1
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
2
|
Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme. Cell Rep 2019; 24:1916-1929.e5. [PMID: 30110646 DOI: 10.1016/j.celrep.2018.07.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
The clostridium-like ecto-ADP-ribosyltransferase ARTC1 is expressed in a highly restricted manner in skeletal muscle and heart tissue. Although ARTC1 is well studied, the identification of ARTC1 targets in vivo and subsequent characterization of ARTC1-regulated cellular processes on the proteome level have been challenging and only a few ARTC1-ADP-ribosylated targets are known. Applying our recently developed mass spectrometry-based workflow to C2C12 myotubes and to skeletal muscle and heart tissues from wild-type mice, we identify hundreds of ARTC1-ADP-ribosylated proteins whose modifications are absent in the ADP-ribosylome of ARTC1-deficient mice. These proteins are ADP-ribosylated on arginine residues and mainly located on the cell surface or in the extracellular space. They are associated with signal transduction, transmembrane transport, and muscle function. Validation of hemopexin (HPX) as a ARTC1-target protein confirmed the functional importance of ARTC1-mediated extracellular arginine ADP-ribosylation at the systems level.
Collapse
|
3
|
Di Girolamo M, Fabrizio G. Overview of the mammalian ADP-ribosyl-transferases clostridia toxin-like (ARTCs) family. Biochem Pharmacol 2019; 167:86-96. [PMID: 31283932 DOI: 10.1016/j.bcp.2019.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
Abstract
Mono-ADP-ribosylation is a reversible post-translational protein modification that modulates the function of proteins involved in different cellular processes, including signal transduction, protein transport, transcription, cell cycle regulation, DNA repair and apoptosis. In mammals, mono-ADP-ribosylation is mainly catalyzed by members of two different classes of enzymes: ARTCs and ARTDs. The human ARTC family is composed of four structurally related ecto-mono-ARTs, expressed at the cell surface or secreted into the extracellular compartment that are either active mono-ARTs (hARTC1, hARTC5) or inactive proteins (hARTC3, hARTC4). The human ARTD enzyme family consists of 17 multidomain proteins that can be divided on the basis of their catalytic activity into polymerases (ARTD1-6), mono-ART (ARTD7-17), and the inactive ARTD13. In recent years, ADP-ribosylation was intensively studied, and research was dominated by studies focusing on the role of this modification and its implication on various cellular processes. The aim of this review is to provide a general overview of the ARTC enzymes. In the following sections, we will report the mono-ADP-ribosylation reactions that are catalysed by the active ARTC enzymes, with a particular focus on hARTC1 that recently has been intensively studied with the discovery of new targets and functions.
Collapse
Affiliation(s)
- Maria Di Girolamo
- SoL&Pharma s.r.l. Biotechnology Research, Registered Office, Via Brasile 13, 66030 Mozzagrogna, CH, Italy.
| | - Gaia Fabrizio
- SoL&Pharma s.r.l. Biotechnology Research, Registered Office, Via Brasile 13, 66030 Mozzagrogna, CH, Italy
| |
Collapse
|
4
|
Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 2018; 53:64-82. [PMID: 29098880 DOI: 10.1080/10409238.2017.1394265] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.
Collapse
Affiliation(s)
- Kerryanne Crawford
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| | | | - Andreja Mikoč
- c Division of Molecular Biology , Ruđer Bošković Institute , Zagreb , Croatia
| | - Ivan Matic
- b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Ivan Ahel
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| |
Collapse
|
5
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
6
|
Fabrizio G, Di Paola S, Stilla A, Giannotta M, Ruggiero C, Menzel S, Koch-Nolte F, Sallese M, Di Girolamo M. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell Mol Life Sci 2015; 72:1209-25. [PMID: 25292337 PMCID: PMC11113179 DOI: 10.1007/s00018-014-1745-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022]
Abstract
Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the "macro domain" cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.
