1
|
Bhattacharya TK, Chatterjee RN, Dange M, Bhanja SK. Polymorphisms in GnRHI and GnRHII genes and their association with egg production and egg quality traits in chicken. Br Poult Sci 2019; 60:187-194. [PMID: 30686025 DOI: 10.1080/00071668.2019.1575505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. Two candidate genes, namely, Gonadotropin releasing hormone I (GnRHI) and Gonadotropin releasing hormone II (GnRHII) play pivotal roles in ovulation and egg production in chicken. The objective of this study was to explore polymorphism in these genes and to estimate the effects of polymorphism of these two genes on egg production and egg quality traits in White Leghorn laying hens. 2. Single strand conformation polymorphism followed by sequencing was performed to detect polymorphism in these genes. 3. The coding regions of the GnRHI and GnRHII genes were found to be polymorphic. In the GnRH1 gene, 12 haplotypes were determined, of which the h1 haplotype was predominant and the h5, h9 and h11 haplotypes were the least frequent ones. In the GnRHII gene, eight haplotypes were found, of which the h1 haplotype was the most frequent and the h6 was the least frequent haplotype in the White Leghorn population. 4. The haplogroups of GnRHI had a significant effect on body weight and egg production up to 64 weeks of age, yolk content, Haugh units and egg shell parameters. The h1h2 haplogroup of the GnRHI gene showed the highest egg production, with 211.0 ± 24.3 eggs up to 64 weeks of age, while the highest yolk content and Haugh unit was found in h3h10 haplogrouped birds. The haplogroups of GnRHII had a significant effect on age at sexual maturity (ASM) where the shortest ASM was found in the h1h4 birds (147.3 ± 5.9 d) and the longest ASM was observed in the h1h3 birds (160.6 ± 23.4 d). 5. It was concluded that GnRHI and GnRHII genes are polymorphic and have a significant effect on body weight, egg production and egg quality traits in White Leghorn laying hens.
Collapse
Affiliation(s)
- T K Bhattacharya
- a Molecular Genetics Lab , ICAR-Directorate of Poultry Research , Hyderabad , India
| | - R N Chatterjee
- a Molecular Genetics Lab , ICAR-Directorate of Poultry Research , Hyderabad , India
| | - M Dange
- a Molecular Genetics Lab , ICAR-Directorate of Poultry Research , Hyderabad , India
| | - S K Bhanja
- a Molecular Genetics Lab , ICAR-Directorate of Poultry Research , Hyderabad , India
| |
Collapse
|
2
|
Carrasco RA, Singh J, Adams GP. Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus of an induced ovulator - The llama (Lama glama). Gen Comp Endocrinol 2018; 263:43-50. [PMID: 29656045 DOI: 10.1016/j.ygcen.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction in all mammals, but the distribution of GnRH neurons within the brain varies widely among species. The objective of the present study was to characterize the number and distribution of GnRH neurons in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n = 4) were fixed, frozen and sectioned serially every 50 µm in the transverse (coronal) plane. Every 10th section was stained for immunohistochemical detection of GnRH-positive neuron cell bodies and fibers by incubation with 3,3'-diaminobenzidine. The number of counted immunoreactive cells ranged from 222 to 250 (≈241 ± 13 cells in the preoptic area and hypothalamus per animal) and were localized in the medio-basal hypothalamus (44.3%), anterior hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and mammillary area (0.5%). The immunoreactive cells were not localized in specific hypothalamic nuclei, but rather appeared to be distributed diffusely. The highest concentration of immunoreactive neuron fibers was in the median eminence (P < 0.05), but fibers were identified in most of the areas analyzed, including the neurohypophysis. The GnRH neurons within the hypothalamus displayed monopolar (33%), bipolar (39%), and multipolar (28%) morphologies. The bipolar type was most common in the medio-basal region (40%; P < 0.05). We conclude that GnRH neurons and fibers form a network within the anterior and medio-basal hypothalamus of llamas, suggesting the central location of mechanisms controlling reproductive processes in llamas (i.e., induced ovulation).
