1
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
2
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
3
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
4
|
Thangavel G, Hofstatter PG, Mercier R, Marques A. Tracing the evolution of the plant meiotic molecular machinery. PLANT REPRODUCTION 2023; 36:73-95. [PMID: 36646915 PMCID: PMC9957857 DOI: 10.1007/s00497-022-00456-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Meiosis is a highly conserved specialised cell division in sexual life cycles of eukaryotes, forming the base of gene reshuffling, biological diversity and evolution. Understanding meiotic machinery across different plant lineages is inevitable to understand the lineage-specific evolution of meiosis. Functional and cytogenetic studies of meiotic proteins from all plant lineage representatives are nearly impossible. So, we took advantage of the genomics revolution to search for core meiotic proteins in accumulating plant genomes by the highly sensitive homology search approaches, PSI-BLAST, HMMER and CLANS. We could find that most of the meiotic proteins are conserved in most of the lineages. Exceptionally, Arabidopsis thaliana ASY4, PHS1, PRD2, PRD3 orthologs were mostly not detected in some distant algal lineages suggesting their minimal conservation. Remarkably, an ancestral duplication of SPO11 to all eukaryotes could be confirmed. Loss of SPO11-1 in Chlorophyta and Charophyta is likely to have occurred, suggesting that SPO11-1 and SPO11-2 heterodimerisation may be a unique feature in land plants of Viridiplantae. The possible origin of the meiotic proteins described only in plants till now, DFO and HEIP1, could be traced and seems to occur in the ancestor of vascular plants and Streptophyta, respectively. Our comprehensive approach is an attempt to provide insights about meiotic core proteins and thus the conservation of meiotic pathways across plant kingdom. We hope that this will serve the meiotic community a basis for further characterisation of interesting candidates in future.
Collapse
Affiliation(s)
- Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | | | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
5
|
Xu Z, Zhang J, Wang X, Essemine J, Jin J, Qu M, Xiang Y, Chen W. Cold-induced inhibition of photosynthesis-related genes integrated by a TOP6 complex in rice mesophyll cells. Nucleic Acids Res 2023; 51:1823-1842. [PMID: 36660855 PMCID: PMC9976896 DOI: 10.1093/nar/gkac1275] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/21/2023] Open
Abstract
Photosynthesis is the most temperature-sensitive process in the plant kingdom, but how the photosynthetic pathway responds during low-temperature exposure remains unclear. Herein, cold stress (4°C) induced widespread damage in the form DNA double-stranded breaks (DSBs) in the mesophyll cells of rice (Oryza sativa), subsequently causing a global inhibition of photosynthetic carbon metabolism (PCM) gene expression. Topoisomerase genes TOP6A3 and TOP6B were induced at 4°C and their encoded proteins formed a complex in the nucleus. TOP6A3 directly interacted with KU70 to inhibit its binding to cold-induced DSBs, which was facilitated by TOP6B, finally blocking the loading of LIG4, a component of the classic non-homologous end joining (c-NHEJ) pathway. The repression of c-NHEJ repair imposed by cold extended DSB damage signaling, thus prolonging the inhibition of photosynthesis in leaves. Furthermore, the TOP6 complex negatively regulated 13 crucial PCM genes by directly binding to their proximal promoter regions. Phenotypically, TOP6A3 overexpression exacerbated the γ-irradiation-triggered suppression of PCM genes and led to the hypersensitivity of photosynthesis parameters to cold stress, dependent on the DSB signal transducer ATM. Globally, the TOP6 complex acts as a signal integrator to control PCM gene expression and synchronize cold-induced photosynthesis inhibition, which modulates carbon assimilation rates immediately in response to changes in ambient temperature.
Collapse
Affiliation(s)
- Zhan Xu
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd 17-19, Haizhu District, Guangzhou 510000, China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics, Yangzhou University, Yangzhou 225009, China
| | - Xu Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jemaa Essemine
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Jin
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Weixiong Chen
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd 17-19, Haizhu District, Guangzhou 510000, China
| |
Collapse
|
6
|
Hyde L, Osman K, Winfield M, Sanchez‐Moran E, Higgins JD, Henderson IR, Sparks C, Franklin FCH, Edwards KJ. Identification, characterization, and rescue of CRISPR/Cas9 generated wheat SPO11-1 mutants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:405-418. [PMID: 36373224 PMCID: PMC9884015 DOI: 10.1111/pbi.13961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.
Collapse
Affiliation(s)
- Lucy Hyde
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | - Kim Osman
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Mark Winfield
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | | | - James D. Higgins
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | | | - Keith J. Edwards
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| |
Collapse
|
7
|
Singh BN, Achary VMM, Venkatapuram AK, Parmar H, Karippadakam S, Sopory SK, Reddy MK. Expression and functional analysis of various structural domains of tobacco topoisomerase II: To understand the mechanistic insights of plant type II topoisomerases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:302-314. [PMID: 36442361 DOI: 10.1016/j.plaphy.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In contrast to bacterial, yeast and animal systems, topoisomerases (topo) from plants have not been well studied. In this report, we generated four truncated topoisomerase II (Topo II) cDNA fragments encoding different functional domains of Nicotiana tabacum topo II (NtTopoII). Each of these recombinant polypeptides was expressed alone or in combination in temperature-sensitive topoisomerase II yeast mutants. Recombinant NtTopoII with truncated polypeptides fails to target the yeast nuclei and does not rescue the temperature-sensitive phenotype. In contrast complementation was achieved with the full-length NtTopoII, which localized to the yeast nucleus. These observations suggested the presence of a potent nuclear localization signal (NLS) in the extreme C-terminal 314 amino acid residues of NtTopoII that functioned effectively in the heterologous yeast system. Biochemical characterization of purified recombinant full-length and the partial NtTopoII polypeptides revealed that the ATP-binding and hydrolysis region of NtTopoIIwas located at 413 amino acid N-terminal region and this ATPase domain is functional both when it is expressed as a separate polypeptide or as part of the holoenzyme. The present findings also revealed that all NtTopoII truncated polypeptides were detrimental for in vitro supercoiled DNA relaxation and/or DNA nicking and ligation activity. Further, we discuss the possible disruption of coordinated macromolecular interface movements and the dimer interactions in truncated NtTopoII that are required for functional topoisomerase activity.
