1
|
Nahman-Averbuch H, Piché M, Bannister K, Coghill RC. Involvement of propriospinal processes in conditioned pain modulation. Pain 2024; 165:1907-1913. [PMID: 38537057 PMCID: PMC11333191 DOI: 10.1097/j.pain.0000000000003217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/05/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Hadas Nahman-Averbuch
- Washington University Pain Center and Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada. CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Robert C Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Mirkiani S, Roszko DA, O'Sullivan C, Faridi P, Hu DS, Fang D, Everaert DG, Toossi A, Konrad PE, Robinson K, Mushahwar VK. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig. J Neural Eng 2022; 19. [PMID: 35172283 DOI: 10.1088/1741-2552/ac55ac] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Objective The objectives of this study were to assess gait biomechanics and the effect of overground walking speed on gait parameters, kinematics, and electromyographic (EMG) activity in the hindlimb muscles of Yucatan Minipigs (YMPs). Approach Nine neurologically-intact, adult YMPs were trained to walk overground in a straight line. Whole-body kinematics and EMG activity of hindlimb muscles were recorded and analyzed at 6 different speed ranges (0.4-0.59, 0.6-0.79, 0.8-0.99, 1.0-1.19, 1.2-1.39, and 1.4-1.6 m/s). A MATLAB program was developed to detect strides and gait events automatically from motion-captured data. The kinematics and EMG activity were analyzed for each stride based on the detected events. Main results Significant decreases in stride duration, stance and swing times and an increase in stride length were observed with increasing speed. A transition in gait pattern occurred at the 1.0m/s walking speed. Significant increases in the range of motion of the knee and ankle joints were observed at higher speeds. Also, the points of minimum and maximum joint angles occurred earlier in the gait cycle as the walking speed increased. The onset of EMG activity in the biceps femoris muscle occurred significantly earlier in the gait cycle with increasing speed. Significance YMPs are becoming frequently used as large animal models for preclinical testing and translation of novel interventions to humans. A comprehensive characterization of overground walking in neurologically-intact YMPs is provided in this study. These normative measures set the basis against which the effects of future interventions on locomotor capacity in YMPs can be compared.
Collapse
Affiliation(s)
- Soroush Mirkiani
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| | - David A Roszko
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Carly O'Sullivan
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz, Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Pouria Faridi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - David S Hu
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Daniel Fang
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Dirk G Everaert
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Amirali Toossi
- Neuroscience & Mental Health Institute and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, Edmonton, Alberta, T6G 2R3, CANADA
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Kevin Robinson
- School of Physical Therapy, Belmont University, 341 McWhorter Hall, Nashville, Tennessee, 37212, UNITED STATES
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, 5005 Katz Building, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA
| |
Collapse
|
3
|
Doperalski AE, Montgomery LR, Mondello SE, Howland DR. Anatomical Plasticity of Rostrally Terminating Axons as a Possible Bridging Substrate across a Spinal Injury. J Neurotrauma 2020; 37:877-888. [PMID: 31774025 DOI: 10.1089/neu.2018.6193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfer of information across a spinal lesion is required for many aspects of recovery across diverse motor systems. Our understanding of axonal plasticity and which subpopulations of neurons may contribute to bridging substrates following injury, however, remains relatively incomplete. Most recently, attention has been directed to propriospinal neurons (PSNs), with research suggesting that they are capable of bridging a spinal lesion in rodents. In the current study, subpopulations of both long (C5) and short (T6, T8) PSNs-as well as a supraspinal system, the rubrospinal tract (RST)-were assessed following low thoracic (T9) hemisection in the cat using the retrograde tracer Fluoro-Gold. Acutely, within 2 weeks post-hemisection, the numbers of short and long PSNs, as well as contralateral RST neurons, with axons crossing the lesion were significantly decreased relative to uninjured controls. This decrease persisted bilaterally and was permanent in the long PSNs and the contralateral red nucleus (RN). However, by 16 weeks post-hemisection, the numbers of ipsilesional and contralesional short PSNs bridging the lesion were significantly increased. Further, the number of contralesional contributing short PSNs was significantly greater in injured animals than in uninjured animals. A significant increase over uninjured numbers also was seen in the ipsilateral (non-axotomized) RN. These findings suggest that a novel substrate of undamaged axons, which normally terminates rostral to the lesion, grows past a thoracic lesion after injury. This rostral population represents a major component of the bridging substrate seen and may represent an important anatomical target for evolving rehabilitation approaches as a substrate capable of contributing to functional recovery.
Collapse
Affiliation(s)
- Adele E Doperalski
- Department of Biology, American University, Washington DC.,Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Lynnette R Montgomery
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| | - Sarah E Mondello
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dena R Howland
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
4
|
Maxwell DJ, Soteropoulos DS. The mammalian spinal commissural system: properties and functions. J Neurophysiol 2019; 123:4-21. [PMID: 31693445 DOI: 10.1152/jn.00347.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Commissural systems are essential components of motor circuits that coordinate left-right activity of the skeletomuscular system. Commissural systems are found at many levels of the neuraxis including the cortex, brainstem, and spinal cord. In this review we will discuss aspects of the mammalian spinal commissural system. We will focus on commissural interneurons, which project from one side of the cord to the other and form axonal terminations that are confined to the cord itself. Commissural interneurons form heterogeneous populations and influence a variety of spinal circuits. They can be defined according to a variety of criteria including, location in the spinal gray matter, axonal projections and targets, neurotransmitter phenotype, activation properties, and embryological origin. At present, we do not have a comprehensive classification of these cells, but it is clear that cells located within different areas of the gray matter have characteristic properties and make particular contributions to motor circuits. The contribution of commissural interneurons to locomotor function and posture is well established and briefly discussed. However, their role in other goal-orientated behaviors such as grasping, reaching, and bimanual tasks is less clear. This is partly because we only have limited information about the organization and functional properties of commissural interneurons in the cervical spinal cord of primates, including humans. In this review we shall discuss these various issues. First, we will consider the properties of commissural interneurons and subsequently examine what is known about their functions. We then discuss how they may contribute to restoration of function following spinal injury and stroke.
Collapse
Affiliation(s)
- David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
5
|
Nishida K, Ito S. Developmental origin of long-range neurons in the superficial dorsal spinal cord. Eur J Neurosci 2017; 46:2608-2619. [DOI: 10.1111/ejn.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| |
Collapse
|
6
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
7
|
Organization of the intrinsic functional network in the cervical spinal cord: A resting state functional MRI study. Neuroscience 2016; 336:30-38. [PMID: 27590264 DOI: 10.1016/j.neuroscience.2016.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) has been extensively applied to investigate the organization of functional networks in the brain. As an essential part of the central nervous system (CNS), the spinal cord has not been well explored about its intrinsic functional network. In this study, we aim to thoroughly investigate the characteristics of the intrinsic functional network in the spinal cord using rsfMRI. Functional connectivity and graph theory analysis were employed to evaluate the organization of the functional network, including its topology and network communication properties. Furthermore, the reproducibility of rsfMRI analysis on the spinal cord was also examined by intra-class correlation (ICC). Comprehensive evaluation of the intrinsic functional organization presented a non-uniform distribution of topological characteristics of the functional network, in which the upper levels (C2 and C3 vertebral levels) of the cervical spinal cord showed high levels of connectivity. The present results revealed the significance of the upper cervical cord in the intrinsic functional network of the human cervical spinal cord. In addition, this study demonstrated the efficiency of the cervical spinal cord functional network and the reproducibility of rsfMRI analysis on the spinal cord was also confirmed. As knowledge expansion of intrinsic functional network from the brain to the spinal cord, this study shed light on the organization of the spinal cord functional network in both normal development and clinical disorders.
