1
|
Tanaka S, Fan LW, Tien LT, Park Y, Liu-Chen LY, Rockhold RW, Ho IK. Butorphanol dependence increases hippocampal kappa-opioid receptor gene expression. J Neurosci Res 2006; 82:255-63. [PMID: 16130146 DOI: 10.1002/jnr.20620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Butorphanol is a synthetic opioid agonist/antagonist analgesic agent, which exerts its effects mainly via kappa-opioid receptors. Characterizations of the gene expression levels of the mRNA for and protein levels of the kappa-opioid receptor in different brain regions of rats are essential for investigating possible mechanisms in the development of physical dependence on and withdrawal from butorphanol. Animals were rendered dependent by intracerebroventricular (i.c.v.) infusion of butorphanol (26 nmol/microl/hr) via osmotic minipumps for 3 days. Rats were sacrificed immediately (dependent group) or 7 hr after discontinuation of i.c.v. butorphanol infusion (withdrawal group). Expression levels of the mRNA for the kappa-opioid receptor, as detected by reverse transcription-polymerase chain reaction followed by Southern blot analysis, were significantly increased in the cerebral cortex, striatum, and midbrain, including thalamus, hippocampus, and pons, in animals dependent on butorphanol. In both dependent and withdrawal groups, Western blot analysis of kappa-opioid receptor protein levels showed significant increases in the amygdaloid nucleus, paraventricular thalamus, and thalamus. However, in the withdrawal group, there were significant decreases in the hippocampus and cortical regions, including the frontal, parietal, and temporal cortex. Regional changes in the mRNA for and protein levels of the kappa-opioid receptor focus attention on highly special roles for this receptor in the development of physical dependence on and the expression of withdrawal from butorphanol dependence.
Collapse
Affiliation(s)
- Sachiko Tanaka
- Department of Biochemical Toxicology, School of Pharmaceutical Science, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
2
|
Commiskey S, Fan LW, Ho IK, Rockhold RW. Butorphanol: effects of a prototypical agonist-antagonist analgesic on kappa-opioid receptors. J Pharmacol Sci 2005; 98:109-16. [PMID: 15942128 DOI: 10.1254/jphs.crj05001x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The opioid analgesic, butorphanol (17-cyclobutylmethyl-3,14-dihydroxymorphinan) tartrate is a prototypical agonist-antagonist opioid analgesic agent whose potential for abuse has been the cause of litigation in the United States. With a published affinity for opioid receptors in vitro of 1:4:25 (mu:delta:kappa), the relative contribution of actions at each of these receptors to the in vivo actions of the drug are an issue of active investigation. A body of evidence has been developed which indicates that a substantial selective action of butorphanol on the kappa-opioid receptor mediates the development of tolerance to butorphanol and cross-tolerance to other opioid agonists; to the production of dependence upon butorphanol, particularly in the rodent; and to compensatory alterations in brain opioid receptor-effector systems. This perspective will identify the current state of understanding of the effects produced by butorphanol on brain opioid receptors, particularly on the kappa-opioid receptor subtype, and on the expression of phosphotyrosyl proteins following chronic treatment with butorphanol.
Collapse
Affiliation(s)
- Stephen Commiskey
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, USA
| | | | | | | |
Collapse
|
3
|
Fan LW, Tien LT, Tanaka S, Ma T, Chudapongse N, Sinchaisuk S, Rockhold RW, Ho IK. Changes in the brain kappa-opioid receptor levels of rats in withdrawal from physical dependence upon butorphanol. Neuroscience 2004; 121:1063-74. [PMID: 14580956 DOI: 10.1016/s0306-4522(03)00299-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in kappa-opioid receptor levels have been implicated in the development of physical dependence upon and withdrawal from the mixed agonist-antagonist opioid, butorphanol. Immunoblotting analysis was performed to determine the levels of kappa- and mu-opioid receptors in brain regions of rats in withdrawal from dependence upon butorphanol or morphine. Physical dependence was induced by a 72 h i.c.v. infusion with either butorphanol or morphine (26 nmol/microl/h). Withdrawal was subsequently precipitated by i.c.v. challenge with naloxone (48 nmol/5 microl/rat), administered 2 h following cessation of butorphanol or morphine infusion. Immunoblotting analysis of kappa-opioid receptors from butorphanol-withdrawal rats showed significant increases in 11 of 21 brain regions examined, including the nucleus accumbens, amygdala, dorsomedial hypothalamus, hypothalamus, paraventricular thalamus, thalamus, presubiculum, and locus coeruleus, when compared with saline treated, non-dependent controls. In addition, significant reductions were found in the hippocampus and in cortical brain regions, including the parietal cortex and temporal cortex from butorphanol-withdrawal rats. These findings contrasted with those from morphine-withdrawal rats, in which the only changes noted were increases in the thalamus and paraventricular thalamus. Changes in the levels of the mu-opioid receptor protein were observed in 11 of 21 brain regions examined in morphine-withdrawal rats, but only in three of 21 in butorphanol-withdrawal rats. These results implicate a substantive and largely unique role for kappa-opioid receptors in mediation of the development of physical dependence upon, and the expression of withdrawal from, butorphanol, as opposed to the prototypical opioid analgesic, morphine.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Butorphanol/adverse effects
