1
|
Choi C, Im JH, Lee J, Kwon SI, Kim WY, Park SR, Hwang DJ. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:966-981. [PMID: 36168109 DOI: 10.1111/tpj.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.
Collapse
Affiliation(s)
- Changhyun Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Il Kwon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Sciences, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52825, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
2
|
Chowdhury S, Chowdhury AB, Kumar M, Chakraborty S. Revisiting regulatory roles of replication protein A in plant DNA metabolism. PLANTA 2021; 253:130. [PMID: 34047822 DOI: 10.1007/s00425-021-03641-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This review provides insight into the roles of heterotrimeric RPA protein complexes encompassing all aspects of DNA metabolism in plants along with specific function attributed by individual subunits. It highlights research gaps that need further attention. Replication protein A (RPA), a heterotrimeric protein complex partakes in almost every aspect of DNA metabolism in eukaryotes with its principle role being a single-stranded DNA-binding protein, thereby providing stability to single-stranded (ss) DNA. Although most of our knowledge of RPA structure and its role in DNA metabolism is based on studies in yeast and animal system, in recent years, plants have also been reported to have diverse repertoire of RPA complexes (formed by combination of different RPA subunit homologs arose during course of evolution), expected to be involved in plethora of DNA metabolic activities. Here, we have reviewed all studies regarding role of RPA in DNA metabolism in plants. As combination of plant RPA complexes may vary largely depending on number of homologs of each subunit, next step for plant biologists is to develop specific functional methods for detailed analysis of biological roles of these complexes, which we have tried to formulate in our review. Besides, complete absence of any study regarding regulatory role of posttranslational modification of RPA complexes in DNA metabolism in plants, prompts us to postulate a hypothetical model of same in light of information from animal system. With our review, we envisage to stimulate the RPA research in plants to shift its course from descriptive to functional studies, thereby bringing a new angle of studying dynamic DNA metabolism in plants.
Collapse
Affiliation(s)
- Supriyo Chowdhury
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arpita Basu Chowdhury
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Roy Chowdhury M, Basak J. Tiny Yet Indispensable Plant MicroRNAs Are Worth to Explore as Key Components for Combating Genotoxic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1197. [PMID: 31636646 PMCID: PMC6788304 DOI: 10.3389/fpls.2019.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Plants being sessile are always exposed to various stresses including biotic and abiotic stresses. Some of these stresses are genotoxic to cells causing DNA damage by forming lesions which include altered bases, cross-links, and breaking of DNA strands, which in turn hamper the genomic integrity. In order to survive through all these adverse conditions, plants have evolved different DNA repair mechanisms. As seen from the mammalian system and different human diseases, various microRNAs (miRNAs) can target the 3'-untranslated region of mRNAs that code for the proteins involved in DNA repair pathways. Since miRNAs play an important role in plant cells by regulating various metabolic pathways, it can also be possible that miRNAs play an important role in DNA repair pathways too. However, till date, only a handful of plant miRNAs have been identified to play important role in combating genotoxic stresses in plants. Limitation of information regarding involvement of miRNAs in DNA repair as well as in ROS scavenging prompted us to gather information about plant miRNAs specific for these tasks. This mini-review aims to present pertinent literature dealing with different genotoxic stresses that cause genome instability as well as plant specific responses to survive the damage. This is intertwined with the involvement of miRNAs in genotoxic stress in plants, challenges of applying miRNAs as a tool to combat DNA damage along with ways to overcome these challenges, and finally, the future prospective of these understudied aspects.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, University Santiniketan, India
- *Correspondence: Jolly Basak,
| |
Collapse
|
4
|
Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din AU, Wang G. The De-Etiolated 1 Homolog of Arabidopsis Modulates the ABA Signaling Pathway and ABA Biosynthesis in Rice. PLANT PHYSIOLOGY 2016; 171:1259-76. [PMID: 27208292 PMCID: PMC4902595 DOI: 10.1104/pp.16.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 05/20/2023]
Abstract
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1 Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice.