Collapse
Affiliation(s)
- Gaia Fabrizio
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Simone Di Paola
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Annalisa Stilla
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Monica Giannotta
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Unit of Vascular Biology, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Carmen Ruggiero
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Associated International Laboratory (LIA) NEOGENEX CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Michele Sallese
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Maria Di Girolamo
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| |
Collapse
|
7
|
Peri LE, Sanders KM, Mutafova-Yambolieva VN. Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRα-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil 2013; 25:e609-20. [PMID: 23809506 PMCID: PMC3735650 DOI: 10.1111/nmo.12174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/26/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Purinergic signaling provides regulation of colonic motility. Smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and platelet-derived growth factor receptor α-positive (PDGFRα(+) ) cells are electrically coupled and form a functional (SIP) syncytium that constitutes the receptive field for motor neurotransmitters in the tunica muscularis. Each cell type in the SIP syncytium has specialized functions in mediating motor neurotransmission. We compared gene transcripts for purinergic receptors and membrane-bound enzymes for purine degradation expressed by each cell type of the SIP syncytium. METHODS Fluorescence-activated cell sorting (FACS) was used to purify SMC, ICC, and PDGFRα(+) cells from mixed cell populations of colonic muscles dispersed from reporter strains of mice with constitutive expression of green fluorescent proteins. Differential expression of functional groups of genes related to purinergic signaling was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). KEY RESULTS We detected marked phenotypic differences among SMC, ICC, and PDGFRα(+) cells. Substantial numbers of genes of importance in purinergic neurotransmission were enriched in PDGFRα(+) cells in relation to SMC and ICC. Notably, genes related to mediating effects and extracellular biotransformation of enteric purinergic inhibitory neurotransmitters were strongly expressed by PDGFRα(+) cells. CONCLUSIONS & INFERENCES Our results demonstrate differential expression of genes for proteins involved in purinergic signaling in the SIP syncytium. These results may further clarify the specific functions of each cell type, identify novel biomarkers for postjunctional cells, and provide hypotheses for further studies to understand the physiological roles of cells of the SIP syncytium.
Collapse
Affiliation(s)
- L. E. Peri
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - K. M. Sanders
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | | |
Collapse
|
8
|
Scarpa ES, Fabrizio G, Di Girolamo M. A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J 2013; 280:3551-62. [PMID: 23590234 DOI: 10.1111/febs.12290] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
During the development, progression and dissemination of neoplastic lesions, cancer cells can hijack normal pathways and mechanisms. This includes the control of the function of cellular proteins through reversible post-translational modifications, such as ADP-ribosylation, phosphorylation, and acetylation. In the case of mono-ADP-ribosylation and poly-ADP-ribosylation, the addition of one or several units of ADP-ribose to target proteins occurs via two families of enzymes that can generate ADP-ribosylated proteins: the diphtheria toxin-like ADP-ribosyltransferase (ARTD) family, comprising 17 different proteins that are either poly-ADP-ribosyltransferases or mono-ADP-ribosyltransferases or inactive enzymes; and the clostridial toxin-like ADP-ribosyltransferase family, with four human members, two of which are active mono-ADP-ribosyltransferases, and two of which are enzymatically inactive. In line with a central role for poly-ADP-ribose polymerase 1 in response to DNA damage, specific inhibitors of this enzyme have been developed as anticancer therapeutics and evaluated in several clinical trials. Recently, in combination with the discovery of a large number of enzymes that can catalyse mono-ADP-ribosylation, the role of this modification has been linked to human diseases, such as inflammation, diabetes, neurodegeneration, and cancer, thus revealing the need for the development of specific ARTD inhibitors. This will provide a better understanding of the roles of these enzymes in human physiology and pathology, so that they can be targeted in the future to generate new and efficacious drugs. This review summarizes our present knowledge of the ARTD enzymes that are involved in mono-ADP-ribosylation reactions and that have roles in cancer biology. In particular, the well-documented role of macro-containing ARTD8 in lymphoma and the putative role of ARTD15 in cancer are discussed.