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
3
|
Miccoli A, Olivotto I, De Felice A, Leonori I, Carnevali O. Characterization and transcriptional profiles of Engraulis encrasicolus' GnRH forms. Reproduction 2016; 152:727-739. [PMID: 27651520 DOI: 10.1530/rep-16-0405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
The European anchovy Engraulis encrasicolus, a member of the Clupeiformes order, holds a great biological and economical importance. In the past, this species was mostly investigated with the aim of assessing its reproductive biology, trophic ecology, population dynamics and the relations existing with the physical environment. At present days, though, an almost complete lack of information afflicts its neuroendocrinology and reproductive physiology. The hypothalamic-pituitary-gonadal (HPG) axis at its highest levels was herein investigated. In this study, the gonadotropin-releasing hormone (GnRH), a neuropeptide underlying many reproduction-related processes, the most critical of which is the stimulation of gonadotropin synthesis and secretion from the pituitary gland, was cloned. Three forms (salmon GnRH, chicken-II GnRH and the species-specific type) were characterized in their full-length open-reading frames and, in accordance with other Clupeiformes species, the distinctive one was found to be the herring-type GnRH. We qualitatively and semiquantitatively evaluated the localizations of expressions and the temporal transcription patterns of the three GnRH forms in male and female specimens throughout their reproductive cycle as well as described their phylogeny with regard to teleost GnRH lineages, and, specifically, to other Clupeiformes species.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy.,CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| | - Andrea De Felice
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Iole Leonori
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Abstract
In the course of evolution, social behavior has been a strikingly potent selective force in shaping brains to control action. Physiological, cellular, and molecular processes reflect this evolutionary force, particularly in the regulation of reproductive behavior and its neural circuitry. Typically, experimental analysis is directed at how the brain controls behavior, but the brain is also changed by behavior over evolution, during development, and through its ongoing function. Understanding how the brain is influenced by behavior offers unusual experimental challenges. General principles governing the social regulation of the brain are most evident in the control of reproductive behavior. This is most likely because reproduction is arguably the most important event in an animal's life and has been a powerful and essential selective force over evolution. Here I describe the mechanisms through which behavior changes the brain in the service of reproduction using a teleost fish model system.
Collapse
Affiliation(s)
- Russell D Fernald
- Biology Department, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
5
|
Maruska KP, Fernald RD. Social Regulation of Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Physiology (Bethesda) 2011; 26:412-23. [DOI: 10.1152/physiol.00032.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Reproduction is a critically important event in every animals' life and in all vertebrates is controlled by the brain via the hypothalamic-pituitary-gonadal (HPG) axis. In many species, this axis, and hence reproductive fitness, can be profoundly influenced by the social environment. Here, we review how the reception of information in a social context causes genomic changes at each level of the HPG axis.
Collapse
Affiliation(s)
- Karen P. Maruska
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
6
|
Wang L, Chadwick W, Park SS, Zhou Y, Silver N, Martin B, Maudsley S. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:651-60. [PMID: 20632963 PMCID: PMC2967575 DOI: 10.2174/187152710793361559] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/25/2010] [Indexed: 12/15/2022]
Abstract
Receptors for hormones of the hypothalamic-pituitary-gonadal axis are expressed throughout the brain. Age-related decline in gonadal reproductive hormones cause imbalances of this axis and many hormones in this axis have been functionally linked to neurodegenerative pathophysiology. Gonadotropin-releasing hormone (GnRH) plays a vital role in both central and peripheral reproductive regulation. GnRH has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in GnRH actions at non-pituitary peripheral targets. GnRH ligands and receptors are found throughout the brain where they may act to control multiple higher functions such as learning and memory function and feeding behavior. The actions of GnRH in mammals are mediated by the activation of a unique rhodopsin-like G protein-coupled receptor that does not possess a cytoplasmic carboxyl terminal sequence. Activation of this receptor appears to mediate a wide variety of signaling mechanisms that show diversity in different tissues. Epidemiological support for a role of GnRH in central functions is evidenced by a reduction in neurodegenerative disease after GnRH agonist therapy. It has previously been considered that these effects were not via direct GnRH action in the brain, however recent data has pointed to a direct central action of these ligands outside the pituitary. We have therefore summarized the evidence supporting a central direct role of GnRH ligands and receptors in controlling central nervous physiology and pathophysiology.
Collapse
Affiliation(s)
- Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Soo-Sung Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Yu Zhou
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Nathan Silver
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| |
Collapse
|
7
|
Bartlett A, Pain S, Hughes P, Stott P, van Wettere W. The effects of PG600 and boar exposure on oestrus detection and potential litter size following mating at either the induced (pubertal) or second oestrus. Anim Reprod Sci 2009; 114:219-27. [DOI: 10.1016/j.anireprosci.2008.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/15/2022]
|
8
|
Canosa LF, Stacey N, Peter RE. Changes in brain mRNA levels of gonadotropin-releasing hormone, pituitary adenylate cyclase activating polypeptide, and somatostatin during ovulatory luteinizing hormone and growth hormone surges in goldfish. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1815-21. [DOI: 10.1152/ajpregu.00166.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In goldfish, circulating LH and growth hormone (GH) levels surge at the time of ovulation. In the present study, changes in gene expression of salmon gonadotropin-releasing hormone (sGnRH), chicken GnRH-II (cGnRH-II), somatostatin (SS) and pituitary adenylate cyclase activating polypeptide (PACAP) were analyzed during temperature- and spawning substrate-induced ovulation in goldfish. The results demonstrated that increases in PACAP gene expression during ovulation are best correlated with the GH secretion profile. These results suggest that PACAP, instead of GnRH, is involved in the control of GH secretion during ovulation. Increases of two of the SS transcripts during ovulation are interpreted as the activation of a negative feedback mechanism triggered by high GH levels. The results showed a differential regulation of sGnRH and cGnRH-II gene expression during ovulation, suggesting that sGnRH controls LH secretion, whereas cGnRH-II correlates best with spawning behavior. This conclusion is further supported by the finding that nonovulated fish induced to perform spawning behavior by prostaglandin F2α treatment increased cGnRH-II expression in both forebrain and midbrain, but decreased sGnRH expression in the forebrain.
