1
|
Liu L, Wang D, Hua J, Kong X, Wang X, Wang J, Si A, Zhao F, Liu W, Yu Y, Chen Z. Genetic and Morpho-Physiological Differences among Transgenic and No-Transgenic Cotton Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3437. [PMID: 37836177 PMCID: PMC10574747 DOI: 10.3390/plants12193437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Three carbon-chain extension genes associated with fatty acid synthesis in upland cotton (Gossypium hirsutum), namely GhKAR, GhHAD, and GhENR, play important roles in oil accumulation in cotton seeds. In the present study, these three genes were cloned and characterized. The expression patterns of GhKAR, GhHAD, and GhENR in the high seed oil content cultivars 10H1014 and 10H1041 differed somewhat compared with those of 10H1007 and 2074B with low seed oil content at different stages of seed development. GhKAR showed all three cultivars showed higher transcript levels than that of 2074B at 10-, 40-, and 45-days post anthesis (DPA). The expression pattern of GhHAD showed a lower transcript level than that of 2074B at both 10 and 30 DPA but a higher transcript level than that of 2074B at 40 DPA. GhENR showed a lower transcript level than that of 2074B at both 15 and 30 DPA. The highest transcript levels of GhKAR and GhENR were detected at 15 DPA in 10H1007, 10H1014, and 10H1041 compared with 2074B. From 5 to 45 DPA cotton seed, the oil content accumulated continuously in the developing seed. Oil accumulation reached a peak between 40 DPA and 45 DPA and slightly decreased in mature seed. In addition, GhKAR and GhENR showed different expression patterns in fiber and ovule development processes, in which they showed high expression levels at 20 DPA during the fiber elongation stage, but their expression level peaked at 15 DPA during ovule development processes. These two genes showed the lowest expression levels at the late seed maturation stage, while GhHAD showed a peak of 10 DPA in fiber development. Compared to 2074B, the oil contents of GhKAR and GhENR overexpression lines increased 1.05~1.08 folds. These results indicated that GhHAD, GhENR, and GhKAR were involved in both seed oil synthesis and fiber elongation with dual biological functions in cotton.
Collapse
Affiliation(s)
- Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Dan Wang
- Laboratory of Cotton Genetics, Genomics and Breeding/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.W.); (J.H.)
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.W.); (J.H.)
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Juan Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Fuxiang Zhao
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Wenhao Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (L.L.); (X.K.); (X.W.); (J.W.); (A.S.); (F.Z.); (W.L.)
| | - Zhiwen Chen
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
2
|
Zhang Y, Gu Z, Ren Y, Wang L, Zhang J, Liang C, Tong S, Wang Y, Xu D, Zhang X, Ye N. Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO 2 in Chlamydomonas Reinhardtii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:255-275. [PMID: 33689052 DOI: 10.1007/s10126-021-10021-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 05/27/2023]
Abstract
With atmospheric CO2 increasing, a large amount of CO2 is absorbed by oceans and lakes, which changes the carbonate system and affects the survival of aquatic plants, especially microalgae. The main aim of our study was to explore the responses of Chlamydomonas reinhardtii (Chlorophyceae) to elevated CO2 by combined transcriptome and metabolome analysis under three different scenarios: control (CK, 400 ppm), short-term elevated CO2 (ST, 1000 ppm), and long-term elevated CO2 (LT, 1000 ppm). The transcriptomic data showed moderate changes between ST and CK. However, metabolic analysis indicated that fatty acids (FAs) and partial amino acids (AAs) were increased under ST. There was a global downregulation of genes involved in photosynthesis, glycolysis, lipid metabolism, and nitrogen metabolism but increase in the TCA cycle and β-oxidation under LT. Integrated transcriptome and metabolome analyses demonstrated that the nutritional constituents (FAs, AAs) under LT were poor compared with CK, and most genes and metabolites involved in C and N metabolism were significantly downregulated. However, the growth and photosynthesis of cells under LT increased significantly. Thus, C. reinhardtii could form a specific adaptive evolution to elevated CO2, affecting future biogeochemical cycles.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Zipeng Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Yudong Ren
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Lu Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Jian Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Chengwei Liang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China.
| | - Shanying Tong
- School of Life Sciences, Ludong University, 186 Hongqi Middle Road, Yantai, 264025, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- National Oceanographic Center, Qingdao, 266071, China.