Collapse
Affiliation(s)
- Emanuele S Scarpa
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
9
|
Magre S, Rebourcet D, Ishaq M, Wargnier R, Debard C, Meugnier E, Vidal H, Cohen-Tannoudji J, Le Magueresse-Battistoni B. Gender differences in transcriptional signature of developing rat testes and ovaries following embryonic exposure to 2,3,7,8-TCDD. PLoS One 2012; 7:e40306. [PMID: 22808131 PMCID: PMC3392256 DOI: 10.1371/journal.pone.0040306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Dioxins are persistent organic pollutants interfering with endocrine systems and causing reproductive and developmental disorders. The objective of our project was to determine the impact of an in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on reproductive function of male and female offspring in the rat with a special emphasis on the immature period. We used a low dose of TCDD (unique exposure by oral gavage of 200 ng/kg at 15.5 days of gestation) in order to mirror a response to an environmental dose of TCDD not altering fertility of the progeny. We choose a global gene expression approach using Affymetrix microarray analysis, and testes of 5 days and ovaries of 14 days of age. Less than 1% of the expressed genes in gonads were altered following embryonic TCDD exposure; specifically, 113 genes in ovaries and 56 in testes with 7 genes common to both sex gonads. It included the repressor of the aryl hydrocarbon receptor (Ahrr), the chemokines Ccl5 and Cxcl4 previously shown to be regulated by dioxin in testis, Pgds2/Hpgds and 3 others uncharacterized. To validate and extend the microarray data we realized real-time PCR on gonads at various developmental periods of interest (from 3 to 25 days for ovaries, from 5 to the adult age for testes). Overall, our results evidenced that both sex gonads responded differently to TCDD exposure. For example, we observed induction of the canonic battery of TCDD-induced genes coding enzymes of the detoxifying machinery in ovaries aged of 3–14 days of age (except Cyp1a1 induced at 3–10 days) but not in testes of 5 days (except Ahrr). We also illustrated that inflammatory pathway is one pathway activated by TCDD in gonads. Finally, we identified several new genes targeted by TCDD including Fgf13 in testis and one gene, Ptgds2/Hpgds regulated in the two sex gonads.
Collapse
Affiliation(s)
- Solange Magre
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Diane Rebourcet
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Muhammad Ishaq
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Richard Wargnier
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Cyrille Debard
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Emmanuelle Meugnier
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Hubert Vidal
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Brigitte Le Magueresse-Battistoni
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
- * E-mail:
| |
Collapse
|
10
|
Stilla A, Di Paola S, Dani N, Krebs C, Arrizza A, Corda D, Haag F, Koch-Nolte F, Di Girolamo M. Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells. Eur J Cell Biol 2011; 90:665-77. [PMID: 21616557 DOI: 10.1016/j.ejcb.2011.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 11/26/2022] Open
Abstract
The mammalian mono-ADP-ribosyltransferases are a family of enzymes related to bacterial toxins that can catalyse both intracellular and extracellular mono-ADP-ribosylation of target proteins involved in different cellular processes, such as cell migration, signalling and inflammation. Here, we report the molecular cloning and functional characterisation of a novel glycosylphosphatidylinositol (GPI)-anchored mono-ADP-ribosyltransferase isoform from Chinese hamster ovary (CHO) cells (cARTC2.1) that has both NAD-glycohydrolase and arginine-specific ADP-ribosyltransferase activities. cARTC2.1 has the R-S-EXE active-site motif that is typical of arginine-specific ADP-ribosyltransferases, with Glu209 as the predicted catalytic amino acid. When over-expressed in CHO cells, the E209G single point mutant of cARTC2.1 cannot hydrolyse NAD(+), although it retains low arginine-specific ADP-ribosyltransferase activity. This ADP-ribosyltransferase activity was abolished only with an additional mutation in the R-S-EXE active-site motif, with both of the glutamate residues of the EKE sequence of cARTC2.1 mutated to glycine (E207/209G). These glutamate-mutated proteins localise to the plasma membrane, as does wild-type cARTC2.1. Thus, the partial or total loss of enzymatic activity of cARTC2.1 that arises from these mutations does not affect its cellular localisation. Importantly, an endogenous ADP-ribosyltransferase is indeed expressed and active in a subset of CHO cells, while a similar activity cannot be detected in ovarian cancer cells. With respect to this endogenous ecto-ART activity, we have identified two cell populations: ART-positive and ART-negative CHO cells. The subset of ART-positive cells, which represented 5% of the total cells, is tightly maintained in the CHO cell population.
Collapse
Affiliation(s)
- Annalisa Stilla
- Consorzio Mario Negri Sud, Via Nazionale, 8/A 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Laing S, Unger M, Koch-Nolte F, Haag F. ADP-ribosylation of arginine. Amino Acids 2010; 41:257-69. [PMID: 20652610 PMCID: PMC3102197 DOI: 10.1007/s00726-010-0676-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/24/2010] [Indexed: 12/16/2022]
Abstract
Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field.
