1
|
Shkolnik D, Dey S, Hasan M, Matunis MJ, Brik A. Chemical protein synthesis combined with protein cell delivery reveals new insights on the maturation process of SUMO2. Chem Sci 2024; 16:191-198. [PMID: 39600502 PMCID: PMC11587528 DOI: 10.1039/d4sc06254j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The Small Ubiquitin-like Modifier (SUMO) is a crucial post-translational modifier of proteins, playing a key role in various cellular functions. All SUMOs are synthesized as precursor proteins that must be proteolytically processed. However, the maturation process of cleaving the extending C-terminal tail, preceding SUMOylation of substrates, remains poorly understood, especially within cellular environments. Chemical protein synthesis coupled with cell delivery offers great opportunities to prepare SUMO analogues to investigate this process in vitro and in live cells. Applying this unique combination we show that SUMO2 analogues containing the native tail undergo rapid cleavage and nuclear localisation, while a Gly93Ala mutation impairs cleavage and alters localisation. Tail mutations (Val94Glu, Tyr95Ala) affected cleavage rates, highlighting roles in SUMO-SENP protease interactions. In cells, SUMO2 analogues containing tail mutations underwent cleavage and subsequently incorporated into promyelocytic leukemia nuclear bodies (PML-NBs). These findings advance our understanding of SUMO2 maturation and provide a foundation for future studies of this process for different SUMO paralogues in various cell lines and tissues.
Collapse
Affiliation(s)
- Dana Shkolnik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Subhasis Dey
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Mahdi Hasan
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health Baltimore Maryland USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
2
|
Oliveira FRMB, Sousa Soares E, Pillmann Ramos H, Lättig-Tünnemann G, Harms C, Cimarosti H, Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem Pharmacol 2024; 227:116425. [PMID: 39004233 DOI: 10.1016/j.bcp.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.
Collapse
Affiliation(s)
- Filipe Rodolfo Moreira Borges Oliveira
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Ericks Sousa Soares
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Hanna Pillmann Ramos
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil
| | - Gisela Lättig-Tünnemann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Centre for Stroke Research, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany; Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena Cimarosti
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil; Graduate Program in Neuroscience, UFSC, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil.
| |
Collapse
|
3
|
Nazir A, Shad M, Rehman HM, Azim N, Sajjad M. Application of SUMO fusion technology for the enhancement of stability and activity of lysophospholipase from Pyrococcus abyssi. World J Microbiol Biotechnol 2024; 40:183. [PMID: 38722449 DOI: 10.1007/s11274-024-03998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Jiang C, Zhang C, Dai M, Wang F, Xu S, Han D, Wang Y, Cao Y, Liang Y, Zhang Z, Yan L, Shen Y, He K, Shen Y, Liu J. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119595. [PMID: 37730133 DOI: 10.1016/j.bbamcr.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The nuclear factor kappaB (NF-κB) subunit p65, plays an important role in the progression of hepatocellular carcinoma (HCC). Phosphorylation of p65 is considered as an important mechanism for the positive regulation of NF-κB activity. According to our previous data, p65 can be SUMOylated by small ubiquitin-related modifier 1 (SUMO1) protein, and SUMO1 promotes p65 nuclear import and HCC progression. However, the effect of SUMO1-related p65 SUMOylation on NF-κB transcriptional activity and the relationship between phosphorylation and SUMOylation of p65 remain obscure. Here, we found that phosphorylated p65 level was increased in cancer tissues of HCC patients, and similar phenomenon was found for SUMO1 expression but not for SUMO2/3. Further clinical data showed a positive correlation between SUMO1 and phosphorylated p65. We also verified that overexpression of SUMO1 upregulated phosphorylated p65 levels. Next, we verified SUMO1-related p65 SUMOylation with in vitro SUMOylation assay, constructed mutants of p65 SUMOylation and phosphorylation, and found that SUMO1-related p65 SUMOylation promoted p65 nuclear import and increased NF-κB activity. Both SUMO1-related p65 SUMOylation and p65 phosphorylation (especially at S276 site) increased the viability and invasion of hepatoma cells, and decreased the apoptosis of hepatoma cells. At last, we found that the phosphorylation of p65 promoted the level of SUMO1-related p65 SUMOylation, and SUMO1-related p65 SUMOylation upregulated phosphorylated p65 (at S276 site). Our study contributes to the exploration of the oncogenic mechanism of p65, which is the important protein in HCC.
Collapse
Affiliation(s)
- Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China; Clinical college, Anhui Medical University, Hefei, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yajie Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Lina Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Kewu He
- The Third Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
6
|
Chen S, Fu X, Wang R, Li M, Yan X, Yue Z, Chen SW, Dong M, Xu A, Huang S. SUMO and PIAS repress NF-κB activation in a basal chordate. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108754. [PMID: 37088348 DOI: 10.1016/j.fsi.2023.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Small ubiquitin-like modifier (SUMO) regulates various biological processes, including the MyD88/TICAMs-IRAKs-TRAF6-NF-κB pathway, one of the core immune pathways. However, its functions are inconsistent between invertebrates and vertebrates and have rarely been investigated in lower chordates, including amphioxus and fishes. Here, we investigated the SUMOylation gene system in the amphioxus, a living basal chordate. We found that amphioxus has a SUMOylation system that has a complete set of genes and preserves several ancestral traits. We proceeded to study their molecular functions using the mammal cell lines. Both amphioxus SUMO1 and SUMO2 were shown to be able to attach to NF-κB Rel and to inhibit NF-κB activation by 50-75% in a dose-dependent fashion. The inhibition by SUMO2 could be further enhanced by the addition of the SUMO E2 ligase UBC9. In comparison, while human SUMO2 inhibited RelA, human SUMO1 slightly activated RelA. We also showed that, similar to human PIAS1-4, amphioxus PIAS could serve as a SUMO E3 ligase and promote its self-SUMOylation. This suggests that amphioxus PIAS is functionally compatible in human cells. Moreover, we showed that amphioxus PIAS is not only able to inhibit NF-κB activation induced by MyD88, TICAM-like, TRAF6 and IRAK4 but also able to suppress NF-κB Rel completely in the presence of SUMO1/2 in a dose-insensitive manner. This suggests that PIAS could effectively block Rel by promoting Rel SUMOylation. In comparison, in humans, only PIAS3, but not PIAS1/2/4, has been reported to promote NF-κB SUMOylation. Taken together, the findings from amphioxus, together with those from mammals and other species, not only offer insights into the functional volatility of the animal SUMO system, but also shed light on its evolutionary transitions from amphioxus to fish, and ultimately to humans.
Collapse
Affiliation(s)
- Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianan Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ruihua Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510632, China
| | - Mingshi Li
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyu Yan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shang-Wu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Beijing University of Chinese Medicine, Dong San Huang Road, Chao-yang District, Beijing, 100029, China
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, Gutiérrez-Zubiate I, Patil AR, Alvarado LA, Roy S, Russell WK, Rosas-Acosta G. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Sci Rep 2023; 13:2309. [PMID: 36759644 PMCID: PMC9911741 DOI: 10.1038/s41598-023-29357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Substantial increases in the conjugation of the main human SUMO paralogs, SUMO1, SUMO2, and SUMO3, are observed upon exposure to different cellular stressors, and such increases are considered important to facilitate cell survival to stress. Despite their critical cellular role, little is known about how the levels of the SUMO modifiers are regulated in the cell, particularly as it relates to the changes observed upon stress. Here we characterize the contribution of alternative splicing towards regulating the expression of the main human SUMO paralogs under normalcy and three different stress conditions, heat-shock, cold-shock, and Influenza A Virus infection. Our data reveal that the normally spliced transcript variants are the predominant mature mRNAs produced from the SUMO genes and that the transcript coding for SUMO2 is by far the most abundant of all. We also provide evidence that alternatively spliced transcripts coding for protein isoforms of the prototypical SUMO proteins, which we refer to as the SUMO alphas, are also produced, and that their abundance and nuclear export are affected by stress in a stress- and cell-specific manner. Additionally, we provide evidence that the SUMO alphas are actively synthesized in the cell as their coding mRNAs are found associated with translating ribosomes. Finally, we provide evidence that the SUMO alphas are functionally different from their prototypical counterparts, with SUMO1α and SUMO2α being non-conjugatable to protein targets, SUMO3α being conjugatable but targeting a seemingly different subset of protein from those targeted by SUMO3, and all three SUMO alphas displaying different cellular distributions from those of the prototypical SUMOs. Thus, alternative splicing appears to be an important contributor to the regulation of the expression of the SUMO proteins and the cellular functions of the SUMOylation system.