Collapse
|
8
|
|
9
|
Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 2014; 113:834-42. [PMID: 25376784 DOI: 10.1152/jn.00609.2014] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg, Russia; Integrative Biology and Physiology, University of California, Los Angeles, California; and
| | - Ruslan Gorodnichev
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | - Aleksandr Puhov
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | | | | | - Victor Selionov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Roland R Roy
- Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| | - Daniel C Lu
- Departments of Neurosurgery University of California, Los Angeles, California
| | - V Reggie Edgerton
- Departments of Neurosurgery University of California, Los Angeles, California; Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
10
|
Caggiano V, Sur M, Bizzi E. Rostro-caudal inhibition of hindlimb movements in the spinal cord of mice. PLoS One 2014; 9:e100865. [PMID: 24963653 PMCID: PMC4071039 DOI: 10.1371/journal.pone.0100865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/31/2014] [Indexed: 11/18/2022] Open
Abstract
Inhibitory neurons in the adult mammalian spinal cord are known to locally modulate afferent feedback - from muscle proprioceptors and from skin receptors - to pattern motor activity for locomotion and postural control. Here, using optogenetic tools, we explored how the same population of inhibitory interneurons globally affects hindlimb movements in the spinal cord of both anesthetized and freely moving mice. Activation of inhibitory interneurons up to the middle/lower spinal cord i.e. T8–T9, were able to completely and globally suppress all ipsilateral hindlimb movements. Furthermore, the same population of interneurons - which inhibited movements - did not significantly change the sensory and proprioceptive information from the affected limbs to the cortex. These results suggest a rostro-caudal organization of inhibition in the spinal cord motor output without modulation of ascending sensory pathways.
Collapse
Affiliation(s)
- Vittorio Caggiano
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail: (VC); (EB)
| | - Mirganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Emilio Bizzi
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail: (VC); (EB)
| |
Collapse
|
11
|
Brockett EG, Seenan PG, Bannatyne BA, Maxwell DJ. Ascending and descending propriospinal pathways between lumbar and cervical segments in the rat: evidence for a substantial ascending excitatory pathway. Neuroscience 2013; 240:83-97. [PMID: 23454541 DOI: 10.1016/j.neuroscience.2013.02.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
Precise mechanisms are required to coordinate the locomotor activity of fore- and hind-limbs in quadrupeds and similar mechanisms persist to coordinate movement of arms and legs in humans. Propriospinal neurons (PSNs) are major components of the networks that coordinate these mechanisms. The b subunit of cholera toxin (CTb) was injected unilaterally into either L1 or L3 segments in order to label ascending and descending propriospinal pathways. Labelled cells were examined with light or confocal microscopy. Cells projecting to lumbar segments were evenly distributed, bilaterally throughout all cervical segments. However many more cells were labelled from L1 injections than L3 injections. Roughly 15% of cells in both sides of the C2 segment was found to be immunoreactive for calretinin and a small number (4%) was immunoreactive for calbindin. Axons projecting from L1 to cervical segments formed predominant ipsilateral projections to the cervical intermediate grey matter and ventral horn. Very large numbers of terminals were concentrated within the ventrolateral motor (VLM) nuclei of C7-8 segments but there was sparse innervation of the contralateral nucleus. The vast majority (85%) of these axon terminals in the ipsilateral VML was immunoreactive for the vesicular glutamate transporter 2 (VGLUT2) and the remaining 15% was immunoreactive for the vesicular GABA transporter (VGAT); many of these contained GABA and/or glycine. Inhibitory and excitatory terminals were also found in the contralateral VLM. Most of the terminals in the VLM made contacts with motoneurons. The major finding of this study is the existence of a substantial excitatory propriospinal pathway that projects specifically to the VLM. Motoneurons in the VLM supply muscles of the axilla therefore this pathway is likely to have a profound influence on the activity of the shoulder joint. This pathway may synchronise lumbar and cervical pattern generators and hence the coordination of locomotor activity in the fore- and hind limbs.
Collapse
Affiliation(s)
- E G Brockett
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
12
|
Thibaudier Y, Hurteau MF, Telonio A, Frigon A. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat. Neuroscience 2013; 240:13-26. [PMID: 23485807 DOI: 10.1016/j.neuroscience.2013.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/29/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
Despite the obvious importance of inter-girdle coordination for quadrupedal locomotion in terrestrial mammals, its organization remains poorly understood. Here, we evaluated cycle and phase durations, as well as footfall patterns of four intact adult cats trained to walk on a transverse split-belt treadmill that could independently control fore- and hindlimb speed. When the hindlimbs walked at faster speeds than the forelimbs, an equal rhythm was always maintained between the fore- and hindlimbs, even at the highest fore-hindlimb speed ratio of 1:3 (0.4:1.2 m/s). The locomotor pattern adjusted through changes in both hindlimb stance and swing phase durations, whereas only the forelimb stance phase was affected. In such conditions, when fore- and hindlimb values were compared to those obtained at matched speeds during tied-belt walking (i.e. predicted values based on treadmill speed), hindlimb cycle, stance and swing durations were consistently longer than predicted. On the other hand, forelimb cycle and stance durations were shorter than predicted but only at the highest split-belt speed ratios. Forelimb swing durations were as predicted based on front-belt speed. The sequence of footfall pattern when hindlimb speed was faster was identical to tied-belt walking. In stark contrast, when the forelimbs walked at slightly faster speeds than the hindlimbs, the rhythm between the fore- and hindlimbs broke down. In such conditions, the locomotor pattern was adjusted through changes in stance and swing phase durations in both the fore- and hindlimbs. When the rhythm between the fore- and hindlimbs broke down, hindlimb cycle and phase durations were similar to predicted values, whereas forelimb values were shorter than predicted. Moreover, several additional sequences of footfall patterns were observed. Therefore, the results clearly demonstrate the existence of a bidirectional, asymmetric, and flexible control of inter-girdle coordination during quadrupedal locomotion in the intact adult cat.
Collapse
Affiliation(s)
- Y Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012; 150:1264-73. [PMID: 22980985 DOI: 10.1016/j.cell.2012.08.020] [Citation(s) in RCA: 660] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/02/2012] [Accepted: 08/20/2012] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) expressing GFP were embedded into fibrin matrices containing growth factor cocktails and grafted to sites of severe spinal cord injury. Grafted cells differentiated into multiple cellular phenotypes, including neurons, which extended large numbers of axons over remarkable distances. Extending axons formed abundant synapses with host cells. Axonal growth was partially dependent on mammalian target of rapamycin (mTOR), but not Nogo signaling. Grafted neurons supported formation of electrophysiological relays across sites of complete spinal transection, resulting in functional recovery. Two human stem cell lines (566RSC and HUES7) embedded in growth-factor-containing fibrin exhibited similar growth, and 566RSC cells supported functional recovery. Thus, properties intrinsic to early-stage neurons can overcome the inhibitory milieu of the injured adult spinal cord to mount remarkable axonal growth, resulting in formation of new relay circuits that significantly improve function. These therapeutic properties extend across stem cell sources and species.
Collapse
Affiliation(s)
- Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee SJ, Lyu YS, Kang HW, Sohn IC, Koo S, Kim MS, Park BR, Song JH, Kim JH. Antinociception of Heterotopic Electro-Acupuncture Mediated by the Dorsolateral Funiculus. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 35:251-64. [PMID: 17436366 DOI: 10.1142/s0192415x07004795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the inhibitory pathways that mediate the antinociceptive effects of heterotopic electro-acupuncture (EA) on formalin injection-induced pain in rats. EA (2 ms, 10 Hz, 3 mA) was delivered to heterotopic acupoints HT7 and PC7 for 30 min; this was followed immediately by subcutaneous injection of formalin into the left hind paw of rats. Naltrexone (10 mg/kg, i.p.), an opioid receptor antagonist, was administered to evaluate the involvement of endogenous opioids. The dorsolateral funiculus (DLF), which is a descending pathway that inhibits pain, was transected at the ipsilateral T10–11 level of the thoracic spinal cord. EA inhibited behavioral responses to formalin injection-induced pain and prevented the pain-induced increase in cFos expression in the lumbar spinal cord. Pretreatment with naltrexone did not inhibit the antinociceptive effects of EA on formalin injection-induced pain. Transection of the DLF ipsilateral to the acupuncture site eliminated the antinociceptive effects of EA. These results suggest that the antinociceptive effects of heterotopic EA are mediated by the DLF and not by endogenous opioids.