- Male
- Morphine/adverse effects
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/adverse effects
- Opioid-Related Disorders/metabolism
- Opioid-Related Disorders/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- L-W Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fan LW, Tien LT, Tanaka S, Sasaki K, Park Y, Ma T, Rockhold RW, Ho IK. Enhanced binding of nor-binaltorphimine to kappa-opioid receptors in rats dependent on butorphanol. J Neurosci Res 2003; 72:781-9. [PMID: 12774318 DOI: 10.1002/jnr.10578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Autoradiographic characterization of binding for brain kappa(1) ([(3)H]CI-977) and kappa(2) ([(3)H]bremazocine) in the presence of DAMGO ([D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin), DPDPE ([D-Pen(2), D-Pen(5)]-enkephalin), and U-69,593 opioid receptors, in the presence of different concentrations of a selective unlabeled kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), was performed in rats in which dependence on or withdrawal from butorphanol had been established. Dependence was induced by a 72 hr intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/microl/hr; butorphanol dependent). Butorphanol withdrawal was produced by terminating the infusion of butorphanol in dependent animals. Responses were studied 7 hr following termination (butorphanol withdrawal). IC(50) values from competition studies were estimated by fitting inhibition curves for both kappa(1)- and kappa(2)-opioid receptor assays. In both dependent and withdrawal groups, the IC(50) values obtained against [(3)H]CI-977 or [(3)H]bremazocine with nor-BNI were decreased (ratios of approximately 0.03-0.21 and approximately 0.05-0.42 vs. control, respectively) in brain regions, including frontal cortex, nucleus accumbens, claustrum, dorsal endopiriform nucleus, caudate putamen, parietal cortex, posterior basolateral amygdaloid nucleus, dorsomedial hypothalamus, hippocampus, posterior paraventricular thalamic nucleus, periaqueductal gray, substantia nigra, superficial gray layer of the superior colliculus, ventral tegmental area, and locus coeruleus, compared with control. These results indicate that, in butorphanol-dependent and butorphanol-withdrawal rats, the brain kappa(1)- and kappa(2)-opioid receptors developed a supersensitivity to antagonist binding.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fan LW, Tanaka S, Park Y, Sasaki K, Ma T, Tien LT, Rockhold RW, Ho IK. Butorphanol dependence and withdrawal decrease hippocampal kappa 2-opioid receptor binding. Brain Res 2002; 958:277-90. [PMID: 12470863 DOI: 10.1016/s0006-8993(02)03572-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study examines the degree and distribution of alterations in the expression of kappa-opioid receptor subtypes using a model of chronic intracerebroventricular (i.c.v.) infusion of butorphanol. Autoradiographic characterization of binding for brain kappa(1) ([3H]CI-977)-, kappa(2) ([3H]bremazocine in the presence of DAMGO, DPDPE, and U-69,593)- and total kappa ([3H]bremazocine in the presence of only DAMGO and DPDPE)-opioid receptors was performed. Dependence was induced by a 72 h i.c.v. infusion with butorphanol (26 nmol/microl per hour) (butorphanol-dependent). Butorphanol withdrawal was produced by terminating the infusion of butorphanol in dependent animals. Responses were studied 7 h following termination (butorphanol-withdrawal). During both dependence and withdrawal phases, the binding signals for both kappa(1)- and kappa(2)-opioid receptors were significantly increased in certain regions, with especially marked increases in the frontal cortex, nucleus accumbens, parietal cortex, dorsomedial hypothalamus, ventral tegmental area and locus coeruleus. In contrast, a highly specific decrease in kappa(2)-, but increase in kappa(1)-, opioid receptor binding was noted in the hippocampus of rats in both butorphanol-dependent and-withdrawal groups. Therefore, alterations in kappa(1)- and kappa(2)-opioid receptors in the hippocampus may be differently involved in both adaptation to and recovery from chronic exposure to a mixed agonist/antagonist opioid analgesic. These results further illustrate the regional distribution of changes in binding characteristics of rat brain kappa(1)- and kappa(2)-opioid receptor subtypes in an established model of butorphanol dependence and withdrawal.