Collapse
Affiliation(s)
- Guangchao Zang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Hanyan Zou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Yuchan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Zheng Xiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Li Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Chunping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Kairong Lei
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Xianyong Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Deming Song
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Ahmad Ud Din
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| |
Collapse
|
5
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
6
|
Pourrut B, Pinelli E, Celiz Mendiola V, Silvestre J, Douay F. Recommendations for increasing alkaline comet assay reliability in plants. Mutagenesis 2015; 30:37-43. [PMID: 25527726 DOI: 10.1093/mutage/geu075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In plants, an increasing interest for the comet assay was shown in the last decade. This versatile technique appears to be promising to detect the genotoxic effect of pollutants and to monitor the environment. However, the lack of a standardised protocol and the low throughput of the assay limit its use in plants. The aims of this paper are to identify key factors affecting comet assay performance and to improve its reliability and reproducibility. We examined the effect of varying several parameters on four different plant species: broad bean (Vicia faba), white clover (Trifolium repens), English ryegrass (Lolium perenne) and miscanthus (Miscanthus x giganteus). The influence of both internal (different nucleus isolation methods, presence or absence of filtration and lysis steps) and external (room temperature, light intensity) parameters were evaluated. Results clearly indicate that short chopping is more efficient to isolate nuclei than the standard slicing method. Filtration and lysis steps were shown to be unnecessary and thus should be skipped. Data also demonstrate that high room temperatures and light could induce DNA damage in isolated nuclei. Calibration tests with H2O2 or ethyl methanesulfonate revealed that a special attention should be paid to plant growing stage, leaf position and exposure duration.
Collapse
Affiliation(s)
- Bertrand Pourrut
- Laboratoire Génie Civil et géo-Environnement (LGCgE)-Groupe ISA, 48 boulevard Vauban, F-59046 Lille, France, EcoLab (Laboratoire d'écologie fonctionnelle) ENSAT, Université de Toulouse, UPS, INP, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France and EcoLab (Laboratoire d'écologie fonctionnelle), Centre national de la recherche scientifique, F-31326 Castanet-Tolosan, France
| | - Eric Pinelli
- EcoLab (Laboratoire d'écologie fonctionnelle) ENSAT, Université de Toulouse, UPS, INP, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France and EcoLab (Laboratoire d'écologie fonctionnelle), Centre national de la recherche scientifique, F-31326 Castanet-Tolosan, France
| | - Vanessa Celiz Mendiola
- Laboratoire Génie Civil et géo-Environnement (LGCgE)-Groupe ISA, 48 boulevard Vauban, F-59046 Lille, France, EcoLab (Laboratoire d'écologie fonctionnelle) ENSAT, Université de Toulouse, UPS, INP, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France and EcoLab (Laboratoire d'écologie fonctionnelle), Centre national de la recherche scientifique, F-31326 Castanet-Tolosan, France
| | - Jérôme Silvestre
- EcoLab (Laboratoire d'écologie fonctionnelle) ENSAT, Université de Toulouse, UPS, INP, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France and EcoLab (Laboratoire d'écologie fonctionnelle), Centre national de la recherche scientifique, F-31326 Castanet-Tolosan, France
| | - Francis Douay
- Laboratoire Génie Civil et géo-Environnement (LGCgE)-Groupe ISA, 48 boulevard Vauban, F-59046 Lille, France, EcoLab (Laboratoire d'écologie fonctionnelle) ENSAT, Université de Toulouse, UPS, INP, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France and EcoLab (Laboratoire d'écologie fonctionnelle), Centre national de la recherche scientifique, F-31326 Castanet-Tolosan, France
| |
Collapse
|
7
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:474. [PMID: 25278950 PMCID: PMC4165212 DOI: 10.3389/fpls.2014.00474] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| |
Collapse
|
8
|
Hayashi G, Shibato J, Imanaka T, Cho K, Kubo A, Kikuchi S, Satoh K, Kimura S, Ozawa S, Fukutani S, Endo S, Ichikawa K, Agrawal GK, Shioda S, Fukumoto M, Rakwal R. Unraveling Low-Level Gamma Radiation-Responsive Changes in Expression of Early and Late Genes in Leaves of Rice Seedlings at litate Village, Fukushima. J Hered 2014; 105:723-38. [DOI: 10.1093/jhered/esu025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