Collapse
Affiliation(s)
- Myriah L Acuña
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Andrea García-Morin
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rebeca Orozco-Sepúlveda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Carlos Ontiveros
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, 78229, USA
| | - Alejandra Flores
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Arely V Diaz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Luis A Alvarado
- Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Sourav Roy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Germán Rosas-Acosta
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
8
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
9
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
10
|
SUMOylation Regulates BmNPV Replication by Moderating PKIP Intracellular Localization. Processes (Basel) 2022. [DOI: 10.3390/pr10020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
SUMOylation is a reversible covalent process between a small ubiquitin-like modifier (SUMO) and its target protein and has become a crucial regulator of protein functions. Here, we report that Bombyx mori nucleopolyhedrovirus (BmNPV) may take advantage of the host SUMOylation system to enhance its own replication, similar to many other viruses. Both the knockdown of BmSUMO by RNAi and chemical blocking by ginkgolic acid both impaired BmNPV replication. Using site mutation and pull-down assays, we found that lysine K70 of the protein kinase-interacting protein (PKIP), which is conserved in all Alphabaculoviruses, was modified by SUMO. Mutation of K70 in PKIP led to its translocation from the cytoplasm to the nucleus. Knockout and rescue experiments showed that the rescue of PKIP mutant virus with wild-type PKIP restored BmNPV replication to the normal level, but this was not true for the K70R mutation. Altogether, these results show that SUMOylation of PKIP plays a key role in BmNPV replication.
Collapse
|
11
|
SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells. Arch Toxicol 2022; 96:545-558. [PMID: 35001170 DOI: 10.1007/s00204-021-03195-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
The functional roles of protein modification by small ubiquitin-like modifier (SUMO) proteins are not well understood compared to ubiquitination. Promyelocytic leukemia (PML) proteins are good substrates for SUMOylation, and PML-nuclear bodies (PML-NBs) may function as a platform for the PML SUMOylation. PML proteins are rapidly modified both with SUMO2/3 and SUMO1 after exposure to arsenite (As3+) and SUMOylated PML are further ubiquitinated and degraded by proteasomes. However, effects of As3+ on SUMO dynamics on PML-NBs are not well investigated. In the present study, we report that (1) the number and size of PML-NBs were regulated by SUMO E1-activating enzyme, (2) SUMO2/3 co-localized with PML irrespective of As3+ exposure and was restricted to PML-nuclear bodies (PML-NBs) via covalent binding in response to As3+, and (3) As3+-induced biochemical changes in PML were not modulated by ubiquitin-proteasome system (UPS) in THP-1 cells. Undifferentiated and differentiated THP-1 cells responded to As3+ similarly and PML proteins were changed from the detergent soluble to the insoluble form and further SUMOylated with SUMO2/3 and SUMO1. ML792, a SUMO E1 inhibitor, decreased the number of PML-NBs and reciprocally increased the size irrespective of exposure to As3+, which itself slightly decrease both the number and size of PML-NBs. TAK243, a ubiquitin E1 inhibitor, did not change the PML-NBs, while SUMOylated proteins accumulated in the TAK243-exposed cells. Proteasome inhibitors did not change the As3+-induced SUMOylation levels of PML. Co-localization and further restriction of SUMO2/3 to PML-NBs were confirmed by PML-transfected CHO-K1 cells. Collectively, SUMOylation regulates PML-NBs and As3+ restricts SUMO dynamics on PML by changing its solubility.
Collapse
|
12
|
Hsp70 Promotes SUMO of HIF-1 α and Promotes Lung Cancer Invasion and Metastasis. JOURNAL OF ONCOLOGY 2021; 2021:7873085. [PMID: 34868316 PMCID: PMC8642011 DOI: 10.1155/2021/7873085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
Objective This study aims to investigate the effect of heat shock protein-70 (Hsp70) on epithelial-mesenchymal transition (EMT) of lung cancer cells under heat stimulation and to explore its possible molecular mechanism. Methods qRT-PCR and immunohistochemistry assay were used to detect the expression of Hsp70 in lung cancer tissues and adjacent tissues. EdU assay was used to detect the cell activity. The effect of Hsp70 on the migration and invasion of A549 and NCI-H446 cells was detected by the wound-healing assay and Transwell assay. A tumor transplantation animal model was established to detect the effect of overexpression of Hsp70 on proliferation and metastasis of lung cancer cells. Western blot assay was used to detect the effect of thermal stimulation and overexpression of Hsp70 on SUMO modification of HIF-1α. Results The wound-healing rate of A549 and NCI-H446 cells under Hsp70 stimulation was significantly higher than blank control group. At the same time, the number of cells passing through the membrane increased significantly. Hypodermic tumor transplantation in nude mice proved that knockout Hsp70 can inhibit proliferation and metastasis of lung cancer cells. Thermal stimulation upregulated the expression of Hsp70 and promoted SUMO modification of HIF-1α, ultimately promoting the proliferation and metastasis of lung cancer. Inhibition of Hsp70 reverses the effect of thermal stimulation on lung cancer by reducing the SUMO modification of HIF-1α. Conclusion Thermal stimulation can promote EMT in A549 and NCI-H446 cells and promote cell migration and invasion in vitro and in vivo by upregulation of Hsp70. This process is associated with the promotion of SUMO modification of HIF-1α.
Collapse
|
13
|
Sharma S, Vengavasi K, Kumar MN, Yadav SK, Pandey R. Expression of potential reference genes in response to macronutrient stress in rice and soybean. Gene 2021; 792:145742. [PMID: 34051336 DOI: 10.1016/j.gene.2021.145742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023]
Abstract
Given the complexity of nutrient stress responses and the availability of a few validated reference genes, we aimed to identify robust and stable reference genes for macronutrient stress in rice and soybean. Ten potential reference genes were evaluated using geNorm, NormFinder, BestKeeper, Comparative ΔCt method, and RefFinder algorithms under low and completely starved conditions of nitrogen (N), phosphorus (P), potassium (K), and sulphur (S). Results revealed distinct sets of reference gene pairs, showing stable expression under different experimental conditions. The gene pairs TIP41/UBC(9/10/18) and F-box/UBC10 were most stable in rice and soybean, respectively under N stress. Under P stress, UBC9/UBC10 in rice and F-Box/UBC10 in soybean were most stable. Similarly, TIP41/UBC10 in rice and RING FINGER/UBC9 in soybean were the best gene pairs under K stress while F-Box/TIP41 in rice and UBC9/UBC10 in soybean were the most stable gene pairs under S stress. These reference gene pairs were validated by quantifying the expression levels of high-affinity transporters like NRT2.1/NRT2.5, PT1, AKT1, and SULTR1 for N, P, K, and S stress, respectively. This study reiterates the importance of choosing reference genes based on crop species and the experimental conditions, in order to obtain concrete answers to missing links of gene regulation in response to macronutrient deficiencies.
Collapse
Affiliation(s)
- Sandeep Sharma
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Krishnapriya Vengavasi
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - M Nagaraj Kumar
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India.
| |
Collapse
|
14
|
Martinat C, Cormier A, Tobaly-Tapiero J, Palmic N, Casartelli N, Mahboubi B, Coggins SA, Buchrieser J, Persaud M, Diaz-Griffero F, Espert L, Bossis G, Lesage P, Schwartz O, Kim B, Margottin-Goguet F, Saïb A, Zamborlini A. SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells. Nat Commun 2021; 12:4582. [PMID: 34321470 PMCID: PMC8319325 DOI: 10.1038/s41467-021-24802-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.