Collapse
Affiliation(s)
- Seung Jae Lee
- The Institute of New Life Health Center, Boston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Spinal projections from the presumptive midbrain locomotor region in the mouse. Brain Struct Funct 2011; 217:211-9. [PMID: 21735296 DOI: 10.1007/s00429-011-0337-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
The mesencephalic locomotor region (MLR) plays an important role in the control of locomotion, but there is ongoing debate about the anatomy of its connections with the spinal cord. In this study, we have examined the spinal projections of the mouse precuneiform nucleus (PrCnF), which lies within the boundaries of the presumptive MLR. We used both retrograde and anterograde labeling techniques. Small clusters of labeled neurons were seen in the medial portion of the PrCnF following fluoro-gold injections in the upper cervical spinal cord. Fewer labeled neurons were seen in the PrCnF after upper thoracic injections. Following the injection of anterograde tracer (biotinylated dextran amine) into the PrCnF, labeled fibers were clearly observed in the spinal cord. These fibers traveled in the ventral and lateral funiculi, and terminated mainly in the medial portions of laminae 7, 8, and 9, as well as area 10, with an ipsilateral predominance. Our observations indicate that projections from the PrCnF to the spinal cord may provide an anatomical substrate for the role of the MLR in locomotion.
Collapse
|
17
|
Bishop MD, Beneciuk JM, George SZ. Immediate reduction in temporal sensory summation after thoracic spinal manipulation. Spine J 2011; 11:440-6. [PMID: 21463970 PMCID: PMC3092807 DOI: 10.1016/j.spinee.2011.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/06/2010] [Accepted: 03/01/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal manipulative techniques (SMT) have shown clinical effectiveness in some patients with musculoskeletal pain. PURPOSE We performed the current experiment to test whether regional pain modulation is to be expected from thoracic SMT. STUDY DESIGN/SETTING Randomized experimental design performed in a university pain laboratory. OUTCOME MEASURES The primary outcome was experimental pain sensitivity in cervical and lumbar innervated area. METHODS Ninety healthy volunteers were randomly assigned to receive one of three interventions (SMT, exercise, or rest) to the upper thoracic spine. Participants completed questionnaires about pain-related affect and expectations regarding each of the interventions. We collected experimental pain sensitivity measures of cervical and lumbar innervated areas before and immediately after randomly assigned intervention. Mixed model analysis of covariance was used to test changes in measures of experimental pain sensitivity. RESULTS No interactions or intervention (group) effects were noted for pressure or A-delta-mediated thermal pain responses. Participants receiving SMT had greater reductions in temporal sensory summation (TSS). CONCLUSIONS This present study indicates thoracic SMT that reduces TSS in healthy subjects. These findings extend our previous work in healthy and clinical subjects by indicating change in the nocioceptive afferent system occurred caudal to the region of SMT application. However, the duration of reduction in TSS is unknown, and more work needs to be completed in clinical populations to confirm the relevance of these findings.
Collapse
Affiliation(s)
- Mark D Bishop
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA.
| | - Jason M Beneciuk
- Department of Physical Therapy, University of Florida, Gainesville, Fl, 32610, USA
| | - Steven Z George
- Department of Physical Therapy, University of Florida, Gainesville, Fl, 32610, USA
,
Center for Pain and Behavioral Health, University of Florida, Gainesville, Fl, 32610, USA
| |
Collapse
|
18
|
Liu TT, Bannatyne BA, Maxwell DJ. Organization and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat. Neuroscience 2010; 171:461-84. [PMID: 20849930 DOI: 10.1016/j.neuroscience.2010.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 02/05/2023]
Abstract
Intersegmental interneurons with relatively short axons perform an important role in the coordination of limb movement but surprisingly little is known about their organization and how they contribute to neuronal networks in the adult rat. We undertook a series of anatomical tract-tracing studies to label cell bodies and axons of intersegmental neurons in the lumbar cord and characterized their neurochemical properties by using immunocytochemistry. The b-subunit of cholera toxin was injected into L1 or L3 segments of seven rats in the vicinity of lateral or medial motor nuclei. In L5 lumbar segments, cells were found to be concentrated in contralateral lamina VIII, and in ipsilateral lamina VII and laminae V-VI following injections into the lateral and medial motor nuclei respectively. About 25% of labelled cells contained calbindin or calretinin or a combination of both. Calbindin positive cells were mainly distributed within the ipsilateral side of the L5 segment, especially within the ipsilateral dorsal horn whereas there was a concentration of calretinin cells in contralateral lamina VIII. A small population of cells around the central canal were cholinergic. We also examined axon terminals that projected from L1/3 to the L5 contralateral lateral motor nucleus. The majority of these axons were excitatory (75%) and made direct contacts with motoneurons. However, most inhibitory axons in L5 contained a mixture of GABA and glycine (20%) and about 22% of the total population of axons contained calbindin. In contrast, 19% of all intra-segmental axons in the L3 contralateral lateral motor nucleus were found to be purely glycinergic and 17% contained a mixture of GABA and glycine. This study shows that short range interneurons form extensive ipsi- and contralateral projections within the lumbar enlargement and that many of them contain calcium binding proteins. Those projecting contralaterally to motor nuclei are predominantly excitatory.
Collapse
Affiliation(s)
- T T Liu
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
19
|
Cowley KC, Zaporozhets E, Schmidt BJ. Propriospinal transmission of the locomotor command signal in the neonatal rat. Ann N Y Acad Sci 2010; 1198:42-53. [PMID: 20536919 DOI: 10.1111/j.1749-6632.2009.05421.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Long direct bulbospinal projections are known to convey descending activation of locomotor networks. Less is understood about the role, if any, of propriospinal mechanisms in this function. Here we review our recent studies on propriospinal neurons in the in vitro neonatal rat brainstem-spinal cord preparation. Neurochemical suppression of synaptic activity in the cervicothoracic spinal cord blocked locomotor-like activity, suggesting synaptic relays make a critical contribution to descending transmission of the locomotor signal. Staggered contralateral hemisections in the cervicothoracic region, intended to eliminate all long direct bulbospinal transmission, failed to suppress locomotion, suggesting the propriospinal system alone is sufficient. Midsagittal lesion experiments showed that locomotor-related commissural components are required for rhythm generation in response to electrical stimulation of the brainstem and are redundantly distributed. No single segment was essential, although a bi-directional gradient was noted, centered on the thoracolumbar junction. These results strongly favor a role for propriospinal mechanisms in the activation of locomotion and suggest that propriospinal neurons are a logical target for interventions to restore locomotor function after spinal cord injury.
Collapse
Affiliation(s)
- Kristine C Cowley
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
20
|
Mouton LJ, Eggens-Meijer E, Klop EM. The ventrolateral upper cervical cell group in cat projects to all rostrocaudal levels of the periaqueductal gray matter. Brain Res 2009; 1300:79-96. [DOI: 10.1016/j.brainres.2009.08.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 07/01/2009] [Accepted: 08/28/2009] [Indexed: 12/30/2022]
|
21
|
Immobilizing doses of halothane, isoflurane or propofol, do not preferentially depress noxious heat-evoked responses of rat lumbar dorsal horn neurons with ascending projections. Anesth Analg 2008; 106:985-90, table of contents. [PMID: 18292450 DOI: 10.1213/ane.0b013e318163f8f3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The spinal cord is an important site where volatile anesthetics decrease sensation and produce immobility. Beyond this knowledge, our understanding of a site of anesthetic action is limited. Previous evidence suggests that dorsal horn neurons with ascending projections may be more susceptible to depression by general anesthetics than local spinal interneurons. In this study we evaluated the effects of volatile and injectable general anesthetics on lumbar dorsal horn neurons with and without ascending projections. METHODS Thirty-seven adult male rats underwent laminectomies at C1, for placement of a stimulating electrode, and T13/L1, for extracellular recording from the spinal cord dorsal horn. Neuronal responses to heat were evaluated under two doses of halothane, isoflurane, or propofol anesthesia. RESULTS Under both halothane and isoflurane anesthesia, increasing the dose from 0.8 to 1.2 minimum alveolar concentration (MAC) had no significant effect on heat-evoked responses in neurons that had ascending projections identified via antidromic stimulation (AD) or those without ascending projections (nAD). Heat responses in AD neurons 1 min after i.v. administration of 3 and 5 mg/kg of propofol were reduced to 60% +/- 18% (mean +/- SE) and 39% +/- 14% of control respectively. Similarly, in nAD neurons responses were reduced to 56% +/- 14% and 50% +/- 10% of control by 3 and 5 mg/kg propofol respectively. CONCLUSIONS Our findings suggest, at peri-MAC concentrations, these general anesthetics do not preferentially depress lumbar dorsal horn neurons with ascending projections compared to those with no identifiable ascending projections.