9
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25278950 DOI: 10.3389/fpls.2014.00474/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of Edinburgh Edinburgh, UK
| |
Collapse
|
10
|
Piñeiro M, Jarillo JA. Ubiquitination in the control of photoperiodic flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 198:98-109. [PMID: 23199691 DOI: 10.1016/j.plantsci.2012.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/10/2012] [Accepted: 10/23/2012] [Indexed: 05/25/2023]
Abstract
Triggering flowering at the appropriate time is a key factor for the successful reproduction of plants. Daylength perception allows plants to synchronize flowering with seasonal changes, a process systematically analyzed in the model species Arabidopsis thaliana. Characterization of molecular components that participate in the photoperiodic control of floral induction has revealed that photoreceptors and the circadian oscillator interact in a complex manner to modulate the floral transition in response to daylength and in fact, photoperiodic flowering can be regarded as an output pathway of the circadian oscillator. Recent observations indicate that besides transcriptional regulation, the promotion of flowering in response to photoperiod appears to be also regulated by modulation of protein stability and degradation. Therefore, the ubiquitin/26S proteasome system for targeted protein degradation has emerged as a key element in photoperiodic flowering regulation. Different E3 ubiquitin ligases are involved in the proteolysis of a variety of photoperiod-regulated pathway components including photoreceptors, clock elements and flowering time proteins, all of which participate in the control of this developmental process. Given the large variety of plant ubiquitin ligase complexes, it is likely that new factors involved in mechanisms of protein-targeted degradation will soon be ascribed to various aspects of flowering time control.
Collapse
Affiliation(s)
- Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | | |
Collapse
|
11
|
Research on plants for the understanding of diseases of nuclear and mitochondrial origin. J Biomed Biotechnol 2012; 2012:836196. [PMID: 22690124 PMCID: PMC3368588 DOI: 10.1155/2012/836196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022] Open
Abstract
Different model organisms, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse, cultured human cell lines, among others, were used to study the mechanisms of several human diseases. Since human genes and proteins have been structurally and functionally conserved in plant organisms, the use of plants, especially Arabidopsis thaliana, as a model system to relate molecular defects to clinical disorders has recently increased. Here, we briefly review our current knowledge of human diseases of nuclear and mitochondrial origin and summarize the experimental findings of plant homologs implicated in each process.
Collapse
|
12
|
Biedermann S, Hellmann H. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:404-15. [PMID: 20128879 DOI: 10.1111/j.1365-313x.2010.04157.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The integrity of the genome is a fundamental prerequisite for the well-being of all living organisms. Critical for the genomic integrity are effective DNA damage detection mechanisms that enable the cell to rapidly activate the necessary repair machinery. Here, we describe Arabidopsis thaliana ATCSA-1, which is an ortholog of the mammalian Cockayne Syndrome type-A protein involved in transcription-coupled DNA repair processes. ATCSA-1 is a critical component for initiating the repair of UV-B-induced DNA lesions, and, together with the damage-specific DNA binding protein 2 (DDB2), is necessary for light-independent repair processes in Arabidopsis. The transcriptional profile of both genes revealed that ATCSA-1 is strongly expressed in most tissues, whereas DDB2 is only weakly expressed, predominantly in the root tips and anthers of flowers. In contrast to ATCSA-1, DDB2 expression is rapidly inducible by UV treatment. Like DDB2, ATCSA-1 is localized to the nucleus, and assembles with DDB1 and CUL4 proteins into a complex. ATCSA-1 is an unstable protein that is degraded in a 26S proteasome-dependent manner. Overall, the results presented here form a functional description of a plant Cockayne syndrome factor A (CSA) ortholog, and demonstrate the importance of ATCSA-1 for UV-B tolerance.