Collapse
|
9
|
Schneider JS, Rissman EF. Gonadotropin-releasing hormone II: a multi-purpose neuropeptide. Integr Comp Biol 2008; 48:588-95. [PMID: 21669818 DOI: 10.1093/icb/icn018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Close to 30 forms of gonadotropin releasing hormone (GnRH) and at least five GnRH receptors have been identified in a wide variety of vertebrates and some invertebrates. One form, now called GnRH II, has the broadest distribution and the most ancient and conserved phylogeny. The distribution of the neurons that produce this peptide are completely nonoverlapping with any other GnRH forms. Fibers that project from these neurons overlap with GnRH I cells and/or fibers in a few regions, but are primarily divergent. The musk shrew (Suncus murinus) continues to be the most tractable mammalian species to use for studies of the function of GnRH II. The brain of the musk shrew has two GnRH genes (I and II), two GnRH receptors (types-1 and -2), and two different behaviors can be influenced by central infusion of GnRH II, but not by GnRH I; receptivity and feeding. Here, we summarize research on the musk shrew relative to the behavioral functions of GnRH II. First, female musk shrews are continually sexually receptive by virtue of their lack of an ovarian and/or behavioral estrus cycle. This feature of their reproductive ecology may be related to their semi-tropical distribution and their breeding season is highly dependent on changes in the availability of food. When food is not abundant, females stop mating, but brief bouts of feeding reinstate reproductive behavior. Likewise, intake of food is related to GnRH II mRNA and peptide content in the brain; after mild food restriction both decline. When GnRH II is infused centrally, at times when its content is low, it can both enhance receptivity and inhibit food intake. Simultaneous administration of a type-1 antagonist does not change the effect of GnRH II and use of an analog (135-18) that is a specific GnRH II agonist as well as a type-1 antagonist has the same effect as the endogenous GnRH II peptide. We propose that GnRH II plays a critical role by orchestrating the coordination of reproduction with the availability of nutritional support for these activities. Humans are bombarded with copious nutritional opportunities and at present obesity is a larger threat to health in many parts of the world than is under nutrition. It is our hope that understanding neuropeptides such as GnRH II that regulate food intake can ultimately lead to products that may curb appetite and thus decrease obesity and related risks to health.
Collapse
Affiliation(s)
- Johanna S Schneider
- Department of Biochemistry and Molecular Genetics and Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
10
|
Cheung TC, Hearn JP. Dimerizations of the wallaby gonadotropin-releasing hormone receptor and its splice variants. Gen Comp Endocrinol 2005; 144:280-8. [PMID: 16102759 DOI: 10.1016/j.ygcen.2005.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 06/04/2005] [Accepted: 06/15/2005] [Indexed: 11/18/2022]
Abstract
Dimerization between wallaby GnRH-R and its splice variants was examined. A baculovirus-based fluorescence resonance energy transfer (Bv-FRET) assay was used to assess protein-protein interaction between wild type wallaby GnRH-R and splice variants (GnRH-RDelta1 and GnRH-RDelta2). FRET analysis demonstrated that GnRH-R, GnRH-RDelta1 or GnRH-RDelta2 are capable of assembling as homodimers. When GnRH-R is co-expressed with GnRH-RDelta1 or GnRH-RDelta2 splice variants, GnRH-R can form heterodimers with GnRH-RDelta1 and GnRH-RDelta2. GnRH agonist is not required for the initiation of dimerization. However, the addition of a GnRH agonist enhances the FRET signal in the GnRH-R homodimers, indicating that the GnRH agonist may be involved in modulating the extent of dimerization. In addition, this study reveals that dimerization of GnRH-R may be mediated by two or more protein interaction domains. One of them is probably located between amino acid residues 74 and 174, and the other one between residues 175 and 328. This is the first study to show dimerization between a wild type mammalian GnRH-R and its splice variants. It provides additional support for the potential involvement of splice variants in GnRH-R signaling.
Collapse
Affiliation(s)
- Timothy C Cheung
- Developmental Biology Research Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia.
| | | |
Collapse
|
11
|
Abstract
GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.