Collapse
|
22
|
Qin C, Farber JP, Linderoth B, Shahid A, Foreman RD. Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal dorsal column and somatic afferents in rats. THE JOURNAL OF PAIN 2008; 9:71-8. [PMID: 17974489 PMCID: PMC2682554 DOI: 10.1016/j.jpain.2007.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/07/2007] [Accepted: 08/21/2007] [Indexed: 11/28/2022]
Abstract
UNLABELLED Clinical studies have shown that neuromodulation therapies, such as spinal cord stimulation (SCS) and transcutaneous electrical nerve stimulation (TENS), reduce symptoms of chronic neuropathic and visceral pain. The neural mechanisms underlying SCS and TENS therapy are poorly understood. The present study was designed to compare the effects of SCS and TENS on spinal neuronal responses to noxious stimuli applied to the heart and esophagus. Direct stimulation of an intercostal nerve (ICNS) was used to simulate the effects of TENS. Extracellular potentials of left thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. SCS (50 Hz, 0.2 ms, 3-5 minutes) at a clinical relevant intensity (90% of motor threshold) was applied on the C1-C2 or C8-T1 ipsilateral spinal segments. Intercostal nerve stimulation (ICNS) at T3 spinal level was performed using the same parameters as SCS. Intrapericardial injection of bradykinin (IB, 10 microg/mL, 0.2 mL, 1 minute) was used as the noxious cardiac stimulus. Noxious thoracic esophageal distension (ED, 0.4 mL, 20 seconds) was produced by water inflation of a latex balloon. C1-C2 SCS suppressed excitatory responses of 16/22 T3 spinal neurons to IB and 25/30 neurons to ED. C8-T1 SCS suppressed excitatory responses of 10/15 spinal neurons to IB and 17/23 neurons to ED. ICNS suppressed excitatory responses of 9/12 spinal neurons to IB and 17/22 neurons to ED. These data showed that SCS and ICNS modulated excitatory responses of T3 spinal neurons to noxious stimulation of the heart and esophagus. PERSPECTIVE Neuromodulation of noxious cardiac and esophageal inputs onto thoracic spinal neurons by spinal cord and intercostal nerves stimulation observed in the present study may help account for therapeutic effects on thoracic visceral pain by activating the spinal dorsal column or somatic afferents.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73910, USA.
| | | | | | | | | |
Collapse
|
23
|
Qin C, Lehew RT, Khan KA, Wienecke GM, Foreman RD. Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats. Neurosci Res 2007; 58:58-66. [PMID: 17324482 PMCID: PMC1989111 DOI: 10.1016/j.neures.2007.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 01/26/2007] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that spinal cord stimulation (SCS) of upper lumbar segments decreases visceromotor responses to mechanical stimuli in a sensitized rat colon and reduces symptoms of irritable bowel syndrome in patients. SCS applied to the upper cervical spinal dorsal column reduces pain of chronic refractory angina. Further, chemical stimulation of C1-C2 propriospinal neurons in rats modulates the responses of lumbosacral spinal neurons to colorectal distension. The present study was designed to compare the effects of upper cervical and lumbar SCS on activity of lumbosacral neurons receiving noxious colorectal input. Extracellular potentials of L6-S2 spinal neurons were recorded in pentobarbital anesthetized, paralyzed and ventilated male rats. SCS (50 Hz, 0.2 ms) at low intensity (90% of motor threshold) was applied to the dorsal column of upper cervical (C1-C2) or upper lumbar (L2-L3) ipsilateral spinal segments. Colorectal distension (CRD, 20 mmHg, 40 mmHg, 60 mmHg, 20s) was produced by air inflation of a latex balloon. Results showed that SCS applied to L2-L3 and C1-C2 segments significantly reduced the excitatory responses to noxious CRD from 417.6+/-68.0 to 296.3+/-53.6 imp (P<0.05, n=24) and from 336.2+/-64.5 to 225.0+/-73.3 imp (P<0.05, n=18), respectively. Effects of L2-L3 and C1-C2 SCS lasted 10.2+/-1.9 and 8.0+/-0.9 min after offset of CRD. Effects of SCS were observed on spinal neurons with either high or low-threshold excitatory responses to CRD. However, L2-L3 or C1-C2 SCS did not significantly affect inhibitory neuronal responses to CRD. C1-C2 SCS-induced effects were abolished by cutting the C7-C8 dorsal column but not by spinal transection at cervicomedullary junction. These data demonstrated that upper cervical or lumbar SCS modulated responses of lumbosacral spinal neurons to noxious mechanical stimulation of the colon, thereby, proved two loci for a potential therapeutic effect of SCS in patients with irritable bowel syndrome and other colonic disorders.
Collapse
Affiliation(s)
- C Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73104, United States.
| | | | | | | | | |
Collapse
|
24
|
Dutton RC, Carstens MI, Antognini JF, Carstens E. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 2006; 1119:76-85. [PMID: 16996042 DOI: 10.1016/j.brainres.2006.08.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
The retrograde tracer cholera toxin beta-subunit (CTB) was used to trace long ascending propriospinal projections from neurons in the lumbosacral spinal cord to the upper cervical (C3) gray matter in adult male Sprague-Dawley rats. Following large 0.5 microl CTB injections restricted mainly to the upper cervical ventral horn (n=5), there were many lumbosacral CTB-positive neurons (14-17/section) in the intermediate gray and ventral horn (dorsal lamina VIII, medial VII extending into X) contralaterally, with fewer at corresponding ipsilateral locations. Labeled cells (4-8/section) were also observed in contralateral laminae IV-VI and the lateral spinal nucleus, with fewer ipsilaterally. Few labeled cells (<2/section) were observed in superficial laminae I-II. Smaller (0.15 microl) microinjections of CTB restricted to the upper cervical ventral gray matter labeled cells in contralateral laminae VII-VIII (approximately 6-9/section) with fewer ipsilaterally. There were relatively fewer (<2/section) in the intermediate dorsal horn and very few (<1/section) in lamina I. Larger (0.5 microl) CTB injections encompassing the C3 dorsal and ventral gray matter on one side labeled significantly more CTB-positive neurons (>6/section) in contralateral lamina I compared to ventral horn injections. These results suggest direct projections from ventromedially located neurons of lumbar and sacral segments to the contralateral ventral gray matter of upper cervical segments, as well as from neurons in the intermediate but not superficial dorsal horn. They further suggest that some lumbosacral superficial dorsal horn neurons project to the upper cervical dorsal horn. These propriospinal projections may be involved in coordinating head and neck movements during locomotion or stimulus-evoked motor responses.