Collapse
Affiliation(s)
- Sascha Biedermann
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | | |
Collapse
|
13
|
Al Khateeb WM, Schroeder DF. Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance. PLANT MOLECULAR BIOLOGY 2009; 70:371-83. [PMID: 19288212 DOI: 10.1007/s11103-009-9479-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 02/27/2009] [Indexed: 05/19/2023]
Abstract
Damaged DNA Binding protein 1 (DDB1) is a conserved protein and a component of multiple cellular complexes. Arabidopsis has two homologues of DDB1: DDB1A and DDB1B. In this study we examine the role of DDB1A in Arabidopsis UV tolerance and DNA repair using a DDB1A null mutant (ddb1a) and overexpression lines. DDB1A overexpression lines showed higher levels of UV-resistance than wild-type in a range of assays as well as faster DNA repair. However a significant difference between wild-type plants and ddb1a mutants was only observed immediately following UV treatment in root length and photoproduct repair assays. DDB1A and DDB1B mRNA levels increased 3 h after UV exposure and DDB1A is required for UV regulation of DDB1B and DDB2 mRNA levels. In conclusion, while DDB1A is sufficient to increase Arabidopsis UV tolerance, it is only necessary for immediate response to UV damage.
Collapse
Affiliation(s)
- Wesam M Al Khateeb
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
14
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
15
|
Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:89-103. [PMID: 18363785 DOI: 10.1111/j.1365-313x.2008.03489.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fruits are a major source of nutrition in human diets, providing carbohydrates, fiber, vitamins and phytonutrients. Carotenoids are a principal class of compounds found in many fruits, providing nutritional benefits both as precursors to essential vitamins and as antioxidants. Molecular characterization revealed that the tomato high pigment mutant genes (hp1 and hp2) encode UV-DAMAGED DNA BINDING PROTEIN-1 (DDB1) and DE-ETIOLATED-1 (DET1) homologs, respectively, and both are essential components of the recently identified CUL4-based E3 ligase complex. Here we have isolated a tomato CUL4 homolog and performed yeast two-hybrid assays to suggest possible association of tomato DDB1 with CUL4 and DET1. Real-time RT-PCR analysis indicated that both HP1 and CUL4 are expressed constitutively. Abscisic acid is implicated in plastid division control and its application substantially enhances HP1/DDB1 mRNA accumulation. Transformation of constructs expressing CUL4-YFP and DDB1-YFP fusion proteins driven by the CaMV 35S promoter reveals that both CUL4 and DDB1 are targeted to tomato plastids and nuclei simultaneously. Using fruit-specific promoters combined with RNAi technology, we show that downregulated DDB1 expression in transgenic fruits results in a significant increase in the number of plastids and corresponding enhanced pigment accumulation. CUL4-RNAi repression lines provide insight regarding CUL4 function during tomato development, and reveal that this tomato cullin is important in the regulation of plastid number and pigmentation, which in turn have a direct impact on fruit nutrient quality.