| |
Collapse
|
3
|
Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 2020; 40:993-1009. [DOI: 10.1080/07388551.2020.1805402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Runqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020; 10:E1102. [PMID: 32722284 PMCID: PMC7464705 DOI: 10.3390/biom10081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 České Budějovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Marie Vancová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Maréchal E, Lupette J. Relationship between acyl-lipid and sterol metabolisms in diatoms. Biochimie 2019; 169:3-11. [PMID: 31291593 DOI: 10.1016/j.biochi.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
Diatoms are a phylum of unicellular photosynthetic eukaryotes living in oceans and fresh waters, characterized by the complexity of their plastid, resulting from a secondary endosymbiosis event. In the model diatom Phaeodactylum tricornutum, fatty acids (FAs) are synthesized from acetyl-CoA in the stroma of the plastid, producing palmitic acid. FAs are elongated and desaturated to form very-long chain polyunsaturated fatty acids (VLC-PUFAs) in domains of the endomembrane system that need to be identified. Synthesis of VLC-PUFAs is coupled with their import to the core of the plastid via the so-called "omega" pathway. The biosynthesis of sterols in diatoms is likely to be localized in the endoplasmic reticulum as well as using precursors deriving from the mevalonate pathway, using acetyl-CoA as initial substrate. These metabolic modules can be characterized functionally by genetic analyzes or chemical treatments with appropriate inhibitors. Some 'metabolic modules' are characterized by a very low level of metabolic intermediates. Since some chemical treatments or genetic perturbation of lipid metabolism induce the accumulation of these intermediates, channeling processes are possibly involved, suggesting that protein-protein interactions might occur between enzymes within large size complexes or metabolons. At the junction of these modules, metabolic intermediates might therefore play dramatic roles in directing carbon fluxes from one direction to another. Here, acetyl-CoA seems determinant in the balance between TAGs and sterols. Future lines of research and potential utilization for biotechnological applications are discussed.
Collapse
Affiliation(s)
- Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Recherche Interdisciplinaire de Grenoble, CEA Grenoble, 17 avenue des Martyrs, 38000, Grenoble, France
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Hamid SS, Wakayama M, Ichihara K, Sakurai K, Ashino Y, Kadowaki R, Soga T, Tomita M. Metabolome profiling of various seaweed species discriminates between brown, red, and green algae. PLANTA 2019; 249:1921-1947. [PMID: 30891648 DOI: 10.1007/s00425-019-03134-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Among seaweed groups, brown algae had characteristically high concentrations of mannitol, and green algae were characterised by fructose. In red algae, metabolite profiles of individual species should be evaluated. Seaweeds are metabolically different from terrestrial plants. However, general metabolite profiles of the three major seaweed groups, the brown, red, and green algae, and the effect of various extraction methods on metabolite profiling results have not been comprehensively explored. In this study, we evaluated the water-soluble metabolites in four brown, five red, and two green algae species collected from two sites in northern Japan, located in the Sea of Japan and the Pacific Ocean. Freeze-dried seaweed samples were processed by methanol-water extraction with or without chloroform and analysed by capillary electrophoresis- and liquid chromatography-mass spectrometry for metabolite characterisation. The metabolite concentration profiles showed distinctive characteristic depends on species and taxonomic groups, whereas the extraction methods did not have a significant effect. Taxonomic differences between the various seaweed metabolite profiles were well defined using only sugar metabolites but no other major compound types. Mannitol was the main sugar metabolites in brown algae, whereas fructose, sucrose, and glucose were found at high concentrations in green algae. In red algae, individual species had some characteristic metabolites, such as sorbitol in Pyropia pseudolinearis and panose in Dasya sessilis. The metabolite profiles generated in this study will be a resource and provide guidance for nutraceutical research studies because the information about metabolites in seaweeds is still very limited compared to that of terrestrial plants.