Collapse
Affiliation(s)
- Sabrina Laing
- Campus Forschung, 2. OG Rm 02.0058, Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | | |
Collapse
|
12
|
Friedrich M, Böhlig L, Kirschner RD, Engeland K, Hauschildt S. Identification of two regulatory binding sites which confer myotube specific expression of the mono-ADP-ribosyltransferase ART1 gene. BMC Mol Biol 2008; 9:91. [PMID: 18939989 PMCID: PMC2575215 DOI: 10.1186/1471-2199-9-91] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mono-ADP-ribosyltransferase (ART) 1 belongs to a family of mammalian ectoenzymes that catalyze the transfer of ADP-ribose from NAD+ to a target protein. ART1 is predominantly expressed in skeletal and cardiac muscle. It ADP-ribosylates alpha7-integrin which together with beta1-integrin forms a dimer and binds to laminin, a protein of the extracellular matrix involved in cell adhesion. This posttranslational modification leads to an increased laminin binding affinity. RESULTS Using C2C12 and C3H-10T 1/2 cells as models of myogenesis, we found that ART1 expression was restricted to myotube formation. We identified a fragment spanning the gene 1.3 kb upstream of the transcriptional start site as the functional promoter of the ART1 gene. This region contains an E box and an A/T-rich element, two conserved binding sites for transcription factors found in the promoters of most skeletal muscle specific genes. Mutating the DNA consensus sequence of either the E box or the A/T-rich element resulted in a nearly complete loss of ART1 promoter inducibility, indicating a cooperative role of the transcription factors binding to those sites. Gel mobility shift analyses carried out with nuclear extracts from C2C12 and C3H-10T 1/2 cells revealed binding of myogenin to the E box and MEF-2 to the A/T-rich element, the binding being restricted to C2C12 and C3H-10T 1/2 myotubes. CONCLUSION Here we describe the molecular mechanism underlying the regulation of the ART1 gene expression in skeletal muscle cells. The differentiation-dependent upregulation of ART1 mRNA is induced by the binding of myogenin to an E box and of MEF-2 to an A/T-rich element in the proximal promoter region of the ART1 gene. Thus the transcriptional regulation involves molecular mechanisms similar to those used to activate muscle-specific genes.
Collapse
Affiliation(s)
- Maik Friedrich
- Institute of Biology II, Dept, of Immunobiology, University of Leipzig, Talstrasse 33, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
13
|
Hong S, Brass A, Seman M, Haag F, Koch-Nolte F, Dubyak GR. Lipopolysaccharide, IFN-γ, and IFN-β Induce Expression of the Thiol-Sensitive ART2.1 Ecto-ADP-Ribosyltransferase in Murine Macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:6215-27. [DOI: 10.4049/jimmunol.179.9.6215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zolkiewska A. Ecto-ADP-ribose transferases: cell-surface response to local tissue injury. Physiology (Bethesda) 2006; 20:374-81. [PMID: 16287986 DOI: 10.1152/physiol.00028.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ecto-ADP-ribose transferases (ecto-ARTs) catalyze the transfer of ADP-ribose from NAD(+) to arginine residues in cell-surface proteins. Since the concentration of extracellular NAD(+) is very low under normal physiological conditions but rises significantly upon tissue injury or membrane stress, it is postulated that the main role of ecto-ARTs is to ADP-ribosylate and regulate the function of certain membrane receptors in response to elevated levels of NAD(+).
Collapse
Affiliation(s)
- Anna Zolkiewska
- Department of Biochemistry, Kansas State University, Manhattan, USA.