Collapse
Affiliation(s)
- Charlotte Martinat
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Arthur Cormier
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Joëlle Tobaly-Tapiero
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Noé Palmic
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Nicoletta Casartelli
- grid.428999.70000 0001 2353 6535Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France ,grid.511001.4Vaccine Research Institute, Créteil, France
| | - Bijan Mahboubi
- grid.189967.80000 0001 0941 6502Emory School of Medicine, Atlanta, USA
| | - Si’Ana A. Coggins
- grid.189967.80000 0001 0941 6502Emory School of Medicine, Atlanta, USA
| | - Julian Buchrieser
- grid.428999.70000 0001 2353 6535Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France ,grid.511001.4Vaccine Research Institute, Créteil, France ,grid.4991.50000 0004 1936 8948James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mirjana Persaud
- grid.251993.50000000121791997Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY USA
| | - Felipe Diaz-Griffero
- grid.251993.50000000121791997Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY USA
| | - Lucile Espert
- grid.503217.2IRIM, University of Montpellier, UMR 9004 CNRS, Montpellier, France
| | - Guillaume Bossis
- grid.429192.50000 0004 0599 0285IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Olivier Schwartz
- grid.428999.70000 0001 2353 6535Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France ,grid.511001.4Vaccine Research Institute, Créteil, France
| | - Baek Kim
- grid.189967.80000 0001 0941 6502Emory School of Medicine, Atlanta, USA
| | | | - Ali Saïb
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Alessia Zamborlini
- INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France ,grid.457334.2Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Gao S, Zhao X, Hou L, Ma R, Zhou J, Zhu MX, Pan SJ, Li Y. The interplay between SUMOylation and phosphorylation of PKCδ facilitates oxidative stress-induced apoptosis. FEBS J 2021; 288:6447-6464. [PMID: 34089566 DOI: 10.1111/febs.16050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Although the increase in the number of identified posttranslational modifications (PTMs) has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that different types of PTMs can crosstalk and act in concert to exert important regulatory mechanisms for protein function has not gained much attention. Here, we show that protein kinase Cδ (PKCδ) is SUMOylated at lysine 473 in its C-terminal catalytic domain, and the SUMOylation increases PKCδ stability by repressing its ubiquitination. In addition, we uncover a functional interplay between the phosphorylation and SUMOylation of PKCδ, which can strengthen each other through recruiting SUMO E2/E3 ligases and the PKCδ kinase, respectively, to the PKCδ complexes. We identified PIAS2β as the SUMO E3 ligase of PKCδ. More importantly, by enhancing PKCδ protein stability and its phosphorylation through an interdependent interplay of the PTMs, the SUMOylation of PKCδ promotes apoptotic cell death induced by H2 O2 . We conclude that SUMOylation represents an important regulatory mechanism of PKCδ PTMs for the kinase's function in oxidative cell damage.
Collapse
Affiliation(s)
- Siman Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Lin Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Ruining Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
16
|
Stokes S, Almire F, Tatham MH, McFarlane S, Mertens P, Pondeville E, Boutell C. The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathog 2020; 16:e1009134. [PMID: 33351855 PMCID: PMC7802965 DOI: 10.1371/journal.ppat.1009134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/12/2021] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses. Half the world’s population is at risk of infection from arboviruses transmitted by mosquitoes. Deciphering the viral-host interactions that influence the outcome of arbovirus infection in mosquitoes is beneficial to the development of future vector control strategies to limit arbovirus transmission and viral emergence within the human population. Similar to humans, mosquitoes possess different immune pathways to limit the replication of arboviruses. While the Small Ubiquitin-like MOdifier (SUMO) pathway is known to play an important role in the regulation of immune defences to viral infection in humans, the influence of this pathway during arbovirus infection in mosquito cells is currently unknown. Here we define the conservation, biochemical activity, and tissue distribution of the core effector proteins of the Aedes aegypti SUMOylation pathway. We show that the mosquito SUMOylation pathway plays a broadly antiviral role against a wide range of clinically important arboviruses, including Zika, Semliki Forest, and Bunyamwera viruses. Our findings identify SUMOylation as an important component of the antiviral response to arbovirus infection in mosquito cells.
Collapse
Affiliation(s)
- Samuel Stokes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| |
Collapse
|
17
|
Dong M, Zhang Y, Xu C, Wang C, Liu M, Zhang Z, Wu H, Yuan Z, Zhou J. Interferon-γ decreases ATP-binding cassette subfamily G member 1-mediated cholesterol efflux through small ubiquitin-like modifier/ubiquitin-dependent liver X receptor-α degradation in macrophages. Biotechnol Appl Biochem 2020; 68:1412-1420. [PMID: 33125792 DOI: 10.1002/bab.2063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/24/2020] [Indexed: 11/05/2022]
Abstract
The effects of interferon-γ (IFN-γ) on cholesterol accumulation and the development of foam cells are still unclear. In the present study, we found that IFN-γ promoted liver X receptor (LXR)-α degradation through the ubiquitin-proteasome system in macrophages. The process was dependent on its interactions with phosphorylated signal transducer and activator of transcription 1 (p-STAT1) and protein inhibitor of activated STAT 1 (PIAS1) because both fludarabine and PIAS1 shRNA reversed the decrease in LXR-α protein expression induced by IFN-γ. Additionally, IFN-γ enhanced the interactions of ubiquitin-conjugating enzyme 9 (UBC9), small ubiquitin-like modifier (SUMO)-1 and SUMO-2/3 with LXR-α. Moreover, treatment with shRNA specific for them not only reduced LXR-α polyubiquitination but also reversed the IFN-γ-induced decrease in its expression. Two specific sumoylation sites in LXR-α, K22 and K326, were indispensable for its IFN-γ-induced polyubiquitination because the K22R and K326R mutations inhibited the polyubiquitination and degradation of LXR-α in IFN-γ-treated macrophages. In addition, K22R or K326R mutation almost completely restored ATP-binding cassette subfamily G member 1 (ABCG1)-mediated cholesterol efflux in IFN-γ-treated macrophages. Taken together, these findings indicate that IFN-γ promotes LXR-α degradation through a SUMO-ubiquitin-dependent pathway, which may inhibit cholesterol efflux mediated by ABCG1 from macrophages and promote the development of atherosclerosis.
Collapse
Affiliation(s)
- Mengya Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Zhang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chenbo Xu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Mengping Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhanyi Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Haoyu Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, People's Republic of China
| |
Collapse
|
18
|
Ji ZS, Liu QL, Zhang JF, Yang YH, Li J, Zhang GW, Tan MH, Lin HS, Guo GQ. SUMOylation of spastin promotes the internalization of GluA1 and regulates dendritic spine morphology by targeting microtubule dynamics. Neurobiol Dis 2020; 146:105133. [PMID: 33049318 DOI: 10.1016/j.nbd.2020.105133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Dendritic spines are specialized structures involved in neuronal processes on which excitatory synaptic contact occurs. The microtubule cytoskeleton is vital for maintaining spine morphology and mature synapses. Spastin is related to microtubule-severing proteases and is involved in synaptic bouton formation. However, it is not yet known if spastin can be modified by Small Ubiquitin-like Modifier (SUMO) or how this modification regulates dendritic spines. Spastin was shown to be SUMOylated at K427, and its deSUMOylation promoted microtubule stability. In addition, SUMOylation of spastin was shown to affect signalling pathways associated with long term synaptic depression. SUMOylated spastin promoted the development of dendrites and dendritic spines. Moreover, SUMOylated spastin regulated endocytosis and affected the transport of the AMPA receptor, GluA1. Our findings suggest that SUMOylation of spastin promotes GluA1 internalization and regulates dendritic spine morphology through targeting of microtubule dynamics.