Collapse
Affiliation(s)
- Songhu Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. THE PLANT CELL 2008; 20:1437-55. [PMID: 18552200 PMCID: PMC2483375 DOI: 10.1105/tpc.108.058891] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/01/2008] [Accepted: 05/30/2008] [Indexed: 05/20/2023]
Abstract
The human DDB1-CUL4 ASSOCIATED FACTOR (DCAF) proteins have been reported to interact directly with UV-DAMAGED DNA BINDING PROTEIN1 (DDB1) through the WDxR motif in their WD40 domain and function as substrate-recognition receptors for CULLIN4-based E3 ubiquitin ligases. Here, we identified and characterized a homolog of human DCAF1/VprBP in Arabidopsis thaliana. Yeast two-hybrid analysis demonstrated the physical interaction between DCAF1 and DDB1 from Arabidopsis, which is likely mediated via the WD40 domain of DCAF1 that contains two WDxR motifs. Moreover, coimmunoprecipitation assays showed that DCAF1 associates with DDB1, RELATED TO UBIQUITIN-modified CUL4, and the COP9 signalosome in vivo but not with CULLIN-ASSOCIATED and NEDDYLATION-DISSOCIATED1, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), or the COP10-DET1-DDB1 complex, supporting the existence of a distinct Arabidopsis CUL4 E3 ubiquitin ligase, the CUL4-DDB1-DCAF1 complex. Transient expression of fluorescently tagged DCAF1, DDB1, and CUL4 in onion epidermal cells showed their colocalization in the nucleus, consistent with the notion that the CUL4-DDB1-DCAF1 complex functions as a nuclear E3 ubiquitin ligase. Genetic and phenotypic analysis of two T-DNA insertion mutants of DCAF1 showed that embryonic development of the dcaf1 homozygote is arrested at the globular stage, indicating that DCAF1 is essential for plant embryogenesis. Reducing the levels of DCAF1 leads to diverse developmental defects, implying that DCAF1 might be involved in multiple developmental pathways.
Collapse
Affiliation(s)
- Yu Zhang
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Furukawa T, Imamura T, Kitamoto HK, Shimada H. Rice exonuclease-1 homologue, OsEXO1, that interacts with DNA polymerase lambda and RPA subunit proteins, is involved in cell proliferation. PLANT MOLECULAR BIOLOGY 2008; 66:519-531. [PMID: 18231866 DOI: 10.1007/s11103-008-9288-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/31/2007] [Indexed: 05/25/2023]
Abstract
Exonuclease 1, a class III member of the RAD2 nuclease family, is a structure-specific nuclease involved in DNA metabolism (replication, repair and recombination). We have identified a homologue to Exonuclease-1 from rice (Oryza sativa L. cv. Nipponbare) and have designated it O. sativa Exonuclease-1 (OsEXO1). The open reading frame of OsEXO1 encodes a predicted product of 836 amino acid residues with a molecular weight of 92 kDa. Two highly conserved nuclease domains (XPG-N and XPG-I) are present in the N-terminal region of the protein. OsEXO1-sGFP fusion protein transiently overexpressed in the onion epidermal cells localized to the nucleus. The transcript of OsEXO1 is highly expressed in meristematic tissues and panicles. Inhibition of cell proliferation by removal of sucrose from the medium or by the addition of cell cycle inhibitors decreased OsEXO1 expression. Functional complementation assays using yeast RAD2 member null mutants demonstrates that OsEXO1 is able to substitute for ScEXO1 and ScRAD27 functions. Yeast two-hybrid analysis shows that OsEXO1 interacted with rice DNA polymerase lambda (OsPol lambda), the 70 kDa subunit b of rice replication protein A (OsRPA70b), and the 32 kDa subunit 1 of rice replication protein A (OsRPA32-1). Irradiation of UV-B induces OsEXO1 expression while hydrogen peroxide treatment represses it. These results suggest that OsEXO1 plays an important role in both cell proliferation and UV-damaged nuclear DNA repair pathway under dark conditions.