| |
Collapse
|
15
|
Koch-Nolte F, Adriouch S, Bannas P, Krebs C, Scheuplein F, Seman M, Haag F. ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Ann Med 2006; 38:188-99. [PMID: 16720433 DOI: 10.1080/07853890600655499] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Many bacterial toxins kill animal cells by adenosine diphosphate (ADP)-ribosylating intracellular target proteins. Mammalian cells express toxin-related cell surface ADP-ribosyltransferases (ARTs) that transfer ADP-ribose from nicotinamide adenine dinucleotide (NAD) onto arginine residues of other membrane proteins. The association of these glycosylphosphatidylinositol (GPI)-anchored ectoenzymes with glycolipid rafts focuses them onto components of the signal transduction machinery. Exposing murine T cells to NAD, the ART substrate, induces a cascade of reactions that culminates in cell death by apoptosis. This mechanism, dubbed 'NAD-induced cell death' or NICD, is initiated when ART2 ADP-ribosylates the cytolytic P2X7 purinergic receptor, inducing formation of a cation channel, opening of a nonselective pore, shedding of CD62L from the cell surface, exposure of phosphatidylserine on the outer leaflet of the plasma membrane, breakdown of the mitochondrial membrane potential, and DNA-fragmentation. The ART substrate NAD is produced in large amounts inside the cell and can be released from damaged cells during inflammation and tissue injury. In the extracellular environment, the signaling function of NAD is terminated by NAD-degrading ectoenzymes such as CD38. We propose that ART2-catalyzed ADP-ribosylation of P2X7 represents the paradigm of a regulatory mechanism by which ART-expressing cells can sense and respond to the release of NAD from damaged cells.
Collapse
Affiliation(s)
- Friedrich Koch-Nolte
- Institute of Immunology, Department of Clinical Pathology, University Hospital, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Grahnert A, Friedrich M, Engeland K, Hauschildt S. Analysis of mono-ADP-ribosyltransferase 4 gene expression in human monocytes: splicing pattern and potential regulatory elements. ACTA ACUST UNITED AC 2005; 1730:173-86. [PMID: 16140404 DOI: 10.1016/j.bbaexp.2005.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/29/2005] [Accepted: 08/04/2005] [Indexed: 11/25/2022]
Abstract
Mono-ADP-ribosyltransferase (ART) 4 belongs to a family of ectoenzymes that catalyze the transfer of ADP-ribose from NAD+ to a target protein. ART4 could be detected on HEL cells and erythrocytes by FACS analysis while it was absent from activated monocytes, despite the presence of ART4 mRNA in these cells. The predicted glycosylphosphatidylinositol (GPI) linkage of ART4 could be verified by showing that treatment of erythrocytes, HEL cells and ART4-transfected HEK-293-T cells with phosphatidylinositol-specific phospholipase C results in a decrease in ART4 expression. Furthermore, an ART4 construct carrying an Ala285Val mutation that is critical for the formation of a GPI anchor failed to be expressed in transfected C-33A cells. Analysis of the gene structure revealed that the first of the three exons was at least 236 bp longer than previously published and that splicing occurred in the coding region of the mRNA from HEL cells and monocytes. When carrying out 5' inverse RACE-PCR we confirmed the existence of 5 ATGs in the 5' untranslated region (5'UTR). By deletion and site-directed mutagenesis of the ATGs, we showed that the first two ATGs impair translation and that both the 3rd and 5th ATG can be used for translation initiation after expression in C-33A cells. On analysis of the 3'UTR, which contains 2 adenylate/uridylate-rich elements (AREs), we detected one variant in monocytes that would be devoid of a GPI-anchor signal and thus could represent a secreted form of ART4. Thus, alternative splicing and the use of regulatory elements in the 5'UTR and 3'UTR represent means to control ART4 expression.
Collapse
MESH Headings
- 3' Untranslated Regions/chemistry
- 3' Untranslated Regions/genetics
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- ADP Ribose Transferases/analysis
- ADP Ribose Transferases/chemistry
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/metabolism
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Base Sequence
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Cloning, Molecular
- Codon, Initiator
- Codon, Terminator
- Exons
- Fluorescein-5-isothiocyanate
- Fluorescent Antibody Technique, Indirect
- Fluorescent Dyes
- Gene Expression
- Humans
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/analysis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Valine/metabolism
Collapse
Affiliation(s)
- Andreas Grahnert
- Institute of Biology II, Dept. of Immunobiology, University of Leipzig, Talstrasse 33, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
17
|
Di Girolamo M, Dani N, Stilla A, Corda D. Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J 2005; 272:4565-75. [PMID: 16156779 DOI: 10.1111/j.1742-4658.2005.04876.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mono(ADP-ribosyl)ation reaction is a post-translational modification that is catalysed by both bacterial toxins and eukaryotic enzymes, and that results in the transfer of ADP-ribose from betaNAD+ to various acceptor proteins. In mammals, both intracellular and extracellular reactions have been described; the latter are due to glycosylphosphatidylinositol-anchored or secreted enzymes that are able to modify their targets, which include the purinergic receptor P2X7, the defensins and the integrins. Intracellular mono(ADP-ribosyl)ation modifies proteins that have roles in cell signalling and metabolism, such as the chaperone GRP78/BiP, the beta-subunit of heterotrimeric G-proteins and glutamate dehydrogenase. The molecular identification of the intracellular enzymes, however, is still missing. A better molecular understanding of this reaction will help in the full definition of its role in cell physiology and pathology.