Collapse
Affiliation(s)
- Robert P Millar
- MRC Human Reproductive Sciences Unit, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK.
| |
Collapse
|
12
|
Soga T, Ogawa S, Millar RP, Sakuma Y, Parhar IS. Localization of the three GnRH types and GnRH receptors in the brain of a cichlid fish: Insights into their neuroendocrine and neuromodulator functions. J Comp Neurol 2005; 487:28-41. [PMID: 15861460 DOI: 10.1002/cne.20519] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cognate receptor for any of the known gonadotropin-releasing hormones (GnRHs) has not been directly demonstrated. In order to establish this and shed light on the functions of GnRH types, we analyzed the neuroanatomical location and time of initial expression of three distinct GnRH receptors (GnRH-Rs) and the three endogenous GnRHs in the brain of developing and sexually mature tilapia Oreochromis niloticus using immunocytochemistry. In all age groups, including males and females, GnRH-RIA was seen specifically in gonadotropes (Parhar et al. [2002] J Neuroendocrinol 14:657-665) but was undetectable in the brain. On day 8 after fertilization, GnRH-RIB was first seen in the periventricular hypothalamus (lateral recess nucleus, posterior recess nucleus, posterior tuberal nucleus) and GnRH-RIII in the olfactory epithelium, olfactory bulb, telencephalon, preoptic region, mediobasal hypothalamus, thalamus, mesencephalon, and in the hindbrain. Double-label immunocytochemistry showed GnRH1 (Ser(8) GnRH)-immunoreactive neuronal processes projecting mainly to the proximal pars distalis of the pituitary, while GnRH2 (His(5), Trp(7), Tyr(8) GnRH) and GnRH3 (Trp(7), Leu(8) GnRH) fibers were observed in close association with cells containing GnRH-RIB and GnRH-RIII in the brain. These results suggest that GnRH-RIA might be hypophysiotropic in nature, whereas GnRH-RIB and GnRH-RIII could have additional neuromodulatory functions. Further, evidence of close proximity of GnRH-R-containing cells and neuronal processes of multiple GnRH types suggests complex cross-talk between several GnRH ligands and GnRH-Rs.
Collapse
Affiliation(s)
- Tomoko Soga
- Department of Physiology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
13
|
Scaggiante M, Grober MS, Lorenzi V, Rasotto MB. Changes along the male reproductive axis in response to social context in a gonochoristic gobiid, Zosterisessor ophiocephalus (Teleostei, Gobiidae), with alternative mating tactics. Horm Behav 2004; 46:607-17. [PMID: 15555503 DOI: 10.1016/j.yhbeh.2004.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 06/20/2004] [Accepted: 06/22/2004] [Indexed: 11/17/2022]
Abstract
Sexual selection has given rise, in several taxa, to intrasexual variation in male phenotype. While evolutionary studies have provided explanations of the adaptive function of this dramatic male phenotypic diversity, the proximate control of its expression has still to be completely understood. Several observations, primarily from sex-changing species, indicated a major role of social interactions in reproductive axis regulation and consequently in the expression of alternative male phenotypes. Here we documented changes along the male reproductive axis in response to social context in a gonochoristic species, the grass goby Zosterisessor ophiocephalus, where fully functional alternative male mating tactics appear to be expressed as an ontogenetic gradient. In the grass goby, larger and older males dig a nest and perform parental care, while smaller males sneak fertilization during territorial male spawning. Territorial males are characterized by a higher number of gonadotropin-releasing hormone (GnRH) neurons in forebrain preoptic area, smaller testes, larger seminal vesicles, and viscous ejaculates that last longer and contain fewer sperm than those of sneakers. To experimentally investigate the role of social factors in inducing changes along the male reproductive axis, sneakers were tested in two different situations: nesting alone or with ripe females. Sneakers that mated and performed parental care showed dramatic changes in brain, reproductive apparatus morphology, and ejaculate traits. GnRH-immunoreactive cells in forebrain preoptic area increased in number, reaching values typical of wild-caught parental males. Testes size decreased while seminal vesicle size increased and ejaculates showed lower sperm densities. These results were discussed within the framework of the social transduction hypothesis, which predicts that social experience should mediate, through a cascade of internal processes, shifts between morphs throughout life.
Collapse
Affiliation(s)
- Marta Scaggiante
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | | | | |
Collapse
|
14
|
Gault PM, Morgan K, Pawson AJ, Millar RP, Lincoln GA. Sheep exhibit novel variations in the organization of the mammalian type II gonadotropin-releasing hormone receptor gene. Endocrinology 2004; 145:2362-74. [PMID: 14749360 DOI: 10.1210/en.2003-1625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Species-specific differences in genes encoding type II GnRH receptor indicate that a functional hepta-helical receptor is produced in monkeys but not in rodents, cows, chimpanzees, or humans. To further investigate the extent of evolutionary differences, we sequenced the type II GnRH receptor gene from wild-type Soay sheep. The gene was isolated by long-distance PCR using primers to PEX11beta and RBM8A genes known to flank type II GnRH receptor gene homologues. The gene spans 5.7-kb DNA and was sequenced after shot-gun subcloning. Its novel features include absence of a Pit-1 transcription factor binding site, a premature stop codon (TAG) in exon 1, an in-frame deletion of 51 bp (17 codons) in exon 2, and several nonconservative codon changes. Sheep breed variation in the gene was assessed using genomic DNA in PCR-restriction digest assays for the premature stop codon and in a PCR assay for the deletion. Both characteristics were present in all 15 breeds tested. Receptor gene expression was investigated using poly-A(+) RNA Northern analysis, RT-PCR, and in situ hybridization. An oligonucleotide probe to exon 1 revealed an alternative transcript in testis but not in pituitary gland. No transcripts in testis or pituitary were detectable using an exon 2-3 probe. All tissues examined including multiple brain areas and gonadotrope-enriched cell cultures were negative for type II GnRH receptor in RT-PCR. Testis and pituitary sections were negative with exon 1 riboprobes and exon 1 or 2-3 oligonucleotide probes in in situ hybridization. A hepta-helical type II GnRH receptor is therefore not expressed from this sheep gene.