Collapse
Affiliation(s)
- Shahlizah Sahul Hamid
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Masataka Wakayama
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.
| | - Kensuke Ichihara
- Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University, 1-133-31, Funami-cho, Muroran, Hokkaido, 051-0013, Japan
| | - Katsutoshi Sakurai
- Yamagata Prefecture Fisheries Experiment Station, Kamo Ookuzure 594, Tsuruoka, Yamagata, 997-1204, Japan
| | - Yujin Ashino
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Rie Kadowaki
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
7
|
Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 2018. [DOI: 10.1016/j.plipres.2018.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Kohli GS, John U, Van Dolah FM, Murray SA. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME JOURNAL 2016; 10:1877-90. [PMID: 26784357 PMCID: PMC5029157 DOI: 10.1038/ismej.2015.263] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Abstract
Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success.
Collapse
Affiliation(s)
- Gurjeet S Kohli
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| | - Uwe John
- Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Frances M Van Dolah
- Marine Biotoxins Program, National Oceanic and Atmospheric Administration Center for Coastal and Environmental Health and Biomolecular Research, Charleston, SC, USA
| | - Shauna A Murray
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| |
Collapse
|
9
|
|
10
|
Beld J, Blatti JL, Behnke C, Mendez M, Burkart MD. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions. JOURNAL OF APPLIED PHYCOLOGY 2014; 26:1619-1629. [PMID: 25110394 PMCID: PMC4125210 DOI: 10.1007/s10811-013-0203-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.
Collapse
|
11
|
Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2709-27. [PMID: 24628496 PMCID: PMC3983371 DOI: 10.1021/jf4042134] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/12/2014] [Accepted: 03/16/2014] [Indexed: 05/08/2023]
Abstract
In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.
Collapse
Affiliation(s)
- Luis A. Garay
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - Kyria L. Boundy-Mills
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - J. Bruce German
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| |
Collapse
|
12
|
Van Dolah FM, Zippay ML, Pezzolesi L, Rein KS, Johnson JG, Morey JS, Wang Z, Pistocchi R. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity. JOURNAL OF PHYCOLOGY 2013; 49:1118-1127. [PMID: 27007632 DOI: 10.1111/jpy.12120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/25/2013] [Indexed: 06/05/2023]
Abstract
Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting multiprotein complexes similar to Type II PKSs. Here, we provide evidence through coimmunoprecipitation that single-domain ketosynthase and ketoreductase proteins interact, suggesting a predicted multiprotein complex. In Karenia brevis (C.C. Davis) Gert Hansen & Ø. Moestrup, previously observed chloroplast localization of PKSs suggested that brevetoxin biosynthesis may take place in the chloroplast. Here, we report that PKSs are present in both cytosol and chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what chloroplast-localized PKS enzymes might be doing. Antibodies to K. brevis PKSs recognize cytosolic and chloroplast proteins in Ostreopsis cf. ovata Fukuyo, and Coolia monotis Meunier, which produce different suites of polyketide toxins, suggesting that these PKSs may share common pathways. Since PKSs are closely related to fatty acid synthases (FAS), we sought to determine if fatty acid biosynthesis colocalizes with either chloroplast or cytosolic PKSs. [(3) H]acetate labeling showed fatty acids are synthesized in the cytosol, with little incorporation in chloroplasts, consistent with a Type I FAS system. However, although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e-value <10(-10) ) to PKSs, no transcripts for either Type I (cytosolic) or Type II (chloroplast) FAS are present. Further characterization of the FAS complexes may help to elucidate the functions of the PKS enzymes identified in dinoflagellates.
Collapse
Affiliation(s)
- Frances M Van Dolah
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Mackenzie L Zippay
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Laura Pezzolesi
- Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, 48123, Italy
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Jillian G Johnson
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
- Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Jeanine S Morey
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
| | - Zhihong Wang
- Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412, USA
| | - Rossella Pistocchi
- Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, 48123, Italy
| |
Collapse
|
13
|
Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 2013; 11:4662-97. [PMID: 24284429 PMCID: PMC3853752 DOI: 10.3390/md11114662] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022] Open
Abstract
The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs) for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.
Collapse
Affiliation(s)
- Alice Mühlroth
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Keshuai Li
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Gunvor Røkke
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Yngvar Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Martin F. Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| |
Collapse
|
14
|
Stec J, Fomovska A, Afanador GA, Muench SP, Zhou Y, Lai BS, El Bissati K, Hickman MR, Lee PJ, Leed SE, Auschwitz JM, Sommervile C, Woods S, Roberts CW, Rice D, Prigge ST, McLeod R, Kozikowski AP. Modification of triclosan scaffold in search of improved inhibitors for enoyl-acyl carrier protein (ACP) reductase in Toxoplasma gondii. ChemMedChem 2013; 8:1138-60. [PMID: 23776166 DOI: 10.1002/cmdc.201300050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/26/2013] [Indexed: 11/08/2022]
Abstract
Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was used to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4' of the well-known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM, respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.