Collapse
Affiliation(s)
- Badri Nath Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Ajay Kumar Venkatapuram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Hemangini Parmar
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sangeetha Karippadakam
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sudhir Kumar Sopory
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| |
Collapse
|
8
|
Brinkmeier J, Coelho S, de Massy B, Bourbon HM. Evolution and Diversity of the TopoVI and TopoVI-like Subunits With Extensive Divergence of the TOPOVIBL subunit. Mol Biol Evol 2022; 39:msac227. [PMID: 36256608 PMCID: PMC9665070 DOI: 10.1093/molbev/msac227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type II DNA topoisomerases regulate topology by double-stranded DNA cleavage and ligation. The TopoVI family of DNA topoisomerase, first identified and biochemically characterized in Archaea, represents, with TopoVIII and mini-A, the type IIB family. TopoVI has several intriguing features in terms of function and evolution. TopoVI has been identified in some eukaryotes, and a global view is lacking to understand its evolutionary pattern. In addition, in eukaryotes, the two TopoVI subunits (TopoVIA and TopoVIB) have been duplicated and have evolved to give rise to Spo11 and TopoVIBL, forming TopoVI-like (TopoVIL), a complex essential for generating DNA breaks that initiate homologous recombination during meiosis. TopoVIL is essential for sexual reproduction. How the TopoVI subunits have evolved to ensure this meiotic function is unclear. Here, we investigated the phylogenetic conservation of TopoVI and TopoVIL. We demonstrate that BIN4 and RHL1, potentially interacting with TopoVIB, have co-evolved with TopoVI. Based on model structures, this observation supports the hypothesis for a role of TopoVI in decatenation of replicated chromatids and predicts that in eukaryotes the TopoVI catalytic complex includes BIN4 and RHL1. For TopoVIL, the phylogenetic analysis of Spo11, which is highly conserved among Eukarya, highlighted a eukaryal-specific N-terminal domain that may be important for its regulation. Conversely, TopoVIBL was poorly conserved, giving rise to ATP hydrolysis-mutated or -truncated protein variants, or was undetected in some species. This remarkable plasticity of TopoVIBL provides important information for the activity and function of TopoVIL during meiosis.
Collapse
Affiliation(s)
- Julia Brinkmeier
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier 34396, France
| | - Susana Coelho
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier 34396, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse 31400, France
| |
Collapse
|
9
|
Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading. Proc Natl Acad Sci U S A 2022; 119:e2001290119. [PMID: 35759655 PMCID: PMC9271158 DOI: 10.1073/pnas.2001290119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.
Collapse
|
10
|
A tale of topoisomerases and the knotty genetic material in the backdrop of Plasmodium biology. Biosci Rep 2022; 42:231351. [PMID: 35699968 PMCID: PMC9261774 DOI: 10.1042/bsr20212847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The untangling or overwinding of genetic material is an inevitable part of DNA
replication, repair, recombination, and transcription. Topoisomerases belong to
a conserved enzyme family that amends DNA topology during various processes of
DNA metabolism. To relax the genetic material, topoisomerases transiently break
the phosphodiester bond on one or both DNA strands and remain associated with
the cleavage site by forming a covalent enzyme–DNA intermediate. This
releases torsional stress and allows the broken DNA to be re-ligated by the
enzyme. The biological function of topoisomerases ranges from the separation of
sister chromatids following DNA replication to the aiding of chromosome
condensation and segregation during mitosis. Topoisomerases are also actively
involved in meiotic recombination. The unicellular apicomplexan parasite,
Plasmodium falciparum, harbors different topoisomerase
subtypes, some of which have substantially different sequences and functions
from their human counterparts. This review highlights the biological function of
each identified Plasmodium topoisomerase along with a
comparative analysis of their orthologs in human or other model organisms. There
is also a focus on recent advancements towards the development of topoisomerase
chemical inhibitors, underscoring the druggability of unique topoisomerase
subunits that are absent in humans. Plasmodium harbors three
distinct genomes in the nucleus, apicoplast, and mitochondria, respectively, and
undergoes non-canonical cell division during the schizont stage of development.
This review emphasizes the specific developmental stages of
Plasmodium on which future topoisomerase research should
focus.
Collapse
|
11
|
McKie SJ, Desai P, Seol Y, Allen AM, Maxwell A, Neuman KC. Topoisomerase VI is a chirally-selective, preferential DNA decatenase. eLife 2022; 11:67021. [PMID: 35076393 PMCID: PMC8837201 DOI: 10.7554/elife.67021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.
Collapse
Affiliation(s)
- Shannon J McKie
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Parth Desai
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Adam Mb Allen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi IE, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. PLANT PHYSIOLOGY 2021; 185:1783-1797. [PMID: 33793950 PMCID: PMC8133540 DOI: 10.1093/plphys/kiab012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination (MR) drives novel combinations of alleles and contributes to genomic diversity in eukaryotes. In this study, we showed that heat stress (36°C-38°C) over the fertile threshold fully abolished crossover formation in Arabidopsis (Arabidopsis thaliana). Cytological and genetic studies in wild-type plants and syn1 and rad51 mutants suggested that heat stress reduces generation of SPO11-dependent double-strand breaks (DSBs). In support, the abundance of recombinase DMC1, which is required for MR-specific DSB repair, was significantly reduced under heat stress. In addition, high temperatures induced disassembly and/or instability of the ASY4- but not the SYN1-mediated chromosome axis. At the same time, the ASY1-associated lateral element of the synaptonemal complex (SC) was partially affected, while the ZYP1-dependent central element of SC was disrupted, indicating that heat stress impairs SC formation. Moreover, expression of genes involved in DSB formation; e.g. SPO11-1, PRD1, 2, and 3 was not impacted; however, recombinase RAD51 and chromosome axis factors ASY3 and ASY4 were significantly downregulated under heat stress. Taken together, these findings revealed that heat stress inhibits MR via compromised DSB formation and homolog synapsis, which are possible downstream effects of the impacted chromosome axis. Our study thus provides evidence shedding light on how increasing environmental temperature influences MR in Arabidopsis.