Collapse
Affiliation(s)
- Paula M Gault
- Medical Research Council Human Reproductive Sciences Unit, University of Edinburgh Academic Centre, Edinburgh EH16 4SB, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Abstract
GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
Collapse
Affiliation(s)
- Robert P Millar
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
16
|
Gault PM, Maudsley S, Lincoln GA. Evidence that gonadotropin-releasing hormone II is not a physiological regulator of gonadotropin secretion in mammals. J Neuroendocrinol 2003; 15:831-9. [PMID: 12899677 DOI: 10.1046/j.1365-2826.2003.01065.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH)-II stimulates luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion when administered at high doses in mammals, and this effect has been assumed to be mediated through the GnRH-II receptor expressed on gonadotropes. This study used two selective GnRH-I receptor antagonists to test the alternative hypothesis that GnRH-II acts through the GnRH-I receptor to elicit gonadotropin secretion. The antagonist, antide, was used to characterize the receptor-relay because it was a pure antagonist in vitro based on inositol phosphate responses in COS-7 cells transfected with either mammalian GnRH-I and GnRH-II receptors and, in vivo, potently antagonized the gonadotropin-releasing effect of a single injection of 250 ng GnRH-I in our sexually inactive sheep model. In a series of studies in sheep, antide (i). blocked the acute LH response to a single injection of GnRH-II (20 microg antide: 10 microg GnRH-II); (ii). blocked both the acute, pulsatile LH response and the FSH priming response to 2-hourly injections of GnRH-II over 36 h (100 microg antide/8 h: 4 microg GnRH-II/2 h); and (iii). chronically blocked both the pulsatile LH response and the marked FSH priming response to 4-hourly injections of GnRH-II over 10 days (75 microg antide/8 h: 4 microg GnRH-II/4 h). In two final experiments, the GnRH-I antagonist 135-18, shown previously to agonize the mammalian GnRH-II receptor, blocked the gonadotropin-releasing effects of GnRH-I (250 ng) but failed to elicit an LH response when given alone, and simultaneous administration of GnRH-II (250 ng) failed to alter the LH-releasing effect of GnRH-I (50-500 ng). These data thus support our hypothesis. Based on additional literature, it is unlikely that the GnRH-II decapeptide is a native regulator of the gonadotrope in mammals.
Collapse
Affiliation(s)
- P M Gault
- Medical Research Council Human Reproductive Sciences Unit, University of Edinburgh, Chancellor's Building, Edinburgh, UK
| | | | | |
Collapse
|
17
|
Cheung TC, Hearn JP. Developmental expression and subcellular localization of wallaby gonadotropin-releasing hormone receptor and its splice variants. Gen Comp Endocrinol 2003; 133:88-99. [PMID: 12899850 DOI: 10.1016/s0016-6480(03)00146-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developmental expression of gonadotropin-releasing hormone receptor (GnRH-R) and its splice variants was examined in the gonads of tammar wallaby pouch young in order to elucidate the functional role of GnRH-R in the developing testis and ovary. Wallaby GnRH-R, like eutherian GnRH-Rs, contains three exons and two introns. In the present study, the transcripts of two splice variants (GnRH-R Delta 1 and GnRH-R Delta 2) were cloned from the pituitary. GnRH-R Delta 1 contained a 291 bp deletion from nucleotide positions 232 to 522 within exon 1. This transcript appears to be distinctive in the wallaby and has not been reported in other species. GnRH-R Delta 2 contained a 220 bp deletion from nucleotide positions 523 to 742, corresponding to exon 2. We examined the subcellular localization of the wild type GnRH-R and its splice variants with confocal microscopy, showing that both the wild type receptor and the splice variants were membrane-associated molecules. The different pattern of expression of the wild type receptor and the variants transcripts found in adult and neonatal tissues suggests a specific developmental regulation of the GnRH-R Delta 2 transcript. In addition, the developmental expression of the GnRH-R and GnRH-R Delta 1 transcripts showed a possible association with key physiological events during gonadal development in the wallaby pouch young, suggesting that GnRH-R may be involved in the regulation of early development in the testis and ovary.