Collapse
Affiliation(s)
- Robert C Dutton
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
25
|
Reed WR, Shum-Siu A, Onifer SM, Magnuson DS. Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 2006; 142:1195-207. [PMID: 16938403 PMCID: PMC3741649 DOI: 10.1016/j.neuroscience.2006.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 11/23/2022]
Abstract
The ventrolateral funiculus (VLF) in the spinal cord contains important ascending and descending pathways related to locomotion and interlimb coordination. The primary purpose of this descriptive study was to investigate the distribution of inter-enlargement pathways in the adult rat spinal cord with an emphasis on the VLF. We made discrete unilateral injections of Fluoro-Gold (FG) into the right VLF at thoracic segment (T) 9, and either unilateral or bilateral injections of Fluoro-Ruby (FR) into the intermediate gray matter at the cervical (C) 5-6, C7-8, or lumbar (L) 2 segmental levels. Inter-enlargement neurons with ascending axons in the right VLF were found bilaterally in laminae VII and VIII throughout the rostral lumbar spinal cord (L1-L3) and predominantly contralaterally in the caudal lumbosacral (L4-S1) spinal cord. Following left unilateral FR injections at C5-6 or C7-8 and right unilateral VLF injections of FG at T9, very few double-labeled neurons could be found anywhere in the lumbar spinal cord. Similar injections of FR at L2 revealed an almost symmetrical bilateral distribution of double-labeled neurons throughout the cervical spinal cord (C1-8). These results describe ascending and descending pathways within the spinal cord that interconnect the two enlargements and involve both commissural and ipsilateral interneurons. The majority of inter-enlargement neurons had axons within the VLF at T9. These observations support the hypothesis that the VLF contains long ascending and descending axons with propriospinal inter-enlargement, commissural and ipsilateral connections that are anatomically well-suited to mediate interlimb coordination.
Collapse
Affiliation(s)
- William R. Reed
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Alice Shum-Siu
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - Stephen M. Onifer
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| | - David S.K. Magnuson
- Department of Anatomical Sciences and Neurobiology, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
- Department of Neurological Surgery, The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville KY 40292
| |
Collapse
|
26
|
Qin C, Foreman RD, Farber JP. Afferent pathway and neuromodulation of superficial and deeper thoracic spinal neurons receiving noxious pulmonary inputs in rats. Auton Neurosci 2006; 131:77-86. [PMID: 16935568 DOI: 10.1016/j.autneu.2006.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/18/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The occurrence of vagally mediated afferent signaling by lung irritants is well known. However, spinal visceral afferent pathways also might be relevant to pulmonary irritation. In the present study, responses and modulation of superficial and deep T3 spinal neurons were examined using inhaled ammonia, and the peripheral afferent fibers were also characterized in part. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Ammonia vapor (0.5, 1.0, 2.0 ml) was injected into the inspiratory line of the ventilator for 20 s. Inhaled ammonia (IA, 1.0 ml) excited 5/6 neurons and inhibited one spinal neuron recorded in superficial laminae, whereas deeper neurons responded with excitatory (E, n = 20), inhibitory (I, n = 4) or biphasic patterns (6 E-I, 3 I-E). Electrical and chemical stimulation of C1-C2 spinal neurons primarily suppressed T3 neuronal responses to IA. Resiniferatoxin (2 microg/kg, i.v.), which desensitizes afferent fibers containing transient receptor potential vanilloid receptor-1 (TRPV-1), abolished excitatory responses of 8/8 neurons to IA. Bilateral cervical vagotomy did not affect IA responses in 5 superficial neurons while 7 deeper neurons showed variable responses. 82% (32/39) of the spinal neurons responding to IA also received convergent noxious inputs from somatic fields in the chest and back areas. These results suggested that superficial and deeper spinal neuronal activation by inhaled ammonia mainly depended upon pulmonary sympathetic afferent fibers expressing TRPV-1. Additionally, C1-C2 spinal neurons, supraspinal sites and vagal afferents modulated the thoracic spinal neuronal responses to lower airway irritation.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
27
|
Beaumont E, Onifer SM, Reed WR, Magnuson DSK. Magnetically evoked inter-enlargement response: an assessment of ascending propriospinal fibers following spinal cord injury. Exp Neurol 2006; 201:428-40. [PMID: 16797539 PMCID: PMC3713466 DOI: 10.1016/j.expneurol.2006.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/17/2006] [Accepted: 04/28/2006] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to characterize a novel electrophysiological assessment, the magnetically evoked interenlargement response (MIER), by defining the anatomical location of the fast conducting (large myelinated) ascending axons that mediate the response and the relationship between the response and locomotor function following experimental spinal cord injury. Electromyographic (EMG) responses were recorded from the triceps muscles following magnetic stimulation of one hip. Short-latency (approximately 6 ms) EMGs were recorded from triceps muscles in normal controls and following different laceration injuries (dorsal, lateral or dorsal and lateral hemisections) or a 150-kilodyne (kd) contusion injury at the T9 level. The amplitude of the triceps MIER was significantly correlated to the area of spared white matter in the lateral funiculus and to hindlimb function during open field locomotion (r2 = 0.55). Following a complete lateral hemisection, MIERs were present in the triceps bilaterally following stimulation of either hip. Responses could also be recorded from the masseter muscles indicating that the influence of this pathway extends beyond the spinal cord. Anatomical evidence of a bilaterally distributed propriospinal pathway was found when biotinylated dextran amine (BDA) was injected into the lateral white matter on one side of the spinal cord at T9. BDA-labeled axons with varicosities were found bilaterally in the intermediate and ventral gray matter of the caudal region of the cervical enlargement. These observations suggest that MIERs may be useful to quantitatively assess neurotransmission and functional recovery over time after experimental spinal cord injury.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
28
|
Zaporozhets E, Cowley KC, Schmidt BJ. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 2006; 572:443-58. [PMID: 16469789 PMCID: PMC1779678 DOI: 10.1113/jphysiol.2005.102376] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 02/02/2006] [Indexed: 11/08/2022] Open
Abstract
This study examines whether propriospinal transmission contributes to descending propagation of the brainstem locomotor command signal in the in vitro neonatal rat spinal cord. Using double bath partitions, synaptic transmission was suppressed in the cervicothoracic region while monitoring locomotor-like activity on lumbar ventral roots evoked by either chemical or electrical stimulation of the brainstem. Locomotor-like activity induced by electrical stimulation was more stable (cycle period coefficient of variation (CV) 11.7 +/- 6.1%) than the rhythm induced by chemical stimulation (CV 31.3 +/- 6.4%). Ca(2+)-free bath solution, elevated Mg(2+) ion concentration, excitatory amino acid receptor antagonists (AP5 and/or CNQX), and the muscarinic receptor antagonist, atropine, were used in attempts to block synaptic transmission. Each of these manipulations, except muscarinic receptor blockade, was capable of blocking locomotor-like activity induced by brainstem stimulation. However, locomotor-like activity induced by higher intensity electrical stimulation of the brainstem (1.2-5 times threshold) was relatively refractory to synaptic suppression using AP5 and CNQX, and Ca(2+)-free solution was more effective if combined with high Mg(2+) (15 mm) or EGTA. Enhancement of neuronal excitation in the cervicothoracic region, using Mg(2+)-free bath solution, facilitated brainstem activation of locomotor-like activity in the lumbar cord, consistent with a propriospinal mechanism of locomotor signal propagation. Blockade of brainstem-induced locomotor-like activity was related to the number of cervicothoracic segments exposed to synaptic suppression, being most effective if five or more segments were included. These results provide direct evidence that propriospinal pathways contribute to bulbospinal activation of the locomotor network in the in vitro neonatal rat brainstem-spinal cord preparation, and suggest that a propriospinal system is recruited in parallel with long direct projections that activate the locomotor network.