Collapse
Affiliation(s)
- Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Erdai Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhihua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Minghui Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
13
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
14
|
Mazeed M, Singh R, Kumar P, Roy A, Raman B, Kruparani SP, Sankaranarayanan R. Recruitment of archaeal DTD is a key event toward the emergence of land plants. SCIENCE ADVANCES 2021; 7:7/6/eabe8890. [PMID: 33536220 PMCID: PMC7857688 DOI: 10.1126/sciadv.abe8890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 06/09/2023]
Abstract
Streptophyte algae emerged as a land plant with adaptations that eventually led to terrestrialization. Land plants encounter a range of biotic and abiotic stresses that elicit anaerobic stress responses. Here, we show that acetaldehyde, a toxic metabolite of anaerobic stress, targets and generates ethyl adducts on aminoacyl-tRNA, a central component of the translation machinery. However, elongation factor thermo unstable (EF-Tu) safeguards l-aminoacyl-tRNA, but not d-aminoacyl-tRNA, from being modified by acetaldehyde. We identified a unique activity of archaeal-derived chiral proofreading module, d-aminoacyl-tRNA deacylase 2 (DTD2), that removes N-ethyl adducts formed on d-aminoacyl-tRNAs (NEDATs). Thus, the study provides the molecular basis of ethanol and acetaldehyde hypersensitivity in DTD2 knockout plants. We uncovered an important gene transfer event from methanogenic archaea to the ancestor of land plants. While missing in other algal lineages, DTD2 is conserved from streptophyte algae to land plants, suggesting its role toward the emergence and evolution of land plants.
Collapse
Affiliation(s)
- Mohd Mazeed
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Raghvendra Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Pradeep Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad 500007, India
| | - Ankit Roy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Bakthisaran Raman
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
15
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
16
|
Da Ines O, Michard R, Fayos I, Bastianelli G, Nicolas A, Guiderdoni E, White C, Sourdille P. Bread wheat TaSPO11-1 exhibits evolutionarily conserved function in meiotic recombination across distant plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2052-2068. [PMID: 32559326 DOI: 10.1111/tpj.14882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/29/2020] [Indexed: 05/24/2023]
Abstract
The manipulation of meiotic recombination in crops is essential to develop new plant varieties rapidly, helping to produce more cultivars in a sustainable manner. One option is to control the formation and repair of the meiosis-specific DNA double-strand breaks (DSBs) that initiate recombination between the homologous chromosomes and ultimately lead to crossovers. These DSBs are introduced by the evolutionarily conserved topoisomerase-like protein SPO11 and associated proteins. Here, we characterized the homoeologous copies of the SPO11-1 protein in hexaploid bread wheat (Triticum aestivum). The genome contains three SPO11-1 gene copies that exhibit 93-95% identity at the nucleotide level, and clearly the A and D copies originated from the diploid ancestors Triticum urartu and Aegilops tauschii, respectively. Furthermore, phylogenetic analysis of 105 plant genomes revealed a clear partitioning between monocots and dicots, with the seven main motifs being almost fully conserved, even between clades. The functional similarity of the proteins among monocots was confirmed through complementation analysis of the Oryza sativa (rice) spo11-1 mutant by the wheat TaSPO11-1-5D coding sequence. Also, remarkably, although the wheat and Arabidopsis SPO11-1 proteins share only 55% identity and the partner proteins also differ, the TaSPO11-1-5D cDNA significantly restored the fertility of the Arabidopsis spo11-1 mutant, indicating a robust functional conservation of the SPO11-1 protein activity across distant plants. These successful heterologous complementation assays, using both Arabidopsis and rice hosts, are good surrogates to validate the functionality of candidate genes and cDNA, as well as variant constructs, when the transformation and mutant production in wheat is much longer and more tedious.
Collapse
Affiliation(s)
- Olivier Da Ines
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, F-63000, France
| | - Robin Michard
- Université Clermont-Auvergne (UCA), INRAE, UMR1095 - Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, 63000, France
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
| | - Ian Fayos
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
- UMR AGAP, CIRAD, Montpellier Cedex 5, 34398, France
- Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, 34398, France
| | | | - Alain Nicolas
- Meiogenix, 27 rue du Chemin Vert, Paris, 75011, France
- Institut Curie, Centre de recherche, CNRS UMR 3244, PSL University, 26 rue d'Ulm, Paris Cedex 05, 75248, France
| | - Emmanuel Guiderdoni
- UMR AGAP, CIRAD, Montpellier Cedex 5, 34398, France
- Université de Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, 34398, France
| | - Charles White
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, F-63000, France
| | - Pierre Sourdille
- Université Clermont-Auvergne (UCA), INRAE, UMR1095 - Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, 63000, France
| |
Collapse
|
17
|
Benyahya F, Nadaud I, Da Ines O, Rimbert H, White C, Sourdille P. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:30-43. [PMID: 32603485 DOI: 10.1111/tpj.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination is initiated by formation of DNA double-strand breaks (DSBs). This involves a protein complex that includes in plants the two similar proteins, SPO11-1 and SPO11-2. We analysed the sequences of SPO11-2 in hexaploid bread wheat (Triticum aestivum), as well as in its diploid and tetraploid progenitors. We investigated its role during meiosis using single, double and triple mutants. The three homoeologous SPO11-2 copies of hexaploid wheat exhibit high nucleotide and amino acid similarities with those of the diploids, tetraploids and Arabidopsis. Interestingly, however, two nucleotides deleted in exon-2 of the A copy lead to a premature stop codon and suggest that it encodes a non-functional protein. Remarkably, the mutation was absent from the diploid A-relative Triticum urartu, but present in the tetraploid Triticum dicoccoides and in different wheat cultivars indicating that the mutation occurred after the first polyploidy event and has since been conserved. We further show that triple mutants with all three copies (A, B, D) inactivated are sterile. Cytological analyses of these mutants show synapsis defects, accompanied by severe reductions in bivalent formation and numbers of DMC1 foci, thus confirming the essential role of TaSPO11-2 in meiotic recombination in wheat. In accordance with its 2-nucleotide deletion in exon-2, double mutants for which only the A copy remained are also sterile. Notwithstanding, some DMC1 foci remain visible in this mutant, suggesting a residual activity of the A copy, albeit not sufficient to restore fertility.
Collapse
Affiliation(s)
- Fatiha Benyahya
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Isabelle Nadaud
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293 - Université Clermont Auvergne - INSERM U1103, Clermont-Ferrand, 63001, France
| | - Hélène Rimbert
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| | - Charles White
- Génétique, Reproduction et Développement, UMR CNRS 6293 - Université Clermont Auvergne - INSERM U1103, Clermont-Ferrand, 63001, France
| | - Pierre Sourdille
- Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France
| |
Collapse
|
18
|
Sexual reproduction potential implied by functional analysis of SPO11 in Phaeodactylum tricornutum. Gene 2020; 757:144929. [PMID: 32622990 DOI: 10.1016/j.gene.2020.144929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023]
Abstract
Phaeodactylum tricornutum is a model microalgae that is widely used to study diatom physiology and ecology. Since the meiotic process and sexual cycle have never been observed directly, P. tricornutum has been considered to be an asexual species. However, phylogenetic analysis of the P. tricornutum genome has revealed a series of meiosis-specific gene homologues in this species. We identified two copies of differently transcribed SPO11 homologs that contain the conserved motifs of Winged-helix and Toprim domains. The homolog PtSPO11-3 interacts with TopoVIB in yeast two-hybrid analysis, whereas the homolog PtSPO11-2 could rescue the sporulation defect of a Spo11 yeast mutant strain. PtSPO11-2 was also found to be significantly up-regulated at low temperatures in P. tricornutum and its key catalytic residue was important to the homolog's function in sporulation. The results herein provide positive clue that meiosis and sexual reproduction could exist in this diatom.
