1
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
2
|
Cooper ZD, Evans SM, Foltin RW. Self-administration of inhaled delta-9-tetrahydrocannabinol and synthetic cannabinoids in non-human primates. Exp Clin Psychopharmacol 2021; 29:137-146. [PMID: 34043398 PMCID: PMC8376089 DOI: 10.1037/pha0000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cannabis and synthetic cannabinoids are abused in spite of possible adverse health consequences. The current study investigated the reinforcing effects of an ecologically relevant mode of administration (inhalation) of delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis, and three synthetic cannabinoids detected in synthetic cannabinoid products (JWH-018, JWH-073, and HU-210) in non-human primates (NHPs). Male and female (N = 4 each) rhesus macaques were trained to inhale warm air via a metal stem to receive a candy reinforcer, an alcohol aerosol vehicle was then paired with the candy. Dose-dependent responding for inhaled aerosols of THC (2.0-16.0 μg/kg/inhalation), JWH-018 (0.2-1.6 μg/kg/inhalation), JWH-073 (2.0-8.0 μg/kg/inhalation), and HU-210 (1.0-8.0 μg/kg/inhalation) was established using a fixed-ratio five schedule of reinforcement and compared to vehicle (alcohol) self-administration. Dose-dependent responding for inhaled heroin (25.0-100.0 μg/kg/inhalation), a known reinforcer in NHPs, was also established. Responding approximated vehicle levels for many drug doses tested, but at least half of the monkeys responded for ≥ one dose of each cannabinoid and heroin above vehicle, with the exception of THC. Drug deliveries calculated as percent vehicle followed a prototypical inverted-U shaped dose-response curve for cannabinoids and heroin except for THC and JWH-018 (in males). Grouped data according to sex demonstrated that peak percent of vehicle reinforcers earned for THC was greater in males than females, whereas peak percent of vehicle reinforcers earned for JWH-018, HU-210, and heroin were greater in females than males. These findings indicate minimal reinforcing effects of CB1 receptor agonists when self-administered by NHPs via aerosol inhalation. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Ziva D. Cooper
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Suzette M Evans
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Medical Center, New York, NY, USA
| | - Richard W Foltin
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Modeling drug exposure in rodents using e-cigarettes and other electronic nicotine delivery systems. J Neurosci Methods 2019; 330:108458. [PMID: 31614162 DOI: 10.1016/j.jneumeth.2019.108458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022]
Abstract
Smoking tobacco products is the leading cause of preventable death worldwide. Coordinated efforts have successfully reduced tobacco cigarette smoking in the United States; however, electronic cigarettes (e-cigarette) and other electronic nicotine delivery systems (ENDS) recently have replaced traditional cigarettes for many users. While the clinical risks associated with long-term ENDS use remain unclear, advancements in preclinical rodent models will enhance our understanding of their overall health effects. This review examines the peripheral and central effects of ENDS-mediated exposure to nicotine and other drugs of abuse in rodents and evaluates current techniques for implementing ENDS in preclinical research.
Collapse
|
4
|
Methcathinone and 3-Fluoromethcathinone Stimulate Spontaneous Horizontal Locomotor Activity in Mice and Elevate Extracellular Dopamine and Serotonin Levels in the Mouse Striatum. Neurotox Res 2018; 35:594-605. [PMID: 30377956 PMCID: PMC6420425 DOI: 10.1007/s12640-018-9973-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022]
Abstract
Methcathinone (MC) and 3-fluoromethcathinone (3-FMC) are well-known members of the synthetic cathinone derivatives, the second most abused group of novel psychoactive substances (NPS). They are considered as methamphetamine-like cathinones, as they elicit their psychostimulatory effects via inhibition of monoamine uptake and enhanced release. The present study examines the effects of MC and 3-FMC on the spontaneous locomotor activity of mice and extracellular levels of dopamine and serotonin in the mouse striatum. Both MC and 3-FMC produced a dose-dependent increase of horizontal locomotor activity, but no significant changes in rearing behavior were observed. The locomotor stimulation induced by MC and 3-FMC is mediated by activation of dopaminergic neurotransmission, as selective D1-dopamine receptor antagonist, SCH 23390, abolished the effects of both drugs. In line with pharmacological data obtained by previous in vitro studies, MC and 3-FMC produced potent increases of extracellular dopamine and serotonin levels in the mouse striatum. Taken together, results presented within this study confirm previous findings and expand our knowledge on the pharmacology of MC and 3-FMC along with their behavioral effects.