Collapse
Affiliation(s)
- Timothy C Cheung
- Developmental Biology Research Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
18
|
Abstract
Hypothalamic gonadotrophin-releasing hormone (GnRH I), which is of a variable structure in vertebrates, is the central regulator of the reproductive system through its stimulation of gonadotrophin release from the pituitary. A second form of GnRH (GnRH II) is ubiquitous and conserved in structure from fish to humans, suggesting that it has important functions and a discriminating receptor that selects against structural change. GnRH II is distributed in discrete regions of the central and peripheral nervous systems and in nonneural tissues. The cognate receptor for GnRH II has recently been cloned from amphibians and mammals. It is highly selective for GnRH II, has a similar distribution to GnRH II in the nervous system and, notably, in areas associated with sexual behaviour. It is also found in reproductive tissues. An established function of GnRH II is in the inhibition of M currents (K(+) channels) through the GnRH II receptor in the amphibian sympathetic ganglion, and it might act through this mechanism as a neuromodulator in the central nervous system. The conservation of structure over 500 million years and the wide tissue distribution of GnRH II suggest that it has a variety of reproductive and nonreproductive functions and will be a productive area of research.
Collapse
Affiliation(s)
- Robert P Millar
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Chancellor's Building, 49 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SB, UK.
| |
Collapse
|
19
|
Millesi E, Hoffmann IE, Steurer S, Metwaly M, Dittami JP. Vernal changes in the behavioral and endocrine responses to GnRH application in male European ground squirrels. Horm Behav 2002; 41:51-8. [PMID: 11863383 DOI: 10.1006/hbeh.2001.1735] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This field study was aimed at examining hypothalamic involvement in the behavioral changes of male European ground squirrels (Spermophilus citellus) before, during, and after the mating season. The effects of exogenous gonadotropin-releasing hormone (GnRH) application on androgen secretion and behavioral patterns were investigated. Animals were captured, bled, and injected intramuscularly with 40 ng/100 g of GnRH. A second plasma sample was collected 40 min after the treatment to document changes in testosterone secretion. Behavioral parameters such as intra-sexual aggression, scent marking, and home range size were compared on the days before and after the stimulation. In the first two phases, before female emergence and during mating, GnRH-injection caused increases in plasma testosterone. In the post-mating phase, initial plasma testosterone levels had decreased and no elevation could be induced. Sham treatment of controls had no effect in any phase. Conditional parameters like emergence body mass and testicular size covaried with androgen increases only in the pre-mating period. Behavioral changes after GnRH administration occurred during the pre-mating period. Intra-sexual aggression, scent marking, and home range size increased significantly in experimental individuals. Later, during mating and post-mating, we found no behavioral changes associated with the GnRH treatment or the testosterone increase. The results demonstrate changes in the endocrine and behavioral sensitivity to GnRH application, according to the phases of the active season. An exogenous pulse of GnRH can apparently release behavior in male European ground squirrels, which is normally context dependent with the emergence of females.
Collapse
Affiliation(s)
- Eva Millesi
- Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
20
|
Parhar IS, Tosaki H, Sakuma Y, Kobayashi M. Sex differences in the brain of goldfish: gonadotropin-releasing hormone and vasotocinergic neurons. Neuroscience 2001; 104:1099-110. [PMID: 11457593 DOI: 10.1016/s0306-4522(01)00153-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The differences between male and female behaviors are reflected in sexual dimorphism of brain structures and are found throughout the nervous system in a variety of vertebrates. The present study examined neurons immunolabeled for gonadotropin-releasing hormone and arginine vasotocin in the brain of the goldfish Carassius auratus to determine if these neurons are sexually dimorphic. There was no sex difference or influence of sex steroids on the neuronal volume and optical density of staining of arginine vasotocin neurons. Similarly, gonadotropin-releasing hormone neurons of the terminal nerve and midbrain tegmentum did not differ between sexually mature males, females and maturing females replaced with sex steroids with respect to distribution, numbers, optical density of staining, or gross morphology. In maturing females, testosterone specifically recruited additional preoptic gonadotropin-releasing hormone neurons to equal those in sexually mature individuals. Since estrogen had no effect, the influence of testosterone on gonadotropin-releasing hormone neuronal numbers appears to be independent of aromatization. Specifically, the preoptic gonadotropin-releasing hormone neuronal size was significantly larger in sexually mature males than females. 11-Ketotestosterone-replacement to ovariectomized maturing females induced male-typical secondary characters and male-type courtship behavior but did not masculinize the preoptic gonadotropin-releasing hormone neuronal size. Our results show that the sexually dimorphic preoptic gonadotropin-releasing hormone neuronal size is determined by factors (genetic) other than gonadal steroids. Further, we propose the hypothesis that phenotypic and behavioral sex differences need not be accompanied by structural differences in gonadotropin-releasing hormone and arginine vasotocin in the brain.