Collapse
|
19
|
Wei Z, Shi X, Wei F, Fan Z, Mei L, Tian B, Shi Y, Cao G, Shi G. The cotton endocycle-involved protein SPO11-3 functions in salt stress via integrating leaf stomatal response, ROS scavenging and root growth. PHYSIOLOGIA PLANTARUM 2019; 167:127-141. [PMID: 30426499 DOI: 10.1111/ppl.12875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The SPORULATION 11 (SPO11) proteins are among eukaryotic the topoisomerase VIA (Topo VIA) homologs involved in modulating various important biological processes, such as growth, development and stress response via endoreduplication in plants, but the underlying mechanism response to stress remains largely unknown under salt treatment. Here, we attempted to characterize a homolog of TOP VIA in upland cotton (Gossypium hirsutum L.), designated as GhSPO11-3. The silencing of GhSPO11-3 in cotton plants resulted in a dwarf phenotype with a failure of cell endoreduplication and a phase shift in the ploidy levels. The GhSPO11-3-silenced plants also showed substantial changes including accumulated malondialdehyde, significantly reduced chlorophyll and proline contents and decreased antioxidative enzyme activity after salt treatment. In addition, transgenic Arabidopsis lines overexpressing GhSPO11-3 accelerated both leaf and root growth with cell expansion and endopolyploidy. Both leaf stomatal density and aperture were markedly decreased, and the transgenic Arabidopsis lines were more tolerant with expression of stress-responsive genes under salinity stress. Furthermore, consistent with the reduced reactive oxygen species (ROS), the expression of ROS scavenging-related genes was largely reinforced, and antioxidant enzyme activities were accordingly significantly enhanced in transgenic Arabidopsis lines under salt stress. In general, these results indicated that GhSPO11-3 likely respond to salt stress by positively regulating root growth, stomatal response, ROS production and the expression of stress-related genes to cope with adverse conditions in plants.
Collapse
Affiliation(s)
- Zhenzhen Wei
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinjie Shi
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fang Wei
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhuxuan Fan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Liqing Mei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Baoming Tian
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinghui Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gangqiang Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gongyao Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
20
|
Tian Y, Gu H, Fan Z, Shi G, Yuan J, Wei F, Yang Y, Tian B, Cao G, Huang J. Role of a cotton endoreduplication-related gene, GaTOP6B, in response to drought stress. PLANTA 2019; 249:1119-1132. [PMID: 30552583 DOI: 10.1007/s00425-018-3067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 05/24/2023]
Abstract
Cotton GaTOP6B is involved in cellular endoreduplication and a positive response to drought stress via promoting plant leaf and root growth. Drought is deemed as one of adverse conditions that could cause substantial reductions in crop yields worldwide. Since cotton exhibits a moderate-tolerant phenotype under water-deficit conditions, the plant could therefore be used to characterize potential new genes regulating drought tolerance in crop plants. In this work, GaTOP6B, encoding DNA topoisomerase VI subunit B, was identified in Asian cotton (Gossypium arboreum). Virus-induced gene silencing (VIGS) and overexpression (OE) were used to investigate the biological function of GaTOP6B in G. arboreum and Arabidopsis thaliana under drought stress. The GaTOP6B-silencing plants showed a reduced ploidy level, and displayed a compromised tolerance phenotype including lowered relative water content (RWC), decreased proline content and antioxidative enzyme activity, and an increased malondialdehyde (MDA) content under drought stress. GaTOP6B-overexpressing Arabidopsis lines, however, had increased ploidy levels, and were more tolerant to drought treatment, associated with improved RWC maintenance, higher proline accumulation, and reduced stomatal aperture under drought stress. Transcriptome analysis showed that genes involved in the processes like cell cycle, transcription and signal transduction, were substantially up-regulated in GaTOP6B-overexpressing Arabidopsis, promoting plant growth and development. More specifically, under drought stress, the genes involved in the biosynthesis of secondary metabolites such as phenylpropanoid, starch and sucrose were selectively enhanced to improve tolerance in plants. Taken together, the results demonstrated that GaTOP6B could coordinately regulate plant leaf and root growth via cellular endoreduplication, and positively respond to drought stress. Thus, GaTOP6B could be a competent candidate gene for improvement of drought tolerance in crop species.
Collapse
Affiliation(s)
- Yanfei Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huihui Gu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhuxuan Fan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yan Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinyong Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
21
|
|
22
|
Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant Meiotic Prophase I Leads to Genic Male Sterility in the Novel TE5A Mutant of Brassica napus. Sci Rep 2016; 6:33955. [PMID: 27670217 PMCID: PMC5037387 DOI: 10.1038/srep33955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Genic male sterility (GMS) has already been extensively utilized for hybrid rapeseed production. TE5A is a novel thermo-sensitive dominant GMS line in Brassica napus, however, its mechanisms of GMS remain largely unclear. Histological and Transmission electron microscopy (TEM) analyses of anthers showed that the male gamete development of TE5A was arrested at meiosis prophase I. EdU uptake of S-phase meiocytes revealed that the TE5A mutant could accomplish DNA replication, however, chromosomal and fluorescence in situ hybridization (FISH) analyses of TE5A showed that homologous chromosomes could not pair, synapse, condense and form bivalents. We then analyzed the transcriptome differences between young floral buds of sterile plants and its near-isogenic fertile plants through RNA-Seq. A total of 3,841 differentially expressed genes (DEGs) were obtained, some of which were associated with homologous chromosome behavior and cell cycle control during meiosis. Dynamic expression changes of selected candidate DEGs were then analyzed at different anther developmental stages. The present study not only demonstrated that the TE5A mutant had defects in meiotic prophase I via detailed cytological analysis, but also provided a global insight into GMS-associated DEGs and elucidated the mechanisms of GMS in TE5A through RNA-Seq.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Shasha Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yunjing Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Li Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
23
|
Robert T, Vrielynck N, Mézard C, de Massy B, Grelon M. A new light on the meiotic DSB catalytic complex. Semin Cell Dev Biol 2016; 54:165-76. [DOI: 10.1016/j.semcdb.2016.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
|
24
|
Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mezard C, Mayer C, Grelon M. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 2016; 351:939-43. [DOI: 10.1126/science.aad5196] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, Sanges R, Vyverman W, Montresor M, Ferrante MI. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics 2015; 16:930. [PMID: 26572248 PMCID: PMC4647503 DOI: 10.1186/s12864-015-1983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. RESULTS The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. CONCLUSIONS Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.