Collapse
Affiliation(s)
- Zhi-Sheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Qiu-Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ji-Feng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Yu-Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Guo-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ming-Hui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Hong-Sheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Guo-Qing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| |
Collapse
|
19
|
Guo Y, Wang Y, Ma Y, Chen G, Yue P, Li Y. Upregulation of lncRNA SUMO1P3 promotes proliferation, invasion and drug resistance in gastric cancer through interacting with the CNBP protein. RSC Adv 2020; 10:6006-6016. [PMID: 35497433 PMCID: PMC9049591 DOI: 10.1039/c9ra09497k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 02/02/2023] Open
Abstract
Gastric cancer (GC) is one type of the most common malignancies in the world. In the process of exploring the pathological mechanism of GC and searching for treatment methods, long non-coding RNAs (lncRNAs) display significant participation. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3) is a newly identified lncRNA, of which the biological role and underlying mechanism in GC progression have not been elucidated. Here, through the comparisons between GC patients' tumor and normal tissue samples, as well as normal gastric mucosal and GC cell lines, we confirmed a significant upregulation of SUMO1P3 in GC tissues and cell lines. Meanwhile, significant upregulation of SUMO1P3 was observed in advanced GC patients, and patients with high level of SUMO1P3 displayed a poor survival rate. Next, gain- and loss-of-function experiments were performed in GC cells, and the results exhibited that SUMO1P3 positively regulated proliferation and invasion of GC cells. Then, we constructed drug-resistant GC cell strains and explore the role of SUMO1P3 in the resistance of GC cells to cisplatin (DDP) and 5-fluorouracil (5-Fu). Finally, bioinformatics analysis and RNA pull-down assay demonstrated that SUMO1P3 could directly interact with cellular nucleic acid binding protein (CNBP), thus positively regulating CNBP downstream oncogenes c-myc and cyclin D1 (CCND1). Our findings indicate that SUMO1P3 promotes proliferation, invasion and drug resistance of GC cells by interacting with CNBP, which reveals a potential prognostic biomarker and a novel therapeutic target for GC. Gastric cancer (GC) is one type of the most common malignancies in the world.![]()
Collapse
Affiliation(s)
- Yinmou Guo
- The First Ward
- Department of Oncology
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| | - Yumei Wang
- Department of Pediatrics
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| | - Yali Ma
- The First Ward
- Department of Oncology
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| | - Gongbin Chen
- The First Ward
- Department of Oncology
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| | - Peiru Yue
- The First Ward
- Department of Oncology
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| | - Yang Li
- The First Ward
- Department of Oncology
- The First People's Hospital of Shangqiu City
- Shangqiu 476100
- China
| |
Collapse
|
20
|
Saleem K, Zaib T, Sun W, Fu S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Heliyon 2019; 5:e03019. [PMID: 31886431 PMCID: PMC6921104 DOI: 10.1016/j.heliyon.2019.e03019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Non syndromic orofacial clefts specifically non-syndromic cleft lip/palate are one of the most common craniofacial malformation among birth defects in human having multifactorial etiology with an incidence of 1:700/1000. On the basis of association with other congenital malformations or their presence as isolated anomaly, OFC can be classified as syndromic (30%) and nonsyndromic (70%) respectively. The major cause of disease demonstrates complex interplay between genetic and environmental factors. The pathogenic mechanism of underlying factors have been provided by different genetic studies on large-scale with significant recent advances in genotyping technologies usually based on linkage or genome wide association studies (GWAS). On the basis of recent studies, new tools to identify causative genes involved in NSCL/P reported approximately more than 30 genetic risk loci that are responsible for pathogenesis of facial deformation. Despite these findings, it is still uncertain that how much of variance in NSCL/P predisposing factors can be explain by identified risk loci, as they all together accounts for only 20%-25% of NSCL/P heritability. So there is need of further findings about the problem of rare low frequency coding variants and other missing responsive factors or genetic modifiers. This review will described those potential genes and loci reported in different studies whose involvement in pathogenesis of nonsyndromic OFC has wide scientific evidence.
Collapse
Affiliation(s)
- Komal Saleem
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Tahir Zaib
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Preservation of Human Genetics Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| |
Collapse
|
21
|
Shao L, Liu Y, Wang W, Li A, Wan P, Liu W, Shereen MA, Liu F, Zhang W, Tan Q, Wu K, Liu Y, Wu J. SUMO1 SUMOylates and SENP3 deSUMOylates NLRP3 to orchestrate the inflammasome activation. FASEB J 2019; 34:1497-1515. [PMID: 31914638 DOI: 10.1096/fj.201901653r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1β secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1β cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.
Collapse
Affiliation(s)
- Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Quiping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Yao Y, Li H, Da X, He Z, Tang B, Li Y, Hu C, Xu C, Chen Q, Wang QK. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension. Pulm Pharmacol Ther 2019; 55:38-49. [PMID: 30703554 PMCID: PMC6814199 DOI: 10.1016/j.pupt.2019.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a life-threatening disease without effective therapies. PAH is associated with a progressive increase in pulmonary vascular resistance and irreversible pulmonary vascular remodeling. SUMO1 (small ubiquitin-related modifier 1) can bind to target proteins and lead to protein SUMOylation, an important post-translational modification with a key role in many diseases. However, the contribution of SUMO1 to PAH remains to be fully characterized. METHODS In this study, we explored the role of SUMO1 in the dedifferentiation of vascular smooth muscle cells (VSMCs) involved in hypoxia-induced pulmonary vascular remodeling and PAH in vivo and in vitro. RESULTS In a mouse model of hypoxic PAH, SUMO1 expression was significantly increased, which was associated with activation of autophagy (increased LC3b and decreased p62), dedifferentiation of pulmonary arterial VSMCs (reduced α-SMA, SM22 and SM-MHC), and pulmonary vascular remodeling. Similar results were obtained in a MCT-induced PAH model. Overexpression of SUMO1 significantly increased VSMCs proliferation, migration, hypoxia-induced VSMCs dedifferentiation, and autophagy, but these effects were abolished by inhibition of autophagy by 3-MA in aortic VSMCs. Furthermore, SUMO1 knockdown reversed hypoxia-induced proliferation and migration of PASMCs. Mechanistically, SUMO1 promotes Vps34 SUMOylation and the assembly of the Beclin-1-Vps34-Atg14 complex, thereby inducing autophagy, whereas Vps34 mutation K840R reduces Vps34 SUMOylation and inhibits VSMCs dedifferentiation. DISCUSSION Our data uncovers an important role of SUMO1 in VSMCs proliferation, migration, autophagy, and phenotypic switching (dedifferentiation) involved in pulmonary vascular remodeling and PAH. Targeting of the SUMO1-Vps34-autophagy signaling axis may be exploited to develop therapeutic strategies to treat PAH.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zuhan He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bo Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, CCLCM of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, CCLCM of Case Western Reserve University, Cleveland, OH, 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Wei J, Li C, Zhang X, Fan L, Wei S, Qin Q. Fish SUMO3 functions as a critical antiviral molecule against iridovirus and nodavirus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1088-1095. [PMID: 30593901 DOI: 10.1016/j.fsi.2018.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. We previously cloned and characterized two SUMO homologue genes (EcSUMO1 and EcSUMO2) from orange-spotted grouper (Epinephelus coioides). In the present study, the SUMO3 homologue from E. coioides (EcSUMO3) was cloned and its possible roles in fish immunity were analyzed. The open reading frame of EcSUMO3 contains 285 base pairs encoding a 94 amino acid protein with a predicted molecular mass of 10.73 kDa. The protein sequence of EcSUMO3 revealed similar domains with mammals, including the UBQ (ubiquitin-like proteins) domain, the hydrophobic surface, the Ulp1-Smt3 interaction sites, a VKTE motif and the C-terminal Gly residues. EcSUMO3 shares 46.83% and 89.58% identity with EcSUMO1 and EcSUMO2, respectively, and it shares 94%, 98%, and 98% identity with SUMO3 from Oreochromis niloticus, Danio rerio, and Homo sapiens, respectively. Quantitative real-time polymerase chain reaction analysis indicated that EcSUMO3 was constitutively expressed in all of the analyzed tissues in healthy grouper. EcSUMO3 expression levels were remarkably (p < 0.01) up-regulated in grouper spleen (GS) cells in response to stimulation with red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV). EcSUMO3 was distributed in both the cytoplasm and nucleus in GS cells. EcSUMO3 enhanced SGIV and RGNNV replication during viral infection in vitro. These results are important for better understanding of the SUMO pathway in fish and provide insights into the regulatory mechanism of viral infection in E. coioides under farmed conditions.