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- Division of Plant Biotechnology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | | | | | | |
Collapse
|
18
|
Lima JF, Malavazi I, da Silva Ferreira ME, Savoldi M, Mota AO, Capellaro JL, de Souza Goldman MH, Goldman GH. Functional characterization of the putative Aspergillus nidulans DNA damage binding protein homologue DdbA. Mol Genet Genomics 2007; 279:239-53. [PMID: 18060432 DOI: 10.1007/s00438-007-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 11/08/2007] [Indexed: 12/29/2022]
Abstract
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the DeltaddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The DeltaddbA mutation can genetically interact with uvsB (ATR), atmA(ATM), nkuA (KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne's syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP::DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Collapse
Affiliation(s)
- Joel Fernandes Lima
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Al Khateeb WM, Schroeder DF. DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development. Genetics 2007; 176:231-42. [PMID: 17409070 PMCID: PMC1893029 DOI: 10.1534/genetics.107.070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Damaged DNA-binding proteins 1 and 2 (DDB1 and DDB2) are subunits of the damaged DNA-binding protein complex (DDB). DDB1 is also found in the same complex as DE-ETIOLATED 1 (DET1), a negative regulator of light-mediated responses in plants. Arabidopsis has two DDB1 homologs, DDB1A and DDB1B. ddb1a single mutants have no visible phenotype while ddb1b mutants are lethal. We have identified a partial loss-of-function allele of DDB2. To understand the genetic interaction among DDB2, DDB1A, and DET1 during Arabidopsis light signaling, we generated single, double, and triple mutants. det1 ddb2 partially enhances the short hypocotyl and suppresses the high anthocyanin content of dark-grown det1 and suppresses the low chlorophyll content, early flowering time (days), and small rosette diameter of light-grown det1. No significant differences were observed between det1 ddb1a and det1 ddb1a ddb2 in rosette diameter, dark hypocotyl length, and anthocyanin content, suggesting that these are DDB1A-dependent phenotypes. In contrast, det1 ddb1a ddb2 showed higher chlorophyll content and later flowering time than det1 ddb1a, indicating that these are DDB1A-independent phenotypes. We propose that the DDB1A-dependent phenotypes indicate a competition between DDB2- and DET1-containing complexes for available DDB1A, while, for DDB1A-independent phenotypes, DDB1B is able to fulfill this role.
Collapse
Affiliation(s)
- Wesam M Al Khateeb
- Department of Botany, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
20
|
Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin MJ, Benvenuto G, Bowler C, Genschik P, Hellmann H. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:591-603. [PMID: 16792691 DOI: 10.1111/j.1365-313x.2006.02810.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cullins are central scaffolding subunits in eukaryotic E3 ligases that facilitate the ubiquitination of target proteins. Arabidopsis contains at least 11 cullin proteins but only a few of them have been assigned biological roles. In this work Arabidopsis cullin 4 is shown to assemble with DDB1, RBX1, DET1 and DDB2 in vitro and in planta. In addition, by using T-DNA insertion and CUL4 antisense lines we demonstrate that corresponding mutants are severely affected in different aspects of development. Reduced CUL4 expression leads to a reduced number of lateral roots, and to abnormal vascular tissue and stomatal development. Furthermore, cul4 mutants display a weak constitutive photomorphogenic phenotype. These results therefore assign an important function to CUL4 during plant development and provide strong evidence that CUL4 assembles together with RBX1 and DDB1 proteins to form a functional E3 ligase in Arabidopsis.
Collapse
Affiliation(s)
- Anne Bernhardt
- Angewandte Genetik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koga A, Ishibashi T, Kimura S, Uchiyama Y, Sakaguchi K. Characterization of T-DNA insertion mutants and RNAi silenced plants of Arabidopsis thaliana UV-damaged DNA binding protein 2 (AtUV-DDB2). PLANT MOLECULAR BIOLOGY 2006; 61:227-40. [PMID: 16786303 DOI: 10.1007/s11103-006-6408-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/03/2006] [Indexed: 05/10/2023]
Abstract
The human UV-damaged DNA binding protein (UV-DDB), a heterodimeric protein composed of 127 kDa (UV-DDB1) and 48 kDa (UV-DDB2) subunits, has been shown to be involved in DNA repair. To elucidate the in vivo function of plant UV-DDB2, we have analyzed T-DNA insertion mutants of the Arabidopsis thaliana UV-DDB2 subunit (atuv-ddb2 mutants) and AtUV-DDB2 RNAi silenced plants (atuv-ddb2 silenced plants). atuv-ddb2 mutants and atuv-ddb2 silenced plants were both viable, suggesting that AtUV-DDB2 is not essential for survival. Interestingly, both plant types showed a dwarf phenotype, implying impaired growth of the meristem. To the best of our knowledge, this is the first occasion that a dwarf phenotype has been found to be associated with a UV-DDB2 mutation in either plants or animals. The mutants also demonstrated increased sensitivity to UV irradiation, methyl methanesulfonate and hydrogen peroxide treatment, indicating that AtUV-DDB2 is also involved in DNA repair. Our results lead us to suggest that not only does AtUV-DDB2 function in DNA repair, it also has a direct or indirect influence on cell proliferation in the plant meristem.