Collapse
|
29
|
Okamoto K, Kimura A, Donishi T, Imbe H, Goda K, Kawanishi K, Tamai Y, Senba E. Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Exp Brain Res 2005; 170:358-67. [PMID: 16344929 DOI: 10.1007/s00221-005-0218-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/30/2005] [Indexed: 11/30/2022]
Abstract
Effects of persistent temporomandibular joint (TMJ) inflammation on nociceptive responses of remote bodily areas of the rat were investigated. Monoarthritis of the TMJ region was evoked by the injection of complete Freund's adjuvant (CFA) into the left TMJ region. Rats without injection of CFA into the TMJ region served as controls (non-CFA group). Time spent on licking behavior evoked by the injection of formalin into the left hindpaw and withdrawal thresholds of mechanical stimulation to both sides of the hindpaw were measured during TMJ inflammation for 3 weeks. Furthermore, expression of Fos protein in the lumbar dorsal horn was immunohistochemically investigated following the injection of formalin into the hindpaw during TMJ inflammation. Formalin-evoked nocifensive behavioral activities were significantly enhanced at 10 and 14 days after CFA injection in the late phase, while the withdrawal threshold to mechanical stimulation was significantly decreased bilaterally at 8, 10 and 14 days after CFA injection. Both formalin-evoked licking behavior and mechanical withdrawal thresholds to bilateral hindpaw at 21 days after CFA injection were similar to those in the non-CFA group. The number of Fos-positive neurons in the lumbar dorsal horn ipsilateral to the formalin injection at 1 and 7 days after CFA injection into the TMJ were similar to those in the non-CFA group; however, those were significantly increased in the laminae I-II and V-VI of the lumbar dorsal horn at 14 days after CFA injection. TMJ inflammation for 7 and 14 days alone produced a small number of Fos-expressing neurons in the lumbar dorsal horn. These results provide evidence that persistent unilateral inflammation of the TMJ region causes an increase in behavioral hyperalgesia of the hindpaw, which is attributed to the modulation of neural activities, in part, in the lumbar dorsal horn, likely mediated by supraspinal neural mechanisms.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama City 641-8509, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Conta AC, Stelzner DJ. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. J Comp Neurol 2005; 479:347-59. [PMID: 15514981 DOI: 10.1002/cne.20319] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The propriospinal system is important in mediating reflex control and in coordination during locomotion. Propriospinal neurons (PNs) present varied patterns of projections with ascending and/or descending fibers. Following spinal cord contusion injury (SCI) in the rat, certain supraspinal pathways, such as the corticospinal tract, appear to be completely abolished, whereas others, such as the rubrospinal and vestibuospinal tracts, are only partially damaged. The amount of damage to propriospinal axons following different severities of SCI is not fully known. In the present study retrograde and anterograde tracing techniques were used to assess the projection patterns of propriospinal neurons in order to determine how this system is affected following SCI. Our findings reveal that PNs have differential vulnerabilities to SCI. While short thoracic propriospinal axons are severely damaged after injury, 5-7% of long descending propriospinal tract (LDPT) projections survive following 50 and 12.5-mm weight drop contusion lesions, respectively, albeit with a reduced intensity of retrograde label. Even though the axons of short thoracic propriospinal cells are damaged, their cell bodies of origin remain intact 2 weeks after injury, indicating that they have not undergone postaxotomy retrograde cell death at this time point. Thus, short PNs may constitute a very attractive population of cells to study regenerative approaches, whereas LDPT neurons with spared axons could be targeted with therapeutic interventions, seeking to enhance recovery of function following incomplete lesions to the spinal cord.
Collapse
Affiliation(s)
- Amanda C Conta
- Neuroscience Program, College of Graduate Studies, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
31
|
Qin C, Kranenburg A, Foreman RD. Descending modulation of thoracic visceroreceptive transmission by C1-C2 spinal neurons. Auton Neurosci 2004; 114:11-6. [PMID: 15331040 DOI: 10.1016/j.autneu.2004.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 05/14/2004] [Accepted: 05/15/2004] [Indexed: 11/28/2022]
Abstract
Extracellular potentials of single T3 neurons were recorded in pentobarbital anesthetized male rats. Thoracic esophageal distension (ED, 0.3-0.4 ml, 20 s) and intrapericardial injection of bradykinin (BK, 10(-5) M, 0.2 ml, 1 min) were used as noxious visceral stimuli. Chemical activation of C1-C2 neurons with glutamate pledgets (1 M, 1-3 min) decreased background activity and/or excitatory responses of 26/35 (74%) neurons to ED and 34/44 (77%) neurons to BK. After spinal transection at rostral C1 in five animals, glutamate at C1-C2 still significantly reduced excitatory responses of five neurons to BK. Data showed that intraspinal descending modulation of C1-C2 neurons primarily produced descending inhibition of excitatory responses of thoracic spinal neurons to noxious visceral stimuli.
Collapse
Affiliation(s)
- C Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, United States.
| | | | | |
Collapse
|
32
|
Hoiriis KT, Pfleger B, McDuffie FC, Cotsonis G, Elsangak O, Hinson R, Verzosa GT. A Randomized Clinical Trial Comparing Chiropractic Adjustments to Muscle Relaxants for Subacute Low Back Pain. J Manipulative Physiol Ther 2004; 27:388-98. [PMID: 15319761 DOI: 10.1016/j.jmpt.2004.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The adult lifetime incidence for low back pain is 75% to 85% in the United States. Investigating appropriate care has proven difficult, since, in general, acute pain subsides spontaneously and chronic pain is resistant to intervention. Subacute back pain has been rarely studied. OBJECTIVE To compare the relative efficacy of chiropractic adjustments with muscle relaxants and placebo/sham for subacute low back pain. DESIGN A randomized, double-blind clinical trial. METHODS Subjects (N = 192) experiencing low back pain of 2 to 6 weeks' duration were randomly allocated to 3 groups with interventions applied over 2 weeks. Interventions were either chiropractic adjustments with placebo medicine, muscle relaxants with sham adjustments, or placebo medicine with sham adjustments. Visual Analog Scale for Pain, Oswestry Disability Questionnaire, and Modified Zung Depression Scale were assessed at baseline, 2 weeks, and 4 weeks. Schober's flexibility test, acetaminophen usage, and Global Impression of Severity Scale (GIS), a physician's clinical impression used as a secondary outcome, were assessed at baseline and 2 weeks. RESULTS Baseline values, except GIS, were similar for all groups. When all subjects completing the protocol were combined (N = 146), the data revealed pain, disability, depression, and GIS decreased significantly (P <.0001); lumbar flexibility did not change. Statistical differences across groups were seen for pain, a primary outcome, (chiropractic group improved more than control group) and GIS (chiropractic group improved more than other groups). No significant differences were seen for disability, depression, flexibility, or acetaminophen usage across groups. CONCLUSION Chiropractic was more beneficial than placebo in reducing pain and more beneficial than either placebo or muscle relaxants in reducing GIS.
Collapse
Affiliation(s)
- Kathryn T Hoiriis
- College of Chiropractic, Chiropractic Sciences Division, Life University, Marietta, Ga 30060, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lu F, Qin C, Foreman RD, Farber JP. Chemical activation of C1-C2 spinal neurons modulates intercostal and phrenic nerve activity in rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1069-76. [PMID: 14764434 DOI: 10.1152/ajpregu.00427.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C1-C2 spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic ( n = 23) and intercostal nerves (ICNs, n = 93) between T3 and T8 spinal segments were recorded from 36 decerebrated, vagotomized, paralyzed, and ventilated male rats. To activate upper cervical spinal neurons, glutamate pledgets (1 M, 1 min) were placed on the dorsal surface of the C1-C2 spinal cord. Glutamate on C1-C2 increased ICN tonic activity in 56/59 (95%) ICNs. The average maximal tonic activity of ICN was increased by 174% ( n = 59). After spinal transection at rostral C1, glutamate on C1-C2 still increased ICN tonic activity in 33/35 ICNs. However, the effects of C1-C2 glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C1-C2 glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was decreased from 34.2 ± 1.6 to 26.3 ± 2.0 (mean ± SE) breaths/min during C1-C2 glutamate. These data suggested that upper cervical propriospinal neurons might play a role in descending modulation of thoracic respiratory and nonrespiratory motor activity.
Collapse
Affiliation(s)
- Fang Lu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, 73190, USA
| | | | | | | |
Collapse
|
34
|
Bohotin C, Scholsem M, Bohotin V, Franzen R, Schoenen J. Vagus nerve stimulation attenuates heat- and formalin-induced pain in rats. Neurosci Lett 2004; 351:79-82. [PMID: 14583386 DOI: 10.1016/s0304-3940(03)00908-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The analgesic effect of vagus nerve stimulation (VNS) has not yet been demonstrated in animals with the devices used in the clinic. We studied in awake rats the effects of two VNS protocols on the hind paw hot water test and compared the results with those previously obtained in the oro-facial formalin test. A stringent duty cycle (20 s on/18 s off) increased heat pain tolerance in both hind paws (average 188%) after 2 h of stimulation. VNS with parameters used in epilepsy (30 s on/5 min off) decreased heat tolerance after 2 h, but produced a significant antinociceptive effect after days of stimulation. VNS may thus be useful in pain disorders, even with the less stringent protocol.