Collapse
Affiliation(s)
- Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Chen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
24
|
Hypoxia-induced Slug SUMOylation enhances lung cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:5. [PMID: 30612578 PMCID: PMC6322271 DOI: 10.1186/s13046-018-0996-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Background The Slug-E-cadherin axis plays a critical role in non-small-cell lung cancers (NSCLCs) where aberrant upregulation of Slug promotes cancer metastasis. Now, the post-translational modifications of Slug and their regulation mechanisms still remain unclear in lung cancer. Hence, exploring the protein linkage map of Slug is of great interest for investigating the scenario of how Slug protein is regulated in lung cancer metastasis. Methods The Slug associated proteins, Ubc9 and SUMO-1, were identified using yeast two-hybrid screening; and in vitro SUMOylation assays combined with immunoprecipitation and immunoblotting were performed to explore the detail events and regulations of Slug SUMOylation. The functional effects of SUMOylation on Slug proteins were examined by EMSA, reporter assay, ChIP assay, RT-PCR, migration and invasion assays in vitro, tail vein metastatic analysis in vivo, and also evaluated the association with clinical outcome of NSCLC patients. Results Slug protein could interact with Ubc9 and SUMO-1 and be SUMOylated in cells. Amino acids 130–212 and 33–129 of Slug are responsible for its binding to Ubc9 and protein inhibitor of activated STAT (PIAS)y, respectively. SUMOylation could enhance the transcriptional repression activity of Slug via recruiting more HDAC1, resulting in reduced expression of downstream Slug target genes and enhanced lung cancer metastasis. In addition, hypoxia could increase Slug SUMOylation through attenuating the interactions of Slug with SENP1 and SENP2. Finally, high expression Slug and Ubc9 levels were associated with poor overall survival among NSCLC patients. Conclusions Ubc9/PIASy-mediated Slug SUMOylation and subsequent HDAC1 recruitment may play a crucial role in hypoxia-induced lung cancer progression, and these processes may serve as therapeutic targets for NSCLC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0996-8) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Sumoylated α-synuclein translocates into the nucleus by karyopherin α6. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Emadi-Baygi M, Sedighi R, Nourbakhsh N, Nikpour P. Pseudogenes in gastric cancer pathogenesis: a review article. Brief Funct Genomics 2018; 16:348-360. [PMID: 28459995 DOI: 10.1093/bfgp/elx004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer burden rises globally at an alarming pace. According to GLOBOCAN 2012, gastric cancer (GC) is regarded as the fifth most common malignancy in the world. Being twice as high in men as in women, GC is the third leading cause of cancer mortality in both sexes globally. Being labeled as 'junk DNA', pseudogenes were considered as nonfunctional 'trash', which contribute nothing to survival of the organism; therefore, a number of strategies have been developed to circumvent their accidental detection. Recent progresses have confirmed that pseudogenes can have broad and multifaceted spectrum of activities in human cancers in general and GC in particular. Furthermore, the mentioned functions are parental gene-dependent and/or -independent. Therefore, pseudogenes can be regarded as the emerging class of elaborate modulators of gene expression involved in pathogenesis of human cancers including gastric adenocarcinoma.
Collapse
|
27
|
Zhou Y, He P, Xie X, Sun C. Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma. Mol Cell Biochem 2018; 450:125-134. [PMID: 29905911 DOI: 10.1007/s11010-018-3379-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with high recurrence and metastasis rates. Radiotherapy represents a major therapeutic option for HCC patients. However, the efficacy of radiotherapy has been limited due to the development of intrinsic radioresistance of the tumor cells. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), one member of SUMO pseudogene family, is a novel identified lncRNA that was originally identified to be upregulated in gastric cancer. However, the detailed roles of SUMO1P3 in HCC development remain to be elucidated. Here, the expression of SUMO1P3 in HCC tissues and cells was examined by qRT-PCR. Cell proliferation, colony formation ability, invasion ability, apoptosis, and radiosensitivity were detected by MTT assay, colony formation assay, cell invasion assay, flow cytometry analysis, and survival fraction assay, respectively. We found that SUMO1P3 was significantly upregulated in HCC tissues and cells. Besides, SUMO1P3 was highly expressed in HCC patients with higher TNM stage. Furthermore, SUMO1P3 knockdown markedly suppressed cell proliferation, colony formation ability, and cell invasiveness, promoted apoptosis, and enhanced radiosensitivity of HCC cells. We concluded that the knockdown of SUMO1P3 repressed tumor growth, invasion, promoted apoptosis, and enhanced radiosensitivity in HCC, providing evidence that SUMO1P3 might be a potential novel biomarker and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ping He
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Xuhua Xie
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Changyu Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450000, Henan, People's Republic of China.
| |
Collapse
|
28
|
Yang Y, He Y, Wang X, Liang Z, He G, Zhang P, Zhu H, Xu N, Liang S. Protein SUMOylation modification and its associations with disease. Open Biol 2018; 7:rsob.170167. [PMID: 29021212 PMCID: PMC5666083 DOI: 10.1098/rsob.170167] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/31/2017] [Indexed: 02/05/2023] Open
Abstract
SUMOylation, as a post-translational modification, plays essential roles in various biological functions including cell growth, migration, cellular responses to stress and tumorigenesis. The imbalance of SUMOylation and deSUMOylation has been associated with the occurrence and progression of various diseases. Herein, we summarize and discuss the signal crosstalk between SUMOylation and ubiquitination of proteins, protein SUMOylation relations with several diseases, and the identification approaches for SUMOylation site. With the continuous development of bioinformatics and mass spectrometry, several accurate and high-throughput methods have been implemented to explore small ubiquitin-like modifier-modified substrates and sites, which is helpful for deciphering protein SUMOylation-mediated molecular mechanisms of disease.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, People's Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
29
|
Reichman R, Shi Z, Malone R, Smolikove S. Mitotic and Meiotic Functions for the SUMOylation Pathway in the Caenorhabditis elegans Germline. Genetics 2018; 208:1421-1441. [PMID: 29472245 PMCID: PMC5887140 DOI: 10.1534/genetics.118.300787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Meiosis is a highly regulated process, partly due to the need to break and then repair DNA as part of the meiotic program. Post-translational modifications are widely used during meiotic events to regulate steps such as protein complex formation, checkpoint activation, and protein attenuation. In this paper, we investigate how proteins that are obligatory components of the SUMO (small ubiquitin-like modifier) pathway, one such post-translational modification, affect the Caenorhabditis elegans germline. We show that UBC-9, the E2 conjugation enzyme, and the C. elegans homolog of SUMO, SMO-1, localize to germline nuclei throughout prophase I. Mutant analysis of smo-1 and ubc-9 revealed increased recombination intermediates throughout the germline, originating during the mitotic divisions. SUMOylation mutants also showed late meiotic defects including defects in the restructuring of oocyte bivalents and endomitotic oocytes. Increased rates of noninterfering crossovers were observed in ubc-9 heterozygotes, even though interfering crossovers were unaffected. We have also identified a physical interaction between UBC-9 and DNA repair protein MRE-11 ubc-9 and mre-11 null mutants exhibited similar phenotypes at germline mitotic nuclei and were synthetically sick. These phenotypes and genetic interactions were specific to MRE-11 null mutants as opposed to RAD-50 or resection-defective MRE-11 We propose that the SUMOylation pathway acts redundantly with MRE-11, and in this process MRE-11 likely plays a structural role.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Zhuoyue Shi
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Robert Malone
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Kar UP, Dey H, Rahaman A. Regulation of dynamin family proteins by post-translational modifications. J Biosci 2018; 42:333-344. [PMID: 28569256 DOI: 10.1007/s12038-017-9680-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dynamin superfamily proteins comprising classical dynamins and related proteins are membrane remodelling agents involved in several biological processes such as endocytosis, maintenance of organelle morphology and viral resistance. These large GTPases couple GTP hydrolysis with membrane alterations such as fission, fusion or tubulation by undergoing repeated cycles of self-assembly/disassembly. The functions of these proteins are regulated by various post-translational modifications that affect their GTPase activity, multimerization or membrane association. Recently, several reports have demonstrated variety of such modifications providing a better understanding of the mechanisms by which dynamin proteins influence cellular responses to physiological and environmental cues. In this review, we discuss major post-translational modifications along with their roles in the mechanism of dynamin functions and implications in various cellular processes.