Collapse
Affiliation(s)
- Shrikant Patil
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Sara Moeys
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Peter von Dassow
- Facultad de Ciencias Biológicas, Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Chile, Santiago, Chile. .,UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France.
| | - Marie J J Huysman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Daniel Mapleson
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | | |
Collapse
|
26
|
Wölk A, Winterfeld G, Röser M. Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics ofHelictotrichon(Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. SYST BIODIVERS 2015. [DOI: 10.1080/14772000.2015.1023867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Raymann K, Forterre P, Brochier-Armanet C, Gribaldo S. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea. Genome Biol Evol 2014; 6:192-212. [PMID: 24398374 PMCID: PMC3914693 DOI: 10.1093/gbe/evu004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The archaeal machinery responsible for DNA replication is largely homologous to that of eukaryotes and is clearly distinct from its bacterial counterpart. Moreover, it shows high diversity in the various archaeal lineages, including different sets of components, heterogeneous taxonomic distribution, and a large number of additional copies that are sometimes highly divergent. This has made the evolutionary history of this cellular system particularly challenging to dissect. Here, we have carried out an exhaustive identification of homologs of all major replication components in over 140 complete archaeal genomes. Phylogenomic analysis allowed assigning them to either a conserved and probably essential core of replication components that were mainly vertically inherited, or to a variable and highly divergent shell of extra copies that have likely arisen from integrative elements. This suggests that replication proteins are frequently exchanged between extrachromosomal elements and cellular genomes. Our study allowed clarifying the history that shaped this key cellular process (ancestral components, horizontal gene transfers, and gene losses), providing important evolutionary and functional information. Finally, our precise identification of core components permitted to show that the phylogenetic signal carried by DNA replication is highly consistent with that harbored by two other key informational machineries (translation and transcription), strengthening the existence of a robust organismal tree for the Archaea.
Collapse
Affiliation(s)
- Kasie Raymann
- Département de Microbiologie, Institut Pasteur, Unité Biologie Moléculaire du Gene chez les Extrêmophiles, Paris, France
| | | | | | | |
Collapse
|
28
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
29
|
Yoon HJ, Hossain MS, Held M, Hou H, Kehl M, Tromas A, Sato S, Tabata S, Andersen SU, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:811-21. [PMID: 24661810 PMCID: PMC4282747 DOI: 10.1111/tpj.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 03/05/2014] [Indexed: 05/05/2023]
Abstract
A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Hwi Joong Yoon
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Marilyn Kehl
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Alexandre Tromas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Stig Uggerhøj Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
- *For correspondence (e-mail )
| |
Collapse
|
30
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
31
|
Blaner A, Schneider J, Röser M. Phylogenetic relationships in the grass family (Poaceae) based on the nuclear single copy locus topoisomerase 6 compared with chloroplast DNA. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.890137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Gilkerson J, Callis J. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology. PLANT SIGNALING & BEHAVIOR 2014; 9:e972207. [PMID: 25482814 PMCID: PMC4622002 DOI: 10.4161/psb.29850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many plant growth and developmental processes are modulated by the hormone auxin. Auxin-modulated proteolysis of Aux/IAAs, a family of transcriptional repressors, represents a major mode of auxin action. Auxin facilitates the interaction of Aux/IAAs with TIR1/AFB F-box proteins, promoting their ubiquitination by the SCF(TIR1/AFB) ubiquitin E3 ligase leading to subsequent degradation by the 26S proteasome. To identify new genes regulating Aux/IAA proteolysis in Arabidopsis thaliana, we took a genetic approach, identifying individuals with altered degradation of an IAA1-luciferase fusion protein (IAA1-LUC). A mutant with 2-fold slower IAA1-LUC degradation rate compared with wild-type was isolated. Positional cloning identified the mutant as an allele of TOPOISOMERASE6B, named top6b-7. TOP6B encodes a subunit of a plant and archea-specific enzyme regulating endoreduplication, DNA damage repair and transcription in plants. T-DNA insertion alleles (top6b-8 and top6b-9) were also analyzed. top6b-7 seedlings are less sensitive to exogenous auxin than wild-type siblings in primary root growth assays, and experiments with DR5:GUS. Additionally, top6b-7 seedlings have a 40% reduction in the amount of endogenous IAA. These data suggest that increased IAA1-LUC half-life in top6b-7 probably results from a combination of both lower endogenous IAA levels and reduced sensitivity to auxin.
Collapse
Affiliation(s)
- Jonathan Gilkerson
- Department of Molecular and Cellular Biology and Plant Biology Graduate Group; University of California; Davis, CA USA
- Current address: Plant Biology Laboratory; Howard Hughes Medical Institute; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Judy Callis
- Department of Molecular and Cellular Biology and Plant Biology Graduate Group; University of California; Davis, CA USA
- Correspondence to: Judy Callis;
| |
Collapse
|
33
|
Schrader A, Welter B, Hulskamp M, Hoecker U, Uhrig JF. MIDGET connects COP1-dependent development with endoreduplication in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:67-79. [PMID: 23573936 DOI: 10.1111/tpj.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/02/2013] [Accepted: 04/07/2013] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post-germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub-nuclear accumulation of COP1. The MID protein is not degraded in a COP1-dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1-dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1-dependent development with the regulation of endoreduplication.