Collapse
Affiliation(s)
- C Bohotin
- Research Centre in Cellular and Molecular Neurobiology-Neuroanatomy Laboratory, University of Liège, 20, rue de Pitteurs, B-4020, Liège, Belgium
| | | | | | | | | |
Collapse
|
35
|
Zhang J, Chandler MJ, Foreman RD. Cardiopulmonary sympathetic and vagal afferents excite C1-C2 propriospinal cells in rats. Brain Res 2003; 969:53-8. [PMID: 12676364 DOI: 10.1016/s0006-8993(03)02277-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study in anesthetized rats was to determine the effects of stimulating cardiopulmonary sympathetic afferents (CPSA) and vagal afferents on C1-C2 descending propriospinal neurons. We hypothesized that inhibition of spinal sensory neurons produced by CPSA or vagus activation might relay in C1-C2 spinal segments. Extracellular action potentials were recorded from 73 C1-C2 neurons whose axons were antidromically activated in lumbar segments. CPSA input excited 22 cells, inhibited two cells and excited/inhibited one cell, whereas vagal input excited eight cells and inhibited two cells. Results are consistent with the hypothesis that CPSA input can be processed in C1-C2 segments to produce neural modulation in distant spinal segments.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
36
|
Leman S, Sequeira H. Activation of adrenal preganglionic neurons during autonomic dysreflexia in the chronic spinal cord-injured rat. Auton Neurosci 2002; 98:94-8. [PMID: 12144050 DOI: 10.1016/s1566-0702(02)00040-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autonomic dysreflexia (AD) occurs in a majority of high paraplegic and quadriplegic patients and is particularly characterized by a paroxysmal hypertension elicited by somatic or visceral stimuli. We have previously shown that plasma adrenaline and noradrenaline levels were significantly increased during episodes of AD in the 30-day spinal cord-injured (SCI) rats, suggesting the participation of adrenal catecholamines in the cardiovascular changes associated to AD. Thus, adrenal sympathetic preganglionic neurons (SPN) could be activated by visceral afferences leading to AD. The aim of this study was then to demonstrate whether visceral stimulation that induces AD activates adrenal SPN in chronic SCI rats. To this end, a retrograde tracer, the cholera toxin B subunit (CTB), was combined with the immunocytochemical detection of Fos protein after visceral stimulation. Chronic SCI rats received a CTB injection into the adrenal gland and, 3 days later, were stimulated by repetitive distension of the colon. Results showed that this stimulation elicited typical hypertensive episodes of AD and a significant increase in the number of double-labeled neurons (CTB/Fos immunoreactive neurons) in the thoracic spinal cord below the level of injury (T4 segment) when compared to the stimulated non-SCI rats. In conclusion, visceral stimulations in the chronic SCI rats activate adrenal SPN, which could induce release of catecholamines by the adrenal medulla. The present study brings new data on the spinal mechanisms of AD cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Samuel Leman
- Laboratoire de Neurosciences du Comportement, Université de Lille, Villeneuve d'Ascq, France.
| | | |
Collapse
|
37
|
Dishman JD, Cunningham BM, Burke J. Comparison of tibial nerve H-reflex excitability after cervical and lumbar spine manipulation. J Manipulative Physiol Ther 2002; 25:318-25. [PMID: 12072852 DOI: 10.1067/mmt.2002.124420] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous investigations indicate that spinal manipulation leads to short-term attenuation of alpha-motoneuron excitability, when assessed by means of the Hoffmann reflex. Past studies, however, are limited to regional effects, such as lumbar manipulation effects on lumbar alpha-motoneuron activity. OBJECTIVE This study compared and contrasted the effects of cervical and lumbar spine manipulation on the excitability of the lumbar alpha-motoneuronal pool in human subjects without low back pain, and compared the effects of cervical (nonregional) and lumbar (regional) spinal manipulation on lumbar alpha-motoneuron pool excitability in healthy subjects. The specific aim of this study was to determine if the inhibitory effects on the lumbar alpha-motoneuron pool associated with spinal manipulation are limited to the specific region in which the manipulative procedure is applied, or if rostral (cervical) manipulation can also influence caudal (lumbar) motoneuron excitability. METHOD Thirty-six nonpatient human subjects were used to study the effect of cervical and lumbar spinal manipulation on the amplitude of the tibial nerve Hoffmann reflex, recorded from the gastrocnemius muscle. The Hoffmann reflex (H-reflex) technique allows for an indirect index of motoneuron pool excitability by means of peripheral nerve Ia-afferent fiber stimulation. Reflexes were recorded before and after spinal manipulative procedures. RESULTS Lumbar spinal manipulation, as measured by amplitude changes of the tibial nerve H-reflex, attenuated lumbar alpha-motoneuronal activity. Suppression of motoneuronal excitability was significant (P <.05) but transient, with a return to baseline within 60 seconds after manipulation. Cervical spinal manipulation had no significant effect on lumbar motoneuron activity. CONCLUSION These data indicate that the inhibitory effects of spinal manipulation on motoneuronal excitability are regional, rather than global.
Collapse
Affiliation(s)
- J Donald Dishman
- Department of Anatomy, New York Chiropractic College, Seneca Falls, NY 13148, USA.
| | | | | |
Collapse
|
38
|
Chandler MJ, Zhang J, Qin C, Foreman RD. Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments. J Neurophysiol 2002; 87:1290-302. [PMID: 11877503 DOI: 10.1152/jn.00079.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Noxious stimulation of spinal afferents inhibits primate spinothalamic tract (STT) neurons in segments distant from the region of afferent entry. Inhibitory effects of cardiopulmonary sympathetic afferent (CPSA) stimulation remain after C(1) transection but disappear with spinal transection between C(3) and C(7). We hypothesized that spinal inhibitory effects produced by CPSA stimulation are processed by neurons in C(1)-C(3) segments. One purpose of this study in anesthetized monkeys was to determine whether chemical activation of high cervical neurons reduced sacral STT cell responses to colorectal distension (CRD) and urinary bladder distension (UBD). First, effects and interactions of pelvic and cardiopulmonary visceral afferent inputs were determined in 10 monkeys on extracellular activity of sacral STT neurons recorded in deep dorsal horn. CRD and UBD increased activity in 95 and 91% of sacral STT neurons, respectively. CPSA and cardiopulmonary vagal stimulation decreased activity in 84 and 56% of STT neurons, respectively. CPSA stimulation decreased CRD-evoked activity in six of eight sacral STT neurons and decreased UBD-evoked activity in five of eight STT neurons tested. Excitatory amino acid application at C2 segment decreased CRD-evoked responses in 7 of 10 sacral STT neurons and decreased UBD-evoked responses in 9 of 12 STT neurons. The second purpose of this study was to examine responses of C(1)-C(3) descending propriospinal neurons to stimulation of cardiopulmonary afferent fibers. If C(1)-C(3) neurons process CPSA input to suppress STT transmission, then CPSA stimulation should excite C(1)-C(3) neurons with descending projections. Effects of thoracic vagus nerve stimulation also were examined. Vagal stimulation inhibits STT neurons in segments below C(3) but excites C(1)-C(3) STT neurons; we theorized that vagal inhibition of sensory transmission might relay in high cervical segments and, therefore, excite C(1)-C(3) descending propriospinal neurons. Extracellular discharge rate was recorded for C(1)-C(3) neurons antidromically activated from thoracic or lumbar spinal cord in 24 monkeys. CPSA stimulation increased activity of 16 of 45 neurons and inhibited one cell. Thoracic vagus stimulation increased activity of 20 of 43 neurons and inhibited one cell; stimulation of abdominal vagus fibers did not affect activity of six of six cells that were excited by thoracic vagal input. Mechanical stimulation of somatic fields excited 30 of 41 neurons tested. All neurons activated by visceral input received convergent somatic input from noxious pinch of somatic receptive fields that generally included the neck and upper body; 11 C(1)-C(3) propriospinal neurons did not respond to any afferent input examined. Results of these studies were consistent with the idea that modulation of spinal nociceptive transmission might involve neuronal connections in high cervical segments.