Collapse
Affiliation(s)
- Asami Koga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
23
|
Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:1-40. [PMID: 17178464 DOI: 10.1016/s0074-7696(06)55001-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
24
|
Kimura S, Saotome A, Uchiyama Y, Mori Y, Tahira Y, Sakaguchi K. The expression of the rice (Oryza sativa L.) homologue of Snm1 is induced by DNA damages. Biochem Biophys Res Commun 2005; 329:668-72. [PMID: 15737637 DOI: 10.1016/j.bbrc.2005.01.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Indexed: 10/25/2022]
Abstract
We isolated and characterized the rice homologue of the DNA repair gene Snm1 (OsSnm1). The length of the cDNA was 1862bp; the open reading frame encoded a predicted product of 485 amino acid residues with a molecular mass of 53.2kDa. The OsSnm1 protein contained the conserved beta-lactamase domain in its internal region. OsSnm1 was expressed in all rice organs. The expression was induced by MMS, H(2)O(2), and mitomycin C, but not by UV. Transient expression of an OsSnm1/GFP fusion protein in onion epidermal cells revealed the localization of OsSnm1 to the nucleus. These results suggest that OsSnm1 is involved not only in the repair of DNA interstrand crosslinks, but also in various other DNA repair pathways.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Takata KI, Shimanouchi K, Yamaguchi M, Murakami S, Ishikawa G, Takeuchi R, Kanai Y, Ruike T, Nakamura RI, Abe Y, Sakaguchi K. Damaged DNA binding protein 1 in Drosophila defense reactions. Biochem Biophys Res Commun 2004; 323:1024-31. [PMID: 15381102 DOI: 10.1016/j.bbrc.2004.08.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We have focused attention on functions of Drosophila damaged DNA binding protein 1 (D-DDB1) in Drosophila hematopoiesis and previously reported that its whole body dsRNA over-expression using a GAL4-UAS targeted expression system results in melanotic tumors and complete lethality. Since the lesions appear to arise as a normal and heritable response to abnormal development, forming groups of cells that are recognized by the immune system and encapsulated in melanized cuticle, D-DDB1 appears to be an essential development-associated factor in Drosophila. To probe the possibility that it contributes to hemocyte development, we used a collagen promoter-GAL4 strain to over-express dsRNA of D-DDB1 in Drosophila hemocytes. The D-DDB1 gene silencing caused melanotic tumors and mortality at the end of larval development. Similarly, it interfered with melanization and synthesis of antimicrobial peptides. Transgenic flies with D-DDB1 gene silencing were found to accumulate abnormal large blood cells, reminiscent of human leukemia, suggesting that D-DDB1 has functions in hemocyte development.