Collapse
Affiliation(s)
- Usha P Kar
- School of Biological Sciences, National Institute of Science Education and Research- Bhubaneswar, HBNI, 752050, Odisha, India
| | | | | |
Collapse
|
31
|
Liu J, Tao X, Zhang J, Wang P, Sha M, Ma Y, Geng X, Feng L, Shen Y, Yu Y, Wang S, Fang S, Shen Y. Small ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation. Oncotarget 2017; 7:22206-18. [PMID: 26993772 PMCID: PMC5008356 DOI: 10.18632/oncotarget.8066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the potential roles of SUMO1 in HCC via the regulation of p65 subcellular localization. We found that either SUMO1- or p65-positive immunoreactivity was remarkably increased in the nuclei of tumor tissues in HCC patients compared with non-tumor tissues, and further analysis suggested a correlation between SUMO1- and nuclear p65-positive immunoreactivities (R = 0.851, P = 0.002). We also verified the interaction between p65 and SUMO1 in HCC by co-immunoprecipitation. TNF-α and hypoxia increased SUMO1 protein levels and enhanced SUMO1-modified p65 SUMOylation. Moreover, the knockdown of SUMO1 decreased p65 nuclear translocation and inhibited NF-κB transcriptional activity. Further the results of this study revealed that the knockdown of SUMO1 suppressed the proliferation and migration of hepatoma cells. These results suggest that SUMO1 contributes to HCC progression by promoting p65 nuclear translocation and regulating NF-κB activity.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Manqi Sha
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yong Ma
- Chinese People's Liberation Army 123 Hospital, Bengbu, China
| | - Xiaoping Geng
- The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yifan Yu
- Actuarial Science, School of Continuing Education, Columbia University, New York, NY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengyun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China.,Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
33
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
34
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
35
|
Benson M, Iñiguez-Lluhí JA, Martens J. Sumo Modification of Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:127-141. [PMID: 28197910 DOI: 10.1007/978-3-319-50044-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, a role for SUMO modification outside of the nucleus has emerged. Although the number of extranuclear proteins known to be sumoylated is comparatively small, ion channels represent one important new class of these proteins. Ion channels are responsible for the control of membrane excitability and therefore are critical for fundamental physiological processes such as muscle contraction, neuronal firing, and cellular homeostasis. As such, these ion-conducting proteins are subject to precise regulation. Recently, several studies have identified sumoylation as a novel mechanism of modulating ion channel function. These studies expand the list of known functions of sumoylation and reveal that, in addition to its more established role in the regulation of nuclear proteins, this modification plays important roles at the cytoplasmic face of membranes.
Collapse
Affiliation(s)
- Mark Benson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey Martens
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Nie X, Yu S, Qiu M, Wang X, Wang Y, Bai Y, Zhang F, Wang S. Aspergillus flavus SUMO Contributes to Fungal Virulence and Toxin Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6772-6782. [PMID: 27532332 DOI: 10.1021/acs.jafc.6b02199] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) can be reversibly attached to target proteins in a process known as SUMOylation, and this process influences several important eukaryotic cell events. However, little is known regarding SUMO or SUMOylation in Aspergillus flavus. Here, we identified a novel member of the SUMO family in A. flavus, AfSumO, and validated the existence of SUMOylation in this pathogenic filamentous fungus. We investigated the roles of AfsumO in A. flavus by determining the effects of AfsumO mutations on the growth phenotype, stress response, conidia and sclerotia production, aflatoxin biosynthesis, and pathogenicity to seeds, and we found that SUMOylation plays a role in fungal virulence and toxin attributes. Taken together, these results not only reveal potential mechanisms of fungal virulence and toxin attributes in A. flavus but also provide a novel approach for promising new control strategies of this fungal pathogen.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Song Yu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Mengguang Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Youhuang Bai
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|
37
|
Kori M, Gov E, Arga KY. Molecular signatures of ovarian diseases: Insights from network medicine perspective. Syst Biol Reprod Med 2016; 62:266-82. [PMID: 27341345 DOI: 10.1080/19396368.2016.1197982] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysfunctions and disorders in the ovary lead to a host of diseases including ovarian cancer, ovarian endometriosis, and polycystic ovarian syndrome (PCOS). Understanding the molecular mechanisms behind ovarian diseases is a great challenge. In the present study, we performed a meta-analysis of transcriptome data for ovarian cancer, ovarian endometriosis, and PCOS, and integrated the information gained from statistical analysis with genome-scale biological networks (protein-protein interaction, transcriptional regulatory, and metabolic). Comparative and integrative analyses yielded reporter biomolecules (genes, proteins, metabolites, transcription factors, and micro-RNAs), and unique or common signatures at protein, metabolism, and transcription regulation levels, which might be beneficial to uncovering the underlying biological mechanisms behind the diseases. These signatures were mostly associated with formation or initiation of cancer development, and pointed out the potential tendency of PCOS and endometriosis to tumorigenesis. Molecules and pathways related to MAPK signaling, cell cycle, and apoptosis were the mutual determinants in the pathogenesis of all three diseases. To our knowledge, this is the first report that screens these diseases from a network medicine perspective. This study provides signatures which could be considered as potential therapeutic targets and/or as medical prognostic biomarkers in further experimental and clinical studies. Abbreviations DAVID: Database for Annotation, Visualization and Integrated Discovery; DEGs: differentially expressed genes; GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of Genes and Genomes; LIMMA: Linear Models for Microarray Data; MBRole: Metabolite Biological Role; miRNA: micro-RNA; PCOS: polycystic ovarian syndrome; PPI: protein-protein interaction; RMA: Robust Multi-Array Average; TF: transcription factor.