Collapse
Affiliation(s)
- I S Parhar
- Department of Physiology, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | |
Collapse
|
21
|
Dubois EA, Zandbergen MA, Peute J, Bogerd J, Goos HJ. Development of three distinct GnRH neuron populations expressing two different GnRH forms in the brain of the African catfish (Clarias gariepinus). J Comp Neurol 2001; 437:308-20. [PMID: 11494258 DOI: 10.1002/cne.1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early development of both the catfish gonadotropin-releasing hormone (cfGnRH)- and the chicken GnRH-II (cGnRH-II) system was investigated in African catfish by immunocytochemistry by using antibodies against the GnRH-associated peptide (GAP) of the respective preprohormones. Weakly cfGnRH-immunoreactive (ir) neurons and fibers were present at 2 weeks after hatching (ph) but only in the ventral telencephalon and pituitary. Two weeks later, cfGnRH fibers and neurons were also observed in more rostral and in more caudal brain areas, mainly in the preoptic area and hypothalamus. Based on differences in temporal, spatial, and morphologic appearance, two distinct cfGnRH populations were identified in the ventral forebrain: a population innervating the pituitary (ventral forebrain system) and a so-called terminal nerve (TN) population. DiI tracing studies revealed that the TN population has no neuronal connections with the pituitary. The cGnRH-II system is present from 2 weeks ph onward in the midbrain tegmentum and only their size and staining intensity increased during development. Based on the comparison of GnRH systems amongst vertebrates, we hypothesize that during fish evolution, three different GnRH systems evolved, each expressing their own molecular form: the cGnRH-II system in the midbrain, a hypophysiotropic GnRH system in the hypothalamus with a species-specific GnRH form, and a salmon GnRH-expressing TN population. This hypothesis is supported by phylogenetic analysis of known GnRH precursor amino acid sequences. We hypothesize, because the African catfish is a less advanced teleost species, that it contains the cfGnRH form both in the ventral forebrain system and in the TN population.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Temple JL, Rissman EF. Acute re-feeding reverses food restriction-induced hypothalamic-pituitary-gonadal axis deficits. Biol Reprod 2000; 63:1721-6. [PMID: 11090441 DOI: 10.1095/biolreprod63.6.1721] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Undernutrition has well-established effects on female reproduction. Here we describe the effects of food restriction on aspects of the hypothalamic-pituitary-gonadal (HPG) axis in the female musk shrew. We determined that acute re-feeding reverses deficits brought on by food restriction. Two days of food restriction led to an increase in proGnRH immunoreactive cells in the preoptic area relative to ad libitum-fed controls (AL). This increase was reversed by 90 min of ad libitum feeding in the re-fed females (RF). In addition, food-restricted (FR) females had significantly greater GnRH content in the median eminence than either the AL or RF females. After GnRH was administered, the majority of females in all food conditions ovulated, yet the FR females had significantly fewer corpora lutea than either the AL or RF animals. These data show that food restriction impairs HPG axis function in female musk shrews, and that some of these impairments can be rapidly reversed by acute re-feeding.
Collapse
Affiliation(s)
- J L Temple
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
23
|
Rissman EF, Li X. Olfactory bulbectomy blocks mating-induced ovulation in musk shrews (Suncus murinus). Biol Reprod 2000; 62:1052-8. [PMID: 10727277 DOI: 10.1095/biolreprod62.4.1052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In many species, reproductive function can be modified by olfactory inputs. We employed bilateral olfactory bulbectomy (BULBX) to examine the effects of disruption of olfactory inputs on mating behavior and ovulation in female musk shrews. On several measures, sexual behavior was delayed in BULBX females compared to controls. When females were mated on five consecutive days, the majority of unoperated and sham-operated (SHAM) shrews ovulated; only one female subjected to BULBX ovulated. Administration of GnRH induced ovulation in the majority of females. We performed immunocytochemistry to assess the effects of bulbectomy on mating-induced responses of the neural GnRH system. In BULBX and SHAM females, the numbers of cells containing proGnRH immunoreactivity in the medial septum (MS)/diagonal band (DB) were significantly elevated 1 h after mating. Bulbectomy increased the numbers of GnRH-immunoreactive peptide-containing cells in the preoptic area, but it reduced neuron numbers in the MS/DB, as compared with those in SHAM controls. In addition, the GnRH-immunoreactive fiber area in the median eminence was greater in BULBX than in SHAM females. In sum, female musk shrews can display receptivity and engage in copulation without olfactory inputs. However, the olfactory system is essential for mating-induced ovulation.