Collapse
Affiliation(s)
- Kei-ichi Takata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S, Wang J, Deng XW. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev 2004; 18:2172-81. [PMID: 15342494 PMCID: PMC515294 DOI: 10.1101/gad.1229504] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
COP10 is a ubiquitin-conjugating enzyme variant (UEV), which is thought to act together with COP1, DET1, and the COP9 signalosome (CSN) in Arabidopsis to repress photomorphogenesis. Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous characterized UEVs such as MMS2 and UEV1. Furthermore, we show that COP10 forms a complex with UV-damaged DNA-binding protein 1a (DDB1a) and de-etiolated 1 (DET1), and physically interacts with COP1 and the CSN. Purified CDD (COP10, DDB1, DET1) complex also shows enhancement of E2 activity (UEA) similar to that observed with COP10 itself. Our data suggests that COP10, along with COP1 and the CSN, promotes the degradation of positive regulators of photomorphogenesis, such as the transcription factor HY5, via the ubiquitin/26S proteasome system. Thus, the CDD complex may act as a ubiquitylation-promoting factor to regulate photomorphogenesis.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K. DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 2004; 32:2760-7. [PMID: 15150342 PMCID: PMC419598 DOI: 10.1093/nar/gkh591] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/02/2004] [Accepted: 04/15/2004] [Indexed: 11/13/2022] Open
Abstract
We investigated expression patterns of DNA repair genes such as the CPD photolyase, UV-DDB1, CSB, PCNA, RPA32 and FEN-1 genes by northern hybridization analysis and in situ hybridization using a higher plant, rice (Oryza sativa L. cv. Nipponbare). We found that all the genes tested were expressed in tissues rich in proliferating cells, but only CPD photolyase was expressed in non-proliferating tissue such as the mature leaves and elongation zone of root. The removal of DNA damage, cyclobutane pyrimidine dimers and (6-4) photoproducts, in both mature leaves and the root apical meristem (RAM) was observed after UV irradiation under light. In the dark, DNA damage in mature leaves was not repaired efficiently, but that in the RAM was removed rapidly. Using a rice 22K custom oligo DNA microarray, we compared global gene expression patterns in the shoot apical meristem (SAM) and mature leaves. Most of the excision repair genes were more strongly expressed in SAM. These results suggested that photoreactivation is the major DNA repair pathway for the major UV-induced damage in non-proliferating cells, while both photoreactivation and excision repair are active in proliferating cells.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1574-81. [PMID: 14968305 DOI: 10.1007/s00122-004-1584-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 12/19/2003] [Indexed: 05/23/2023]
Abstract
A tomato EST sequence, highly homologous to the human and Arabidopsis thaliana UV-damaged DNA binding protein 1 (DDB1), was mapped to the centromeric region of the tomato chromosome 2. This region was previously shown to harbor the HP-1 gene, encoding the high pigment-1 ( hp-1) and the high pigment-1(w) ( hp-1(w)) mutant phenotypes. Recent results also show that the A. thaliana DDB1 protein interacts both genetically and biochemically with the protein encoded by DEETIOLATED1, a gene carrying three tomato mutations that are in many respects isophenotypic to hp-1: high pigment-2 ( hp-2), high pigment-2(j) ( hp-2(j)) and dark green ( dg). The entire coding region of the DDB1 gene was sequenced in an hp-1 mutant and its near-isogenic normal plant in the cv. Ailsa Craig background, and also in an hp-1(w) mutant and its isogenic normal plant in the GT breeding line background. Sequence analysis revealed a single A(931)-to-T(931) base transversion in the coding sequence of the DDB1 gene in the hp-1 mutant plants. This transversion results in the substitution of the conserved asparagine at position 311 to a tyrosine residue. In the hp-1(w) mutant, on the other hand, a single G(2392)-to-A(2392) transition was observed, resulting in the substitution of the conserved glutamic acid at position 798 to a lysine residue. The single nucleotide polymorphism that differentiates hp-1 mutant and normal plants in the cv. Ailsa Craig background was used to design a pyrosequencing genotyping system. Analysis of a resource F(2) population segregating for the hp-1 mutation revealed a very strong linkage association between the DDB1 locus and the photomorphogenic response of the seedlings, measured as hypocotyl length (25<LOD score<26, R(2)=62.8%). These results strongly support the hypothesis that DDB1 is the gene encoding the hp-1 and hp-1(w) mutant phenotypes.
Collapse
Affiliation(s)
- Michal Lieberman
- Department of Plant Genetics and Breeding, Institute of Plant Field and Garden Crops, The Volcani Center, P.O. Box 6, Bet Dagan, Israel 50250
| | | | | | | | | |
Collapse
|