Collapse
|
5
|
Foltin RW. Self-administration of methamphetamine aerosol by male and female baboons. Pharmacol Biochem Behav 2018; 168:17-24. [PMID: 29545026 DOI: 10.1016/j.pbb.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023]
Abstract
The reinforcing efficacy of vaporized methamphetamine HCl (0.3 mg/kg) was determined in baboons with minimal previous drug exposure. A group of 8 adult male baboons was tested prior to a group of 7 adult female baboons. Baboons were initially trained to suck on a brass stem activating a pressure-sensitive relay (i.e., puff), to receive one M&M® candy. Five of the 8 males and 6 of the 7 females learned to activate the relay. 0.05 ml of 95% ethyl alcohol containing 0.3 mg/kg methamphetamine was vaporized and delivered to the mouth of the baboon after he/she completed 2 puffs; a single candy was given after an additional 5 puffs to ensure that baboons continued puffing after the aerosol entered their mouths. Puffing was recorded but not reinforced by candy or drug for 2 min after each aerosol delivery for males and 1 min for females. Males could earn 10 and females could earn 20 aerosol deliveries. Males made between 225 and 650 puffs each session. Females made between 200 and 400 puffs each session. When only candy and placebo aerosol were delivered the number of puffs decreased in all 6 females but increased in all 5 males. When candy was delivered without aerosol, puffing decreased in 4 of 5 males, but this manipulation was not tested in females. Methamphetamine aerosol delivery maintained lower rates of puffing behavior in females than males, but procedural differences weaken interpretation of this sex comparison. Although training non-human primates to inhale drug vapors is time consuming, if successful, their long lifespan could provide years of valuable data justifying further work with non-human primates using models of vaporized drug self-administration.
Collapse
Affiliation(s)
- Richard W Foltin
- Division on Substance Use Disorders, New York State Psychiatric Institute and Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 120, New York, NY 10032, USA.
| |
Collapse
|
6
|
Roohbakhsh A, Shirani K, Karimi G. Methamphetamine-induced toxicity: The role of autophagy? Chem Biol Interact 2016; 260:163-167. [PMID: 27746146 DOI: 10.1016/j.cbi.2016.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is a highly potent and addictive drug with major medical, psychiatric, cognitive, socioeconomic, and legal consequences. It is well absorbed following different routes of administration and distributed throughout the body. METH is known as psychomotor stimulant with potent physiological outcomes on peripheral and central nervous systems, resulting in physical and psychological disorders. Autophagy is a highly conserved and regulated catabolic pathway which is critical for maintaining cellular energy homeostasis and regulating cell growth. The mechanism of autophagy has attracted considerable attention in the last few years because of its recognition as a vital arbiter of death/survival decisions in cells and as a critical defense mechanism in undesirable physiological conditions. The purpose of the current article was to review available evidence to find a relationship between METH toxicity and mechanisms associated with autophagy in different organs.
Collapse
Affiliation(s)
- Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Shirani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology. Neuropsychopharmacology 2016; 41:2759-71. [PMID: 27277119 PMCID: PMC5026745 DOI: 10.1038/npp.2016.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/15/2023]
Abstract
Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 μg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5-1.0 mg/kg), or MDPV (0.5-1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine.
Collapse
|
8
|
Marusich JA, Lefever TW, Blough BE, Thomas BF, Wiley JL. Pharmacological effects of methamphetamine and alpha-PVP vapor and injection. Neurotoxicology 2016; 55:83-91. [PMID: 27237056 DOI: 10.1016/j.neuro.2016.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
Vaporizing drugs in e-cigarettes is becoming a common method of administration for synthetic cathinones and classical stimulants. Heating during vaporization can expose the user to a cocktail of parent compound and thermolytic degradants, which could lead to different toxicological and pharmacological effects compared to ingesting the parent compound alone via injection or nasal inhalation. This study examined the in vivo toxicological and pharmacological effects of vaporized and injected methamphetamine (METH) and α-pyrrolidinopentiophenone (α-PVP). Male and female ICR mice were administered METH or α-PVP through vapor or i.p. injection. Dose-effect curves were determined for locomotor activity and a functional observational battery (FOB). METH and α-PVP vapor were also evaluated for place preference in male mice. Vapor exposure and injection led to more similarities than differences in toxicological and pharmacological effects. In the FOB, both routes of administration produced typical stimulant effects, and injection also increased some bizarre behaviors (e.g. licking, teeth chattering, darting). Both METH and α-PVP vapor exposure produced conditioned place preference. The two routes of administration had comparable efficacy in locomotor activation, with vapor producing longer lasting effects than injection. Females showed greater METH-induced locomotor activity, and greater incidence of a few somatic signs in the FOB than males. These results explore the toxicology of stimulant vapor inhalation in mice using an e-cigarette device. Despite the current technological and methodological difficulties, studying drug vapor promises to allow determination of toxicological effects of thermolytic products and flavor additives.