Collapse
Affiliation(s)
- Andrea Schrader
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Bastian Welter
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Martin Hulskamp
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Ute Hoecker
- University of Cologne, Botanical Institute II, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Joachim F Uhrig
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| |
Collapse
|
34
|
Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis. Mol Genet Genomics 2013; 288:437-44. [PMID: 23801409 DOI: 10.1007/s00438-013-0761-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
Spo11 is considered responsible for initiation of meiotic recombination in higher organisms, but previous analysis using spo11 (RIP) mutants suggests that the his-3 region of Neurospora crassa experiences spo11-independent recombination. However, despite possessing several stop codons, it is conceivable that the mutants are not completely null. Also, since lack of spo11 interferes with chromosomal pairing and proper segregation at Meiosis I, spores can be partially diploid for a period after meiosis. Thus, it is possible that the recombination observed could be an abnormal event, occurring during the period of aneuploidy rather than during meiosis. To test the former hypothesis, we generated spo11 deletion homozygotes. Using crosses heteroallelic for his-3 mutations, we showed that His(+) progeny are generated in spo11 deletion homozygotes at a frequency at least as high as in wild type and, as in the spo11 (RIP) mutants, local crossing over is not reduced. To test the latter hypothesis, we utilised mutations in either end of a histone H1-GFP fusion gene, inserted between the recombination hotspot cog and his-3, in which GFP(+) spores arise as a result of recombination in a cross between the two GFP alleles. In a control cross homozygous for spo11 (+), the frequency at which GFP(+) spores arise is comparable to the frequency of His(+) spores and glowing nuclei first appear during prophase, prior to metaphase I, as expected for a product of meiotic recombination. Similarly in spo11 deletion homozygotes, GFP(+) spores arise at high frequency and glowing nuclei are first seen before metaphase, indicating that allelic recombination occurs during meiosis in the absence of spo11. We have therefore shown that spo11 is not essential for either his-3 allelic recombination or crossing over in the vicinity of his-3, and that spo11-independent allelic recombination is meiotic, indicating that there is a spo11-independent mechanism for initiation of recombination in Neurospora.
Collapse
|
35
|
Liu Y, Deng Y, Li G, Zhao J. Replication factor C1 (RFC1) is required for double-strand break repair during meiotic homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:154-165. [PMID: 22974522 DOI: 10.1111/tpj.12024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Replication factor C1 (RFC1), which is conserved in eukaryotes, is involved in DNA replication and checkpoint control. However, a RFC1 product participating in DNA repair at meiosis has not been reported in Arabidopsis. Here, we report functional characterization of AtRFC1 through analysis of the rfc1-2 mutant. The rfc1-2 mutant displayed normal vegetative growth but showed silique sterility because the male gametophyte was arrested at the uninucleus microspore stage and the female at the functional megaspore stage. Expression of AtRFC1 was concentrated in the reproductive organ primordia, meiocytes and developing gametes. Chromosome spreads showed that pairing and synapsis were normal, and the chromosomes were broken when desynapsis began at late prophase I, and chromosome fragments remained in the subsequent stages. For this reason, homologous chromosomes and sister chromatids segregated unequally, leading to pollen sterility. Immunolocalization revealed that the AtRFC1 protein localized to the chromosomes during zygotene and pachytene in wild-type but were absent in the spo11-1 mutant. The chromosome fragmentation of rfc1-2 was suppressed by spo11-1, indicating that AtRFC1 acted downstream of AtSPO11-1. The similar chromosome behavior of rad51 rfc1-2 and rad51 suggests that AtRFC1 may act with AtRAD51 in the same pathway. In summary, AtRFC1 is required for DNA double-strand break repair during meiotic homologous recombination of Arabidopsis.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
36
|
Brassac J, Jakob SS, Blattner FR. Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS One 2012; 7:e33808. [PMID: 22479447 PMCID: PMC3316500 DOI: 10.1371/journal.pone.0033808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.
Collapse
Affiliation(s)
| | | | - Frank R. Blattner
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Research (IPK), Gatersleben, Germany
| |
Collapse
|
37
|
Shingu Y, Tokai T, Agawa Y, Toyota K, Ahamed S, Kawagishi-Kobayashi M, Komatsu A, Mikawa T, Yamamoto MT, Wakasa K, Shibata T, Kusano K. The double-stranded break-forming activity of plant SPO11s and a novel rice SPO11 revealed by a Drosophila bioassay. BMC Mol Biol 2012; 13:1. [PMID: 22248237 PMCID: PMC3273433 DOI: 10.1186/1471-2199-13-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/16/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND SPO11 is a key protein for promoting meiotic recombination, by generating chromatin locus- and timing-specific DNA double-strand breaks (DSBs). The DSB activity of SPO11 was shown by genetic analyses, but whether SPO11 exerts DSB-forming activity by itself is still an unanswered question. DSB formation by SPO11 has not been detected by biochemical means, probably because of a lack of proper protein-folding, posttranslational modifications, and/or specific SPO11-interacting proteins required for this activity. In addition, plants have multiple SPO11-homologues. RESULTS To determine whether SPO11 can cleave DNA by itself, and to identify which plant SPO11 homologue cleaves DNA, we developed a Drosophila bioassay system that detects the DSB signals generated by a plant SPO11 homologue expressed ectopically. We cytologically and genetically demonstrated the DSB activities of Arabidopsis AtSPO11-1 and AtSPO11-2, which are required for meiosis, in the absence of other plant proteins. Using this bioassay, we further found that a novel SPO11-homologue, OsSPO11D, which has no counterpart in Arabidopsis, displays prominent DSB-forming activity. Quantitative analyses of the rice SPO11 transcripts revealed the specific increase in OsSPO11D mRNA in the anthers containing meiotic pollen mother cells. CONCLUSIONS The Drosophila bioassay system successfully demonstrated that some plant SPO11 orthologues have intrinsic DSB activities. Furthermore, we identified a novel SPO11 homologue, OsSPO11D, with robust DSB activity and a possible meiotic function.
Collapse
Affiliation(s)
- Yoshinori Shingu
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Tokai
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Yasuo Agawa
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Kentaro Toyota
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Selina Ahamed
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | | | - Akira Komatsu
- National Institute of Crop Science, 2-1-8 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tsutomu Mikawa
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masa-Toshi Yamamoto
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Kyo Wakasa
- Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kohji Kusano
- Center for Genetic Resource Education & Development, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| |
Collapse
|
38
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
An XJ, Deng ZY, Wang T. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One 2011; 6:e20327. [PMID: 21637817 PMCID: PMC3102714 DOI: 10.1371/journal.pone.0020327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/17/2022] Open
Abstract
DNA topoisomerase VI from Archaea, a heterotetrameric complex composed of two TopVIA and two TopVIB subunits, is involved in altering DNA topology during replication, transcription and chromosome segregation by catalyzing DNA strand transfer through transient double-strand breaks. The sequenced yeast and animal genomes encode only one homologue of the archaeal TopVIA subunit, namely Spo11, and no homologue of the archaeal TopVIB subunit. In yeast, Spo11 is essential for initiating meiotic recombination and this function appears conserved among other eukaryotes. In contrast to yeast and animals, studies in Arabidopsis and rice have identified three Spo11/TopVIA homologues and one TopVIB homologue in plants. Here, we further identified two novel Spo11/TopVIA homologues (named OsSpo11-4 and OsSpo11-5, respectively) that exist just in the monocot model plant Oryza sativa, indicating that at least five Spo11/TopVIA homologues are present in the rice genome. To reveal the biochemical function of the two novel Spo11/TopVIA homologues, we first examined the interactions among OsSpo11-1, OsSpo11-4, OsSpo11-5, and OsTopVIB by yeast two-hybrid assay. The results showed that OsSpo11-4 and OsTopVIB can self-interact strongly and among the 3 examined OsSpo11 proteins, only OsSpo11-4 interacted with OsTopVIB. Pull-down assay confirmed the interaction between OsSpo11-4 and OsTopVIB, which indicates that OsSpo11-4 may interact with OsTopVIB in vivo. Further in vitro enzymatic analysis revealed that among the above 4 proteins, only OsSpo11-4 exhibited double-strand DNA cleavage activity and its enzymatic activity appears dependent on Mg2+ and independent of OsTopVIB, despite its interaction with OsTopVIB. We further analyzed the biological function of OsSpo11-4 by RNA interference and found that down-regulated expression of OsSpo11-4 led to defects in male meiosis, indicating OsSpo11-4 is required for meiosis.