Collapse
Affiliation(s)
- Medi Kori
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| | - Esra Gov
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| | - Kazim Yalcin Arga
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| |
Collapse
|
38
|
Tang X, Li W, Xing J, Sheng X, Zhan W. SUMO and SUMO-Conjugating Enzyme E2 UBC9 Are Involved in White Spot Syndrome Virus Infection in Fenneropenaeus chinensis. PLoS One 2016; 11:e0150324. [PMID: 26927328 PMCID: PMC4771164 DOI: 10.1371/journal.pone.0150324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
In previous work, small ubiquitin-like modifier (SUMO) in hemocytes of Chinese shrimp Fenneropenaeus chinensis was found to be up-regulated post-white spot syndrome virus (WSSV) infection using proteomic approach. However, the role of SUMO in viral infection is still unclear. In the present work, full length cDNAs of SUMO (FcSUMO) and SUMO-conjugating enzyme E2 UBC9 (FcUBC9) were cloned from F. chinensis using rapid amplification of cDNA ends approach. The open reading frame (ORF) of FcSUMO encoded a 93 amino acids peptide with the predicted molecular weight (M.W) of 10.55 kDa, and the UBC9 ORF encoded a 160 amino acids peptide with the predicted M.W of 18.35 kDa. By quantitative real-time RT-PCR, higher mRNA transcription levels of FcSUMO and FcUBC9 were detected in hemocytes and ovary of F. chinensis, and the two genes were significantly up-regulated post WSSV infection. Subsequently, the recombinant proteins of FcSUMO and FcUBC9 were expressed in Escherichia coli BL21 (DE3), and employed as immunogens for the production of polyclonal antibody (PAb). Indirect immunofluorescence assay revealed that the FcSUMO and UBC9 proteins were mainly located in the hemocytes nuclei. By western blotting, a 13.5 kDa protein and a 18.7 kDa protein in hemocytes were recognized by the PAb against SUMO or UBC9 respectively. Furthermore, gene silencing of FcSUMO and FcUBC9 were performed using RNA interference, and the results showed that the number of WSSV copies and the viral gene expressions were inhibited by knockdown of either SUMO or UBC9, and the mortalities of shrimp were also reduced. These results indicated that FcSUMO and FcUBC9 played important roles in WSSV infection.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Yushan road 5, Qingdao, 266003, PR China
| | - Wei Li
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Yushan road 5, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Yushan road 5, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Yushan road 5, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Yushan road 5, Qingdao, 266003, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266071, China
- * E-mail:
| |
Collapse
|
39
|
Xu M, Wei J, Chen X, Gao P, Zhou Y, Qin Q. Molecular cloning and expression analysis of small ubiquitin-like modifier (SUMO) genes from grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2016; 48:119-127. [PMID: 26616235 DOI: 10.1016/j.fsi.2015.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Small ubiquitin-like modifier (SUMO) is a group of proteins binding to lysine residues of target proteins and thereby modifying their stability, activity and subcellular localization. In the present study, two SUMO homolog genes (EcSUMO1 and EcSUMO2) from grouper (Epinephelus coioides) were cloned and characterized. The full-length sequence of EcSUMO1 was 749 bp in length and contained a predicted open reading frame of 306 bp encoding 101 amino acids with a molecular mass of 11.34 kDa. The full-length sequence of EcSUMO2 was 822 bp in length and contained a predicted open reading frame of 291 bp encoding 96 amino acids with a molecular mass of 10.88 kDa EcSUMO1 shares 44.55% identity with EcSUMO2. EcSUMO1 shares 99%, 90%, and 88% identity with those from Oreochromis niloticus, Danio rerio, and Homo sapiens, respectively. EcSUMO2 shares 98%, 93%, and 96% identity with those from Anoplopoma fimbria, D.rerio, and H. sapiens, respectively. Quantitative real-time PCR analysis indicated that EcSUMO1 and EcSUMO2 were constitutively expressed in all of the analyzed tissues in healthy grouper, but the expression of EcSUMO2 was higher than that of EcSUMO1. EcSUMO1 and EcSUMO2 were identified as a remarkably (P < 0.01) up-regulated responding to poly(I:C) and Singapore grouper iridovirus (SGIV) stimulation in head kidney of groupers. EcSUMO1 and EcSUMO2 were distributed in both cytoplasm and nucleus in GS cells. Over-expressed EcSUMO1 and EcSUMO2 enhanced SGIV and Red-spotted grouper nervous necrosis virus (RGNNV) replication during viral infection in vitro. Our study was an important attempt to understand the SUMO pathway in fish, which may provide insights into the regulatory mechanism of viral infection in E.coioides under farmed conditions.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiuli Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Pin Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
40
|
Nepveu-Traversy MÉ, Demogines A, Fricke T, Plourde MB, Riopel K, Veillette M, Diaz-Griffero F, Sawyer SL, Berthoux L. A putative SUMO interacting motif in the B30.2/SPRY domain of rhesus macaque TRIM5α important for NF-κB/AP-1 signaling and HIV-1 restriction. Heliyon 2016; 2:e00056. [PMID: 27441239 PMCID: PMC4945854 DOI: 10.1016/j.heliyon.2015.e00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022] Open
Abstract
TRIM5α from the rhesus macaque (TRIM5αRh) is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA) through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs) have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM ((435)VIIC(438)) which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K) did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Marie-Édith Nepveu-Traversy
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mélodie B. Plourde
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Kathleen Riopel
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Maxime Veillette
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara L. Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Lionel Berthoux
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières. 3351 Boulevard des Forges, CP500, Trois-Rivières, QC, G9A 5H7, Canada
| |
Collapse
|
41
|
Ureña E, Pirone L, Chafino S, Pérez C, Sutherland JD, Lang V, Rodriguez MS, Lopitz-Otsoa F, Blanco FJ, Barrio R, Martín D. Evolution of SUMO Function and Chain Formation in Insects. Mol Biol Evol 2015; 33:568-84. [PMID: 26538142 PMCID: PMC4866545 DOI: 10.1093/molbev/msv242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | - Valérie Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | | | - Francisco J Blanco
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
42
|
Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. BMC Cancer 2015; 15:675. [PMID: 26458400 PMCID: PMC4603762 DOI: 10.1186/s12885-015-1665-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
Background SUMOylation, an important post-translational modification, associates with the development of hepatocellular carcinoma (HCC). p65, one of the most important subunits of NF-κB, is a key regulator in the development of HCC and has been reported to be SUMOylated by exogenous small ubiquitin-related modifier 3 (SUMO3) in HEK 293T cells. However, the relationship between p65 and SUMO2/3 in HCC remains unknown. This study was to investigate the interaction between p65 and SUMO2/3 and explore the potential roles involved in HCC. Methods The expressions of p65 and SUMO2/3 in the liver tissues were detected by using immunohistochemistry. We performed double-labeled immunofluorescence and co-immunoprecipitation assay to verify the interaction between p65 and SUMO2/3. The extraction of nuclear and cytoplasmic proteins was performed, and the subcellular localization of p65 was detected. The proliferation and migration of hepatoma cells were observed using MTT, colony formation, and transwell assays. Results We found a strong SUMO2/3-positive immunoreactivity in the cytoplasm in the non-tumor tissues of HCC. However, SUMO2/3 level was down regulated in the tumor tissues as compared with the adjacent non-tumor tissues. In accordance with this finding, p65 was up regulated in the adjacent non-tumor tissues and almost localized in the cytoplasm. There was a close correlation between SUMO2/3 and p65 expressions in the liver tissues (R = 0.800, p = 0.006). The interaction between p65 and SUMO2/3 was verified by co-immunoprecipitation and double-labeled immunofluorescent assays. TNF-α (10 ng/ml) treatment for 30 min not only up regulated the cytoplasmic conjugated SUMO2/3, but also enhanced SUMO2/3-p65 interaction. Furthermore, we found that SUMO2/3 up regulated the cytoplasmic p65 protein level in a dose-dependent manner, but not affected its mRNA level. The increase of p65 protein by SUMO2/3 was abolished by MG132 treatment, a reversible inhibitor of proteasome. Meanwhile, TNF-α-induced increase of SUMO2/3-conjugated p65 was along with the reduction of the ubiquitin-conjugated p65. The further study showed that SUMO2/3 over-expression decreased the proliferative ability of hepatoma cells, but did not affect the migration. Conclusion SUMO2/3-p65 interaction may be a novel mechanism involved in the transformation from chronic hepatitis B to HCC via stabilizing cytoplasmic p65, which might shed light on understanding the tumorigenesis and development. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1665-3) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Jiang Y, Wang J, Tian H, Li G, Zhu H, Liu L, Hu R, Dai A. Increased SUMO-1 expression in response to hypoxia: Interaction with HIF-1α in hypoxic pulmonary hypertension. Int J Mol Med 2015; 36:271-81. [PMID: 25976847 DOI: 10.3892/ijmm.2015.2209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) develops in 30-70% of chronic obstructive pulmonary disease patients and increases morbidity and mortality. The present study aimed to investigate the regulation of small ubiquitin‑related modifier‑1 (SUMO‑1) expression in response to hypoxia. The experiments were carried out in vitro in rat pulmonary arterial smooth muscle cells (PASMCs) and in vivo using a rat hypoxic PH (HPH) model. A significant increase in SUMO‑1 mRNA and protein levels was observed following hypoxic stimulation in vivo and in vitro. SUMO‑1 is known to interact with various transcription factors, including hypoxia‑inducible factor‑1α (HIF‑1α) in vitro. Notably, the expression of HIF‑1α and its target gene, vascular endothelial growth factor, was increased by hypoxia in HPH. In addition, the present data suggest that SUMO‑1 regulated HIF‑1α in response to hypoxia (gene silencing and overexpression). Finally, the co‑immunoprecipitation assays suggest a direct and specific interaction between SUMO‑1 and HIF‑1α. In conclusion, SUMO‑1 may participate in the modulation of HIF‑1α through sumoylation in HPH. However, further studies are required to confirm this.