Collapse
Affiliation(s)
- Margaret J Chandler
- Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73190, USA
| | | | | | | |
Collapse
|
39
|
Potts JT, Spyer KM, Paton JF. Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 2000; 53:59-67. [PMID: 11033209 DOI: 10.1016/s0361-9230(00)00309-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to examine the cardiorespiratory responses (CR) evoked by a somatosympathetic reflex (SSR) in the working heart-brainstem preparation (WHBP). Sprague-Dawley rats (75-100 g) were anesthetized with halothane, bisected sub-diaphramatically and decerebrated pre-collicularly (n = 15). The preparation was transferred to a recording chamber and perfused via the thoracic aorta with Ringer's solution containing an oncotic agent (Ficoll, 1.25%). SSR was activated by electrical stimulation (5 s) of the brachial nerve (0.5-40 Hz, 1-20 V, 0.1 ms) or the forelimb (0.5-40 Hz, 5-60 V, 2 ms). Stimulation at 40 Hz significantly increased heart rate (HR, 366 +/- 10 to 374 +/- 9 beats/min), systemic perfusion pressure (PP, 83 +/- 5 to 89 +/- 6 mmHg) and phrenic nerve discharge (PND, 0.4 +/- 0.1 to 1.4 +/- 0.3 Hz). Ganglionic blockade with hexamethonium (300 microM) eliminated the tachycardia and pressor response but did not alter the tachypnea to forelimb stimulation (n = 3). Transection of the brachial nerve plexus abolished the increase in PP and PND (n = 4). This indicates that a neural reflex mediated these responses. Spinal transection (C1-C2) completely abolished all responses indicating that they were mediated via a supraspinal pathway (n = 2). Based upon these findings, we conclude that activation of somatosensory afferent fibers in the WHBP evokes a programmed pattern of autonomic responses altering the activity-state of both the cardiovascular and respiratory systems. The WHBP provides a unique opportunity to investigate the medullary circuits and neuronal mechanisms that may be involved in coupling cardiorespiratory and somatomotor activity during locomotion/exercise.
Collapse
Affiliation(s)
- J T Potts
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9034, USA.
| | | | | |
Collapse
|
40
|
Chau D, Johns DG, Schramm LP. Ongoing and stimulus-evoked activity of sympathetically correlated neurons in the intermediate zone and dorsal horn of acutely spinalized rats. J Neurophysiol 2000; 83:2699-707. [PMID: 10805670 DOI: 10.1152/jn.2000.83.5.2699] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that in the acutely spinalized anesthetized rat the activities of many dorsal horn interneurons (DHN) at the T(10) level are correlated positively with both ongoing and stimulus-evoked renal sympathetic nerve activity (RSNA) and therefore may belong to networks generating RSNA after acute, cervical, spinal transection. In the present study, we recorded from both DHN and interneurons in the intermediate zone (IZN) of the T(10) spinal segment in acutely C(1)-transected, chloralose-anesthetized, artificially respired rats. The activities of a similar percentage of IZN and DHN were correlated positively with ongoing RSNA, but the peaks of spike-triggered averages of RSNA based on the activity of IZN were larger, relative to dummy averages, than spike-triggered averages of RSNA based on the activity of DHN. Sympathetically correlated DHN and IZN differed in their responses to noxious somatic stimuli. Most correlated DHN had relatively simple somatic fields; they were excited by noxious stimulation of the T(10) and nearby dermatomes and inhibited by stimulation of more distal dermatomes. As we have shown previously, the excitatory and inhibitory fields of these neurons were very similar to fields that, respectively, excited and inhibited RSNA. On the other hand, the somatic fields of 50% of sympathetically correlated IZN were significantly more complex, indicating a difference between either the inputs or the processing properties of IZN and DHN. Sympathetically correlated IZN and DHN also differed in their responses to colorectal distension (CRD), a noxious visceral stimulus. CRD increased RSNA in 11/15 rats and increased the activity of most sympathetically correlated T(10) IZN. On the other hand, CRD decreased the activity of a majority of sympathetically correlated T(10) DHN. These observations suggest that the same stimulus may differentially affect separate, putative, sympathoexcitatory pathways, exciting one and inhibiting the other. Thus the magnitude and even the polarity of responses to a given stimulus may be determined by the modality and location of the stimulus, the degree to which multiple pathways are affected by the stimulus, and the ongoing activity of presympathetic neurons, at multiple rostrocaudal levels, before stimulation. A multipathway system may explain the variability in autonomic responses to visceral and somatic stimuli exhibited in spinally injured patients.
Collapse
Affiliation(s)
- D Chau
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
41
|
Foreman RD. Integration of viscerosomatic sensory input at the spinal level. PROGRESS IN BRAIN RESEARCH 2000; 122:209-21. [PMID: 10737060 DOI: 10.1016/s0079-6123(08)62140-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The major point of this chapter is that there is evidence to support the idea that cervical headache might not only result from injured somatic structures in the neck but also occur because of interactions with visceral organs. The complex arrangement of convergent inputs from somatic and visceral afferent fibers and of the propriospinal pathways in the upper cervical segments may create an environment to precipitate such headaches (Fig. 8). It is possible that the soreness experienced in the muscles innervating the neck may not be due to direct injury but may occur as muscle hyperalgesia that is often associated with visceral pain (Giamberardino, et al., 1993). Much more research is required to understand these complex interactions before patients who suffer pain of cervical headache can be treated satisfactorily.
Collapse
Affiliation(s)
- R D Foreman
- University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City 73190, USA.
| |
Collapse
|
42
|
Qin C, Chandler MJ, Miller KE, Foreman RD. Chemical activation of cervical cell bodies: effects on responses to colorectal distension in lumbosacral spinal cord of rats. J Neurophysiol 1999; 82:3423-33. [PMID: 10601473 DOI: 10.1152/jn.1999.82.6.3423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that stimulation of cardiopulmonary sympathetic afferent fibers activates relays in upper cervical segments to suppress activity of lumbosacral spinal cells. The purpose of this study was to determine if chemical excitation (glutamate) of upper cervical cell bodies changes the spontaneous activity and evoked responses of lumbosacral spinal cells to colorectal distension (CRD). Extracellular potentials were recorded in pentobarbital-anesthetized male rats. CRD (80 mmHg) was produced by inflating a balloon inserted in the descending colon and rectum. A total of 135 cells in the lumbosacral segments (L(6)-S(2)) were activated by CRD. Seventy-five percent (95/126) of tested cells received convergent somatic input from the scrotum, perianal region, hindlimb, and tail; 99/135 (73%) cells were excited or excited/inhibited by CRD; and 36 (27%) cells were inhibited or inhibited/excited by CRD. A glutamate (1 M) pledget placed on the surface of C(1)-C(2) segments decreased spontaneous activity and excitatory CRD responses of 33/56 cells and increased spontaneous activity of 13/19 cells inhibited by CRD. Glutamate applied to C(6)-C(7) segments decreased activity of 10/18 cells excited by CRD, and 9 of these also were inhibited by glutamate at C(1)-C(2) segments. Glutamate at C(6)-C(7) increased activity of 4/6 cells inhibited by CRD and excited by glutamate at C(1)-C(2) segments. After transection at rostral C(1) segment, glutamate at C(1)-C(2) still reduced excitatory responses of 7/10 cells. Further, inhibitory effects of C(6)-C(7) glutamate on excitatory responses to CRD still occurred after rostral C(1) transection but were abolished after a rostral C(6) transection in 4/4 cells. These data showed that C(1)-C(2) cells activated with glutamate primarily produced inhibition of evoked responses to visceral stimulation of lumbosacral spinal cells. Inhibition resulting from activation of cells in C(6)-C(7) segments required connections in the upper cervical segments. These results provide evidence that upper cervical cells integrate information that modulates activity of distant spinal neurons responding to visceral input.
Collapse
Affiliation(s)
- C Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|