primary afferent fibers and dorsal horn neurons are almost completely mediated by NMDA receptors. Dorsal root stimulation did not elicit any detectable AMPA/kainate receptor-mediated responses in these synapses. Unlike young spinal cord, serotonin alone did not produce any long-lasting synaptic enhancement in adult spinal dorsal horn neurons. However, co-application of the adenylyl cyclase activator forskolin and serotonin (5-HT) produced long-lasting enhancement, including the recruitment of functional AMPA receptor-mediated responses. Calcium-sensitive, calmodulin-regulated adenylyl cyclases (AC1, AC8) are required for the enhancement. Furthermore the thresholds for generating action potential responses were decreased, and, in many cases, co-application of forskolin and 5-HT led to the generation of action potentials by previously subthreshold stimulation of primary afferent fibers in the presence of the NMDA receptor blocker 2-amino-5-phosphonovaleric acid. Our results suggest that pure NMDA synapses exist on sensory neurons in adult spinal cord and that they may contribute to functional sensory transmission. The synergistic recruitment of functional AMPA responses by 5-HT and forskolin provides a new cellular mechanism for glutamatergic synapses in mammalian spinal cord.
Collapse
Affiliation(s)
- Guo-Du Wang
- Department of Anesthesiology, Pain Center, Washington University, St. Louis, Missouri 63110, USA
| | | |
Collapse
|