Collapse
Affiliation(s)
- Yongliang Jiang
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Jing Wang
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Hua Tian
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Guang Li
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Hao Zhu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Lei Liu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Ruicheng Hu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Aiguo Dai
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| |
Collapse
|
44
|
Stastna M, Van Eyk JE. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments. Proteomics 2015; 15:1164-80. [PMID: 25430483 DOI: 10.1002/pmic.201400312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
The alteration in proteome composition induced by environmental changes and various pathologies is accompanied by the modifications of proteins by specific cotranslational and PTMs. The type and site stoichiometry of PTMs can affect protein functions, alter cell signaling, and can have acute and chronic effects. The particular interest is drawn to those amino acid residues that can undergo several different PTMs. We hypothesize that these selected amino acid residues are biologically rare and act within the cell as molecular switches. There are, at least, 12 various lysine modifications currently known, several of them have been shown to be competitive and they influence the ability of a particular lysine to be modified by a different PTM. In this review, we discuss the PTMs that occur on lysine, specifically neddylation and sumoylation, and the proteomic approaches that can be applied for the identification and quantification of these PTMs. Of interest are the emerging roles for these modifications in heart disease and what can be inferred from work in other cell types and organs.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
45
|
Feligioni M, Marcelli S, Knock E, Nadeem U, Arancio O, E. Fraser P. SUMO modulation of protein aggregation and degradation. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Tang X, Fu X, Hao B, Zhu F, Xiao S, Xu L, Shen Z. Identification of sumoylated proteins in the silkworm Bombyx mori. Int J Mol Sci 2014; 15:22011-27. [PMID: 25470021 PMCID: PMC4284691 DOI: 10.3390/ijms151222011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/20/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC-ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori.
Collapse
Affiliation(s)
- Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Xuliang Fu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Bifang Hao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Feng Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Shengyan Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Li Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| |
Collapse
|
47
|
Induction of anti-tumor immunity by dendritic cells transduced with FAT10 recombinant adenovirus in mice. Cell Immunol 2014; 293:17-21. [PMID: 25461613 DOI: 10.1016/j.cellimm.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/07/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and rapidly fatal malignancy representing the common cancer worldwide. The specific cellular gene involved in carcinogenesis has not been fully identified. The ubiquitin-like modifier FAT10, a recently reported to be over-expressed in 90% of hepatocellular carcinoma (HCC) carcinomas, and might be regarded as an ideal target for HCC therapy. In the present study, we utilized DCs transduced with FAT10 recombinant adenovirus to elicit CTLs in vitro. In addition, the Trimera mice were immunized with the transduced DCs to elicit the immune response in vivo. The results demonstrated that transduced DCs could effectively induce specific CTL response against HCC without lysing autologous lymphocytes, but also significantly inhibit the tumor growth and prolong the life span of tumor bearing mice. These results suggest that FAT10 recombinant adenovirus transduced DCs might be a promising therapeutical strategy for treatment of HCC.
Collapse
|
48
|
Núñez-O'Mara A, Gerpe-Pita A, Pozo S, Carlevaris O, Urzelai B, Lopitz-Otsoa F, Rodríguez MS, Berra E. PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. J Cell Sci 2014; 128:40-9. [PMID: 25380826 DOI: 10.1242/jcs.151514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By controlling HIFα hydroxylation and stability, the prolyl hydroxylase domain (PHD)-containing proteins are essential to the maintenance of oxygen homeostasis; therefore these enzymes are tightly regulated. Small ubiquitin-like modifier (SUMO) is a 10-kDa protein readily conjugated to lysine residues of the targeted proteins in a process termed SUMOylation. In this study, we introduce SUMO conjugation as a novel regulator of PHD3 (also known as EGLN3). PHD3 SUMOylation occurs at a cluster of four lysines at the C-terminal end of the protein. Furthermore, PHD3 SUMOylation by SUMO2 or SUMO3 contributes to PHD3-mediated repression of HIF1-dependent transcriptional activity. Interestingly, PHD3-SUMO conjugation does not affect PHD3 hydroxylase activity or HIF1α stability, providing new evidence for a dual role of PHD3 in HIF1 regulation. Moreover, we show that hypoxia modulates PHD3-SUMO conjugation and that this modification inversely correlates with HIF1 activation. PHD3 SUMOylation highlights a new and additional layer of regulation that is likely required to fine-tune HIF function.
Collapse
Affiliation(s)
- Analía Núñez-O'Mara
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Almudena Gerpe-Pita
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Sara Pozo
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Onintza Carlevaris
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Bakarne Urzelai
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Manuel S Rodríguez
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| | - Edurne Berra
- Centro de Investigación Cooperativa en Biociencias-CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 801A, 48190 Derio, Spain
| |
Collapse
|
49
|
Bhat S, Mary S, Banarjee R, Giri AP, Kulkarni MJ. Immune response to chemically modified proteome. Proteomics Clin Appl 2014; 8:19-34. [PMID: 24375944 DOI: 10.1002/prca.201300068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
Both enzymatic and nonenzymatic PTMs of proteins involve chemical modifications. Some of these modifications are prerequisite for the normal functioning of cell, while other chemical modifications render the proteins as "neo-self" antigens, which are recognized as "non-self" leading to aberrant cellular and humoral immune responses. However, these modifications could be a secondary effect of autoimmune diseases, as in the case of type I diabetes, hyperglycemia leads to protein glycation. The enigma of chemical modifications and immune response is akin to the "chick-and-egg" paradox. Nevertheless, chemical modifications regulate immune response. In some of the well-known autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, chemically modified proteins act as autoantigens forming immune complexes. In some instances, chemical modifications are also involved in regulating immune response during pathogen infection. Further, the usefulness of proteomic analysis of immune complexes is briefly discussed.
Collapse
Affiliation(s)
- Shweta Bhat
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
50
|
Niikura T, Kita Y, Abe Y. SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 2014; 9:e101080. [PMID: 24971881 PMCID: PMC4074151 DOI: 10.1371/journal.pone.0101080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are a major cause of familial amyotrophic lateral sclerosis (ALS), whereby the mutant proteins misfold and aggregate to form intracellular inclusions. We report that both small ubiquitin-like modifier (SUMO) 1 and SUMO2/3 modify ALS-linked SOD1 mutant proteins at lysine 75 in a motoneuronal cell line, the cell type affected in ALS. In these cells, SUMO1 modification occurred on both lysine 75 and lysine 9 of SOD1, and modification of ALS-linked SOD1 mutant proteins by SUMO3, rather than by SUMO1, significantly increased the stability of the proteins and accelerated intracellular aggregate formation. These findings suggest the contribution of sumoylation, particularly by SUMO3, to the protein aggregation process underlying the pathogenesis of ALS.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- * E-mail:
| | - Yoshiko Kita
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|