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fan LW, Tanaka S, Tien LT, Ma T, Rockhold RW, Ho IK. Withdrawal from dependence upon butorphanol uniquely increases kappa(1)-opioid receptor binding in the rat brain. Brain Res Bull 2002; 58:149-60. [PMID: 12127012 DOI: 10.1016/s0361-9230(02)00760-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in kappa(1)-opioid receptor binding have been implicated in the development of dependence upon and withdrawal from butorphanol. Autoradiographic characterization of binding for brain kappa(1)-([3H]CI-977), mu-([3H]DAMGO), and delta-([3H]DPDPE) opioid receptors was performed in rats undergoing naloxone-precipitated withdrawal from dependence upon butorphanol or morphine. Dependence was induced by a 72h i.c.v. infusion with either butorphanol or morphine (26nmol/microl/h). Withdrawal was subsequently precipitated by i.c.v. challenge with naloxone (48 nmol/5 microl/rat), administered 2h following cessation of butorphanol or morphine infusion. During withdrawal from butorphanol, but not morphine, kappa(1)-opioid receptor binding was increased significantly in the frontal cortex, posterior basolateral amygdaloid nucleus, dorsomedial hypothalamus, hippocampus, posterior paraventricular thalamic nucleus, ventral tegmental area and locus coeruleus. In contrast, mu-opioid receptor binding decreased in these brain regions in naloxone-precipitated withdrawal from morphine, but not butorphanol, while binding for delta-opioid receptors was altered in both withdrawal groups. The brain kappa(1)-opioid receptor appears to be more directly involved in the development of physical dependence upon, and the expression of withdrawal from, butorphanol, as opposed to the prototypical opioid analgesic, morphine.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
7
|
Park Y, Ho IK, Jang CG, Tanaka S, Ma T, Loh HH, Ko KH. Effects of morphine on pentobarbital-induced responses in mu-opioid receptor knockout mice. Brain Res Bull 2001; 54:527-31. [PMID: 11397543 DOI: 10.1016/s0361-9230(01)00444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Effects of morphine on the potentiation of pentobarbital-induced responses were investigated using mu-opioid receptor knockout mice. The duration of loss of righting reflex, hypothermia, and loss of motor coordination induced by pentobarbital were measured after pretreatment with either morphine or saline. Morphine pretreatment failed to show potentiation of both pentobarbital-induced loss of righting reflex and hypothermia in mu-opioid receptor knockout mice, while it significantly potentiated these responses in the wild-type controls. For motor incoordination test, morphine potentiated pentobarbital-induced motor incoordination in the wild-type mice. However, morphine may have opposite effects in the mu-opioid receptor knockout mice. These results demonstrate that synergism between morphine and pentobarbital is not detected in mu-opioid receptor knockout mice and that potentiation of pentobarbital-induced loss of righting reflex and hypothermia by morphine is mediated through mu-opioid receptor. It was interesting to note that pentobarbital-induced decrease in body temperature was less severe in mu-opioid receptor knockout mice than in wild-type mice.
Collapse
Affiliation(s)
- Y Park
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Boyle TJ, Masuda T, Cunningham ST. Effects of a kappa agonist, spiradoline mesylate (U62,066E), on activation and vaginocervical-stimulation produced analgesia in rats. Brain Res Bull 2001; 54:213-8. [PMID: 11275411 DOI: 10.1016/s0361-9230(00)00453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous research has demonstrated increased pain threshold during copulation, gestation, and parturition in animals. In the laboratory, mechanostimulation of the vaginocervical region in many animals, as well as humans, can increase responsiveness to noxious but not to innocuous stimuli. This increased pain inhibition to vaginocervical stimulation, which mimics natural parturition, is mediated by spinal and supraspinal neuropeptides, including the opiates. The present research was designed to ascertain the possible effects of a kappa opioid agonist on vaginocervical-stimulated analgesia in rats. Initially, the novel kappa-selective agonist, spiradoline mesylate (U62,066E; 0, 0.1, 1.0, 10.0 mg/kg, i.p.), was injected intraperitoneally and general behavioral arousal in an open field apparatus was recorded. Results from this experiment indicate that stimulation with the kappa-selective drug caused significant decreases in behavioral activity at the high dose as compared to saline and the medium and low doses. Next, the effects of U62,066E (0, 0.1, 1.0, 10.0 mg/kg, i.p.) on the analgesia associated with vaginocervical stimulation were determined in a tail flick apparatus. The kappa drug significantly increased antinociceptive thresholds prior to and during vaginocervical stimulation at the 0.1 and 1.0 mg/kg doses. By contrast, the high dose (10.0 mg/kg) of U62,066E decreased vaginocervical stimulation-produced analgesia. Results are discussed in terms of the potential of nonaddictive kappa-selective opioid compounds being utilized in reproductive pain.
Collapse
Affiliation(s)
- T J Boyle
- Department of Psychology, University of Massachusetts Boston, MA, USA
| | | | | |
Collapse
|