Collapse
Affiliation(s)
- Xiao Jing An
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
40
|
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH. Pathways to meiotic recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 190:523-44. [PMID: 21366595 DOI: 10.1111/j.1469-8137.2011.03665.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
41
|
Kan F, Davidson MK, Wahls WP. Meiotic recombination protein Rec12: functional conservation, crossover homeostasis and early crossover/non-crossover decision. Nucleic Acids Res 2010; 39:1460-72. [PMID: 21030440 PMCID: PMC3045620 DOI: 10.1093/nar/gkq993] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In fission yeast and other eukaryotes, Rec12 (Spo11) is thought to catalyze the formation of dsDNA breaks (DSBs) that initiate homologous recombination in meiosis. Rec12 is orthologous to the catalytic subunit of topoisomerase VI (Top6A). Guided by the crystal structure of Top6A, we engineered the rec12 locus to encode Rec12 proteins each with a single amino acid substitution in a conserved residue. Of 21 substitutions, 10 significantly reduced or abolished meiotic DSBs, gene conversion, crossover recombination and the faithful segregation of chromosomes. Critical residues map within the metal ion-binding pocket toprim (E179A, D229A, D231A), catalytic region 5Y-CAP (R94A, D95A, Y98F) and the DNA-binding interface (K201A, G202E, R209A, K242A). A subset of substitutions reduced DSBs but maintained crossovers, demonstrating crossover homeostasis. Furthermore, a strong separation of function mutation (R304A) suggests that the crossover/non-crossover decision is established early by a protein–protein interaction surface of Rec12. Fission yeast has multiple crossovers per bivalent, and chromosome segregation was robust above a threshold of about one crossover per bivalent, below which non-disjunction occurred. These results support structural and functional conservation among Rec12/Spo11/Top6A family members for the catalysis of DSBs, and they reveal how Rec12 regulates other features of meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Fengling Kan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
42
|
Shingu Y, Mikawa T, Onuma M, Hirayama T, Shibata T. A DNA-binding surface of SPO11-1, an Arabidopsis SPO11 orthologue required for normal meiosis. FEBS J 2010; 277:2360-74. [PMID: 20423461 DOI: 10.1111/j.1742-4658.2010.07651.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meiotic recombination is initiated by DNA double-stranded breaks introduced by the SPO11 protein. Despite a decade of research, the biochemical functions of SPO11 remain largely unknown, perhaps because of difficulties in studying the functionally active SPO11. Arabidopsis thaliana encodes three SPO11-related proteins, two of which (SPO11-1 and SPO11-2) are required for, and cooperate in, meiosis. We isolated soluble SPO11-1, fused with or free of a trigger factor-tag at its N terminus. The tag-free SPO11-1 needed to interact physically with soluble SPO11-1 to maintain its solubility, suggesting a multimeric active form including a solubilizing protein cofactor. An N-terminal fragment of PRD1, a SPO11-1-interacting protein required for normal meiosis, but not SPO11-2, forms a soluble complex with trigger factor-tagged SPO11-1, but the trigger factor-tag was required for the solubility. Formation of the complex is not sufficient to express endonuclease activity. Trigger factor-tagged SPO11-1 exhibited DNA-binding activities: Glu substitutions of the invariant Gly215 and Arg222 and of the nonconserved Arg223 and Arg226 in a conserved motif (G215E, R222E, R223E, R226E) reduced the DNA-binding ability in vitro, but substitutions of the conserved Arg130 and invariant Tyr103 (a residue in the putative endonuclease-active center) and of Arg residues outside conserved motifs by Glu or Phe (R130E, Y103F, R207E and R254E), did not. Tests for the ability of mutant spo11-1 proteins to complement the silique-defective phenotype of a spo11-1-homozygous mutant in vivo revealed that R222E and G215E induced serious deficiencies, while R130E caused a partial defect in silique formation. Thus, the Gly215, Arg222 and Arg223 residues of SPO11-1 form a DNA-binding surface that is functional in meiosis.
Collapse
Affiliation(s)
- Yoshinori Shingu
- Cellular & Molecular Biology Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | |
Collapse
|
43
|
Jakob SS, Blattner FR. Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol Phylogenet Evol 2009; 55:650-9. [PMID: 19850141 DOI: 10.1016/j.ympev.2009.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
Wall barley (Hordeum murinum) occurs with three subspecies, naturally distributed from southern Central Asia through the Mediterranean region to northwestern Europe, but now is an invasive weed in many parts of the world. Subspecies glaucum is diploid, while subspp. murinum and leporinum are tetraploids, the latter also occurring with a hexaploid cytotype. Earlier analyses were inconclusive regarding auto- or allopolyploid origins of subspp. murinum and leporinum. We analyzed the phylogeny of the taxon group using amplified fragment length polymorphisms (AFLP), sequences of cloned PCR products of the nuclear ribosomal DNA internal transcribed spacer region (ITS), a part of the nuclear single-copy gene topoisomerase 6 (Topo6) spanning two introns, and sequences of the chloroplast trnL-F region together with length variation at six chloroplast microsatellite loci, including multiple individuals of each subspecies and cytotype, covering the entire natural distribution area of the species. Phylogenetic analyses with all used markers differentiate diploid and polyploids. Sequences of both nuclear regions indicated that diploid subsp. glaucum was involved in tetraploid formation together with a now extinct species belonging to the same Hordeum genome group (Xu). Furthermore, AFLP and ITS analyses suggest that a third, though closely related extinct taxon contributed to hexaploid formation. No method was able to discern tetraploid subspp. murinum and leporinum, which we attribute to the young age of subsp. murinum. None of the used molecular markers revealed a strong geographic pattern of genetic variation that would allow comprehensive phylogeographic analysis, most probably due to the very effective seed dispersal of the taxa.