Collapse
Affiliation(s)
- E F Rissman
- Biology Department, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | |
Collapse
|
24
|
Abstract
Alternative reproductive tactics within one sex, adult sex or role change, and reproductive suppression are all forms of reproductive plasticity commonly exhibited among teleost fishes. The two neuropeptides that have been most extensively studied with regard to such behavioral plasticity are gonadotropin releasing hormone (GnRH) and arginine vasotocin (AVT). Here, we review intra- and intersexual variation in the number and size of GnRH and AVT neurons along with gonadal phenotype in those species of teleosts showing intraspecific plasticity in reproductive behavior. In several species, male dimorphisms in the number and/or size of GnRH neurons in the forebrain's preoptic area parallel a divergence in relative gonad size and reproductive tactics. The available studies of AVT-containing neurons in the preoptic area also indicate intrasexual dimorphisms among males, although a proximate link to other reproductive traits and behavioral outcomes is more difficult to recognize. For both GnRH and AVT, there are also species-typical patterns in the coupling between structural (e.g., neuronal and gonadal) traits and reproductive tactic expressed, which likely reflect distinct patterns of adaptation to particular ecological environments. As discussed, neurophysiological, biochemical, and receptor density studies are now essential to establish the functional significance of the diverse organizational patterns of GnRH and AVT neurons in teleosts. Similar studies also need to be carried out in species of other vertebrate groups that show comparable behavioral plasticity.
Collapse
Affiliation(s)
- C M Foran
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
25
|
Rissman EF, Li X. Sex differences in mammalian and chicken-II gonadotropin-releasing hormone immunoreactivity in musk shrew brain. Gen Comp Endocrinol 1998; 112:346-55. [PMID: 9843640 DOI: 10.1006/gcen.1998.7135] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many vertebrates have more than one molecular form of gonadotropin-releasing hormone (GnRH) present in brain. In all cases documented to date, GnRH neurons located in the forebrain are critical players in the brain-pituitary-gonadal feedback axis although the details of how steroids regulate GnRH remain elusive. The function of the second form, usually produced in cells in the midbrain, is not known. It has been hypothesized that this GnRH acts as a neurotransmitter. In the musk shrew (Suncus murinus), as in other mammals, the forebrain cells produce mammalian GnRH (mGnRH) and chicken-II GnRH (cGnRH-II) is present in midbrain neurons. Immunocytochemical analyses were performed to examine sex differences and determine whether the presence or absence of the gonads had any affect on cell number and/or fiber area in the major terminal fields of both forms of GnRH. We detected a significant sex difference in the numbers of immunoreactive (ir) neurons containing mGnRH and cGnRH-II. In both GnRH systems, males have significantly more GnRH-ir cells than females. Furthermore, ovariectomy significantly increased the number of mGnRH-ir and cGnRH-II-ir cell bodies in female brains. In females, changes in the size of the immunoreactive fiber area of the medial habenula were identical to those noted for cGnRH-II cells. In males, the major terminal field for the mGnRH fibers was significantly larger in gonad-intact than in castrated males. In sum, ovarian hormones regulate cGnRH-II production and release, as well as some aspects of mGnRH production in neurons. In males, mGnRH fiber area is sensitive to changes in testicular hormones. These data suggest that the phylogenetically conserved cGnRH-II form is regulated by ovarian hormones and, thus, may be involved in the brain-pituitary-gonadal feedback axis.
Collapse
Affiliation(s)
- E F Rissman
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22903, USA.
| | | |
Collapse
|
26
|
Tai VC, Schiml PA, Li X, Rissman EF. Behavioral interactions have rapid effects on immunoreactivity of prohormone and gonadotropin-releasing hormone peptide. Brain Res 1997; 772:87-94. [PMID: 9406959 DOI: 10.1016/s0006-8993(97)00878-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nervous system responds to both internal and external cues, integrating these signals to coordinate behavior and physiology. Mating interactions can promote dramatic changes in neuroendocrine cells which trigger successful copulation, ovulation, fertilization, and pregnancy. The neurons that transduce behavioral cues into neuroendocrine signals are distributed in a loose continuum along the medial ventral forebrain where they produce and secrete gonadotropin-releasing hormone (GnRH). In the past we have reported changes in GnRH-immunoreactive (GnRH-ir) cell numbers in brains of female musk shrews sacrificed during, and after, brief mating interactions. The purpose of the current study was twofold: first to determine which aspect of intracellular GnRH production is stimulated by behavioral interactions; second, to characterize the specific aspects of the social exchange that trigger GnRH production. We report that 1 h after copulation the production of proGnRH protein is stimulated. Non-copulatory behavioral interactions resulted in a rapid decrease in the numbers of neurons containing GnRH-ir peptide. This change was accompanied by an increase in the GnRH-ir fibers in the median eminence, but no surge in luteinizing hormone. These data suggest that behavioral interactions stimulate release of mature GnRH peptide from cell bodies followed by accumulation of available GnRH in cell terminals. Copulation triggers increased production of proGnRH in cell bodies. The data highlight the usefulness of behavioral paradigms for the examination of the dynamics of neuropeptide production.
Collapse
Affiliation(s)
- V C Tai
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | | | |
Collapse
|