Collapse
Affiliation(s)
- Julie A Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA.
| | - Timothy W Lefever
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Brian F Thomas
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Jenny L Wiley
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Fonck C, Easter A, Pietras MR, Bialecki RA. CNS Adverse Effects: From Functional Observation Battery/Irwin Tests to Electrophysiology. Handb Exp Pharmacol 2015; 229:83-113. [PMID: 26091637 DOI: 10.1007/978-3-662-46943-9_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter describes various approaches for the preclinical assessment of drug-induced central nervous system (CNS) adverse effects. Traditionally, methods to evaluate CNS effects have consisted of observing and scoring behavioral responses of animals after drug is administered. Among several behavioral testing paradigms, the Irwin and the functional observational battery (FOB) are the most commonly used assays for the assessment of CNS effects. The Irwin and FOB are considered good first-tier assays to satisfy the ICH S7A guidance for the preclinical evaluation of new chemical entities (NCE) intended for humans. However, experts have expressed concern about the subjectivity and lack of quantitation that is derived from behavioral testing. More importantly, it is difficult to gain insight into potential mechanisms of toxicity by assessing behavioral outcomes. As a complement to behavioral testing, we propose using electrophysiology-based assays, both in vivo and in vitro, such as electroencephalograms and brain slice field-potential recordings. To better illustrate these approaches, we discuss the implementation of electrophysiology-based techniques in drug-induced assessment of seizure risk, sleep disruption, and cognitive impairment.
Collapse
Affiliation(s)
- Carlos Fonck
- Global Safety Pharmacology, AstraZeneca Pharmaceuticals LP, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | | | | | | |
Collapse
|
10
|
Marumo A, Kumazawa T, Lee XP, Hasegawa C, Sato K. SPIN TIP SOLID-PHASE EXTRACTION AND HILIC-MS-MS FOR QUANTITATIVE DETERMINATION OF METHAMPHETAMINE AND AMPHETAMINE IN HUMAN PLASMA. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.745145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Akemi Marumo
- a Department of Legal Medicine , Showa University School of Medicine , Tokyo , Japan
| | - Takeshi Kumazawa
- a Department of Legal Medicine , Showa University School of Medicine , Tokyo , Japan
| | - Xiao-Pen Lee
- a Department of Legal Medicine , Showa University School of Medicine , Tokyo , Japan
| | - Chika Hasegawa
- b Department of Legal Medicine , Toho University School of Medicine , Tokyo , Japan
| | - Keizo Sato
- a Department of Legal Medicine , Showa University School of Medicine , Tokyo , Japan
| |
Collapse
|
11
|
Abstract
Methamphetamine is a highly potent and addictive drug that is abused in the United States and around the world. The drug is inexpensive and easily manufactured from simple chemicals such as pseudoephedrine. These features, coupled with its long half-life and highly addictive nature, contribute to the increasing problem of illicit methamphetamine use. Abuse of this agent has both acute and chronic serious health consequences. Policy makers and public health officials must continue to develop programs that educate the public and limit the abuse associated with methamphetamine.
Collapse
Affiliation(s)
- Frank Romanelli
- University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
12
|
He F, Lidow IA, Lidow MS. Inhalational model of cocaine exposure in mice: neuroteratological effects. Neurotoxicol Teratol 2006; 28:181-97. [PMID: 16414242 DOI: 10.1016/j.ntt.2005.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 11/26/2005] [Indexed: 01/23/2023]
Abstract
We developed a novel inhalation-based mouse model of prenatal cocaine exposure. This model approximates cocaine abuse via smoking, the preferred route of cocaine administration by heavy drug users. The model is also characterized by (i) absence of procedural stress from drug administration, (ii) long-term drug exposure starting weeks before pregnancy and continuing throughout the entire gestation, and (iii) self-administration of cocaine in multi-hour daily sessions reminiscent of drug binges, which allows animals to set up the levels of their own drug consumption. The offspring of female mice inhaling cocaine in our model displayed no gross alterations in their cortical cytoarchitecture. These offspring, however, showed significant impairments in sustained attention and spatial working memory. We hope that the introduction of the present model will lead to a significant increase in our understanding of outcomes of prenatal cocaine exposure.
Collapse
Affiliation(s)
- Fang He
- Department of Biomedical Sciences and Program of Neuroscience, University of Maryland, Baltimore, 5-A-12, HHH, 666 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | |
Collapse
|
13
|
Worth H, Rawstorne P. Crystallizing the HIV epidemic: methamphetamine, unsafe sex, and gay diseases of the will. ARCHIVES OF SEXUAL BEHAVIOR 2005; 34:483-6. [PMID: 16211470 DOI: 10.1007/s10508-005-6274-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|