Collapse
Affiliation(s)
- Sabine S Jakob
- Leibniz Institute of Plant Genetics and Crop Research (IPK), D-06466 Gatersleben, Germany
| | | |
Collapse
|
44
|
De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Lainé-Choinard S, Pelletier G, Mercier R, Nogué F, Grelon M. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000654. [PMID: 19763177 PMCID: PMC2735182 DOI: 10.1371/journal.pgen.1000654] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.
Collapse
Affiliation(s)
- Arnaud De Muyt
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Lucie Pereira
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Daniel Vezon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Liudmila Chelysheva
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Ghislaine Gendrot
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Aurélie Chambon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Sandrine Lainé-Choinard
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Georges Pelletier
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Raphaël Mercier
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Fabien Nogué
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
| | - Mathilde Grelon
- INRA de Versailles, Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR-254, Versailles, France
- * E-mail:
| |
Collapse
|
45
|
Forterre P, Gadelle D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 2009; 37:679-92. [PMID: 19208647 PMCID: PMC2647321 DOI: 10.1093/nar/gkp032] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Topoisomerases are essential enzymes that solve topological problems arising from the double-helical structure of DNA. As a consequence, one should have naively expected to find homologous topoisomerases in all cellular organisms, dating back to their last common ancestor. However, as observed for other enzymes working with DNA, this is not the case. Phylogenomics analyses indicate that different sets of topoisomerases were present in the most recent common ancestors of each of the three cellular domains of life (some of them being common to two or three domains), whereas other topoisomerases families or subfamilies were acquired in a particular domain, or even a particular lineage, by horizontal gene transfers. Interestingly, two groups of viruses encode topoisomerases that are only distantly related to their cellular counterparts. To explain these observations, we suggest that topoisomerases originated in an ancestral virosphere, and that various subfamilies were later on transferred independently to different ancient cellular lineages. We also proposed that topoisomerases have played a critical role in the origin of modern genomes and in the emergence of the three cellular domains.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, Univ Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
46
|
Abstract
DNA topoisomerases are a diverse set of essential enzymes responsible for maintaining chromosomes in an appropriate topological state. Although they vary considerably in structure and mechanism, the partnership between topoisomerases and DNA has engendered commonalities in how these enzymes engage nucleic acid substrates and control DNA strand manipulations. All topoisomerases can harness the free energy stored in supercoiled DNA to drive their reactions; some further use the energy of ATP to alter the topology of DNA away from an enzyme-free equilibrium ground state. In the cell, topoisomerases regulate DNA supercoiling and unlink tangled nucleic acid strands to actively maintain chromosomes in a topological state commensurate with particular replicative and transcriptional needs. To carry out these reactions, topoisomerases rely on dynamic macromolecular contacts that alternate between associated and dissociated states throughout the catalytic cycle. In this review, we describe how structural and biochemical studies have furthered our understanding of DNA topoisomerases, with an emphasis on how these complex molecular machines use interfacial interactions to harness and constrain the energy required to manage DNA topology.
Collapse
|
47
|
Komakhin RA, Komakhina VV. Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae. Mol Biol 2008. [DOI: 10.1134/s0026893308030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jain M, Tyagi AK, Khurana JP. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants. PLANT CELL REPORTS 2008; 27:767-778. [PMID: 18071708 DOI: 10.1007/s00299-007-0491-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 05/25/2023]
Abstract
Plant productivity is greatly influenced by various environmental stresses, such as high salinity and drought. Earlier, we reported the isolation of topoisomerase 6 homologs from rice and showed that over expression of OsTOP6A3 and OsTOP6B confers abiotic stress tolerance in transgenic Arabidopsis plants. In this study, we have assessed the function of nuclear-localized topoisomerase 6 subunit A homolog, OsTOP6A1, in transgenic Arabidopsis plants. The over expression of OsTOP6A1 in transgenic Arabidopsis plants driven by cauliflower mosaic virus-35S promoter resulted in pleiotropic effects on plant growth and development. The transgenic Arabidopsis plants showed reduced sensitivity to stress hormone, abscisic acid (ABA), and tolerance to high salinity and dehydration at the seed germination; seedling and adult stages as reflected by the percentage of germination, fresh weight of seedlings and leaf senescence assay, respectively. Concomitantly, the expression of many stress-responsive genes was enhanced under various stress conditions in transgenic Arabidopsis plants. Moreover, microarray analysis revealed that the expression of a large number of genes involved in various processes of plant growth and development and stress responses was altered in transgenic plants. Although AtSPO11-1, the homolog of OsTOP6A1 in Arabidopsis, has been implicated in meiotic recombination; the present study demonstrates possible additional role of OsTOP6A1 and provides an effective tool for engineering crop plants for tolerance to different environmental stresses.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
49
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
50
|
A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene. EMBO J 2007; 26:5061-70. [PMID: 18007598 DOI: 10.1038/sj.emboj.7601913] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/17/2007] [Indexed: 12/21/2022] Open
Abstract
Obligatory homologous recombination (HR) is required for chiasma formation and chromosome segregation in meiosis I. Meiotic HR is initiated by DNA double-strand breaks (DSBs), generated by Spo11, a homologue of the archaebacterial topoisomerase subunit Top6A. In Saccharomyces cerevisiae, Rad50, Mre11 and Com1/Sae2 are essential to process an intermediate of the cleavage reaction consisting of Spo11 covalently linked to the 5' termini of DNA. While Rad50 and Mre11 also confer genome stability to vegetative cells and are well conserved in evolution, Com1/Sae2 was believed to be fungal-specific. Here, we identify COM1/SAE2 homologues in all eukaryotic kingdoms. Arabidopsis thaliana Com1/Sae2 mutants are sterile, accumulate AtSPO11-1 during meiotic prophase and fail to form AtRAd51 foci despite the presence of unrepaired DSBs. Furthermore, DNA fragmentation in AtCom1 is suppressed by eliminating AtSPO11-1. In addition, AtCOM1 is specifically required for mitomycin C resistance. Interestingly, we identified CtIP, an essential protein interacting with the DNA repair machinery, as the mammalian homologue of Com1/Sae2, with important implications for the molecular role of CtIP.
Collapse
|