Collapse
Affiliation(s)
- Maria Di Girolamo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.
| | | | | | | |
Collapse
|
18
|
Abstract
The Do(a) antigen was discovered after I began my career in immunohematology and I have been fortunate to be involved in several fascinating discoveries in the Dombrock blood group system. The Do(a) antigen and its antithetical antigen, Do(b), have a prevalence that makes them useful as genetic markers. The paucity of reliable anti-Do(a) and anti-Do(b) has prevented this potential from being realized; however, our ability to type for DO alleles at the DNA level has made it possible to test cohorts from different populations. In 1992, the Dombrock blood group system was expanded to include three phenotypically related antigens, Gy(a), Hy, and Jo(a), when it was discovered that the Gy(a-) phenotype was the null of the Dombrock system. Based on the knowledge that the Dombrock glycoprotein is attached to the RBC membrane via a glycosylphosphatidylinositol linkage and subsequent to the assignment of the corresponding gene to the short arm of chromosome 12, expressed sequence tags from terminally differentiating human erythroid cells were analyzed in silico to identify the DO gene. This allowed determination of the molecular basis of the various Do phenotypes and the realization that DO is identical to the gene encoding a mono-ADP-ribosyltransferase, ART4. No enzymatic activity in RBCs has been demonstrated and the function of this glycoprotein, on the outside surface of RBCs, has yet to be determined. This review is a synthesis of our current knowledge of the Dombrock blood group system.
Collapse
Affiliation(s)
- Marion E Reid
- New York Blood Center, New York, New York 10021, USA.
| |
Collapse
|
19
|
Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. ADP-ribosylation of integrin alpha7 modulates the binding of integrin alpha7beta1 to laminin. Biochem J 2005; 385:309-17. [PMID: 15361073 PMCID: PMC1134699 DOI: 10.1042/bj20040590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular domain of integrin alpha7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin alpha7beta1 has not been explored. In the present study, we show that ADP-ribosylation of integrin alpha7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of alpha7beta1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa 'stalk' region of alpha7 that takes place at micromolar NAD+ concentrations increases the binding of the alpha7beta1 dimer to laminin. Increased in vitro binding of integrin alpha7beta1 to laminin after ADP-ribosylation of the 37-kDa fragment of alpha7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of alpha7 that occurs at approx. 100 microM NAD+ inhibits the binding of integrin alpha7beta1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin beta1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin alpha7beta1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.
Collapse
Affiliation(s)
- Zhefeng Zhao
- Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506, U.S.A
| | | | - Anna Zolkiewska
- Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Affiliation(s)
- Marion E Reid
- immunohematology Laboratory, New York Blood Center, New York, NY 10021, USA.
| |
Collapse
|
21
|
Corda D, Di Girolamo M. Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe53. [PMID: 12488509 DOI: 10.1126/stke.2002.163.pe53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mono-ADP-ribosylation is a posttranslational modification of cellular proteins that has the potential to regulate various cell functions. This reaction consists of the enzymatic transfer of ADP-ribose to specific acceptor amino acid residues (predominantly arginine and cysteine). The best-known cellular ADP-ribosyltransferases (the enzymes that catalyze this reaction) are the seven ectoenzymes, members of the ART family. Recently, ADP-ribosylated human neutrophil-derived peptide (HNP-1, an antimicrobial peptide secreted by immune cells) has been identified in the bronchoalveolar lavage fluid from individuals who smoke cigarettes. This demonstrates that ADP-ribosylation of HNP-1 occurs in vivo. In vitro experiments have indicated that ART-1, an enzyme also present in the airway epithelium, specifically modifies Arg(14) of the HNP-1, causing the loss of the peptide's antimicrobial and cytotoxic activity, while preserving its chemotactic activity. From a functional point of view, these data support a role of ADP-ribosylation in the innate immune response. Additional functions proposed for the ADP-ribosylation reaction involve the intracellular ADP-ribosyltransferases, which are molecularly unrelated to the ARTs and intervene in cell signaling and metabolism cascades. The growing understanding of the biological roles of protein and peptide ADP-ribosylation represents a powerful tool for novel pharmacological interventions.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | |
Collapse
|
22
|
Ohlrogge W, Haag F, Löhler J, Seman M, Littman DR, Killeen N, Koch-Nolte F. Generation and characterization of ecto-ADP-ribosyltransferase ART2.1/ART2.2-deficient mice. Mol Cell Biol 2002; 22:7535-42. [PMID: 12370300 PMCID: PMC135670 DOI: 10.1128/mcb.22.21.7535-7542.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first study reporting the inactivation of a member of the mouse gene family of toxin-related ecto-ADP-ribosyltransferases (ARTs). Transfer of the ADP-ribose moiety from NAD onto extracellular arginine residues on T-cell membrane proteins is mediated by glycosylphosphatidylinositol-linked cell surface ARTs. Exposure of T cells to ecto-NAD blocks T-cell activation and induces T-cell apoptosis. To determine a possible role of ecto-ART2.1 and ART2.2 in these processes, we generated ART2.1/ART2.2 double-knockout mice. ART2-deficient mice were healthy and fertile and showed normal development of lymphoid organs. ART2-deficient T cells showed a dramatically reduced capacity to ADP-ribosylate cell surface proteins, indicating that most if not all ART activity on the T-cell surface can be attributed to the ART2s. Moreover, ART2-deficient T cells were completely resistant to NAD-induced apoptosis and partially resistant to NAD-mediated suppression of proliferation. These results demonstrate that the ART2 ectoenzymes are an essential component in the regulation of T-cell functions by extracellular NAD, e.g., following release of NAD upon lysis of cells in tissue injury and inflammation.
Collapse
Affiliation(s)
- Wiebke Ohlrogge
- Institute of Immunology. Heinrich Pette Institute, University Hospital, Hamburg 20246, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Glowacki G, Braren R, Firner K, Nissen M, Kühl M, Reche P, Bazan F, Cetkovic-Cvrlje M, Leiter E, Haag F, Koch-Nolte F. The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 2002; 11:1657-70. [PMID: 12070318 PMCID: PMC2373659 DOI: 10.1110/ps.0200602] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
ADP-ribosyltransferases including toxins secreted by Vibrio cholera, Pseudomonas aerurginosa, and other pathogenic bacteria inactivate the function of human target proteins by attaching ADP-ribose onto a critical amino acid residue. Cross-species polymerase chain reaction (PCR) and database mining identified the orthologs of these ADP-ribosylating toxins in humans and the mouse. The human genome contains four functional toxin-related ADP-ribosyltransferase genes (ARTs) and two related intron-containing pseudogenes; the mouse has six functional orthologs. The human and mouse ART genes map to chromosomal regions with conserved linkage synteny. The individual ART genes reveal highly restricted expression patterns, which are largely conserved in humans and the mouse. We confirmed the predicted extracellular location of the ART proteins by expressing recombinant ARTs in insect cells. Two human and four mouse ARTs contain the active site motif (R-S-EXE) typical of arginine-specific ADP-ribosyltransferases and exhibit the predicted enzyme activities. Two other human ARTs and their murine orthologues deviate in the active site motif and lack detectable enzyme activity. Conceivably, these ARTs may have acquired a new specificity or function. The position-sensitive iterative database search program PSI-BLAST connected the mammalian ARTs with most known bacterial ADP-ribosylating toxins. In contrast, no related open reading frames occur in the four completed genomes of lower eucaryotes (yeast, worm, fly, and mustard weed). Interestingly, these organisms also lack genes for ADP-ribosylhydrolases, the enzymes that reverse protein ADP-ribosylation. This suggests that the two enzyme families that catalyze reversible mono-ADP-ribosylation either were lost from the genomes of these nonchordata eucaryotes or were subject to horizontal gene transfer between kingdoms.
Collapse
Affiliation(s)
- Gustavo Glowacki
- Institute of Immunology, University Hospital, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|