Collapse
Affiliation(s)
- Jozef Stec
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 2013; 17:496-505. [PMID: 23683348 DOI: 10.1016/j.cbpa.2013.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023]
Abstract
Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock.
Collapse
Affiliation(s)
- Jillian L Blatti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
16
|
Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B. Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. PHYTOCHEMISTRY 2013; 86:44-56. [PMID: 23168246 DOI: 10.1016/j.phytochem.2012.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 05/24/2023]
Abstract
The lipid and fatty acid (FA) compositions for 100 marine macroalgae were determined and discussed from the context of chemotaxonomic and nutritional perspectives. In general, the lipid contents in macroalgae were low (2.3-20 mg/g fr. wt.) but with substantially high amounts of nutritionally important polyunsaturated fatty acids (PUFAs) such as LA, ALA, STA, AA, EPA and DHA, that ranged from 10% to 70% of TFAs. More than 90% of the species showed nutritionally beneficial n6/n3 ratio (0.1:1-3.6:1) (p≤0.001). A closer look at the FA data revealed characteristic chemotaxonomic features with C18 PUFAs (LA, ALA and STA) being higher in Chlorophyta, C20 PUFAs (AA and EPA) in Rhodophyta while Phaeophyta depicted evenly distribution of C18 and C20 PUFAs. The ability of macroalgae to produce long-chain PUFAs could be attributed to the coupling of chloroplastic FA desaturase enzyme system from a photosynthetic endosymbiont to the FA desaturase/elongase enzyme system of a non-photosynthetic eukaryotic protist host. Further, the principal component analysis segregated the three macroalgal groups with a marked distinction of different genera, families and orders, Hierarchical cluster analyses substantiated the phylogenetic relationships of all orders investigated except for those red algal taxa belonging to Gigartinales, Ceramiales, Halymeniales and Rhodymeniales for which increased sampling effort is required to infer a conclusion. Also, the groups deduced from FA compositions were congruent with the clades inferred from nuclear and plastid genome sequences. This study further indicates that FA signatures could be employed as a valid chemotaxonomic tool to differentiate macroalgae at higher taxonomic levels such as family and orders.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | | | | | | | | |
Collapse
|
17
|
Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS One 2012; 7:e42949. [PMID: 23028438 PMCID: PMC3441505 DOI: 10.1371/journal.pone.0042949] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/16/2012] [Indexed: 02/04/2023] Open
Abstract
Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.
Collapse
Affiliation(s)
- Jillian L. Blatti
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Craig A. Behnke
- Sapphire Energy Inc., San Diego, California, United States of America
| | - Michael Mendez
- Sapphire Energy Inc., San Diego, California, United States of America
| | - Stephen P. Mayfield
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
19
|
Fournier GP, Huang J, Gogarten JP. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc Lond B Biol Sci 2009; 364:2229-39. [PMID: 19571243 PMCID: PMC2873001 DOI: 10.1098/rstb.2009.0033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the 'true' evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.
Collapse
Affiliation(s)
- Gregory P. Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| |
Collapse
|
20
|
Keeling PJ. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Methods Mol Biol 2009; 532:501-515. [PMID: 19271204 DOI: 10.1007/978-1-60327-853-9_29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Huang J, Gogarten JP. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 2008; 8:R99. [PMID: 17547748 PMCID: PMC2394758 DOI: 10.1186/gb-2007-8-6-r99] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/06/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
Phylogenomic analyses of the red alga Cyanidioschyzon merolae shows that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, suggesting an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. Background Ancient endosymbioses are responsible for the origins of mitochondria and plastids, and they contribute to the divergence of several major eukaryotic groups. Although chlamydiae, a group of obligate intracellular bacteria, are not found in plants, an unexpected number of chlamydial genes are most similar to plant homologs, which, interestingly, often contain a plastid-targeting signal. This observation has prompted several hypotheses, including gene transfer between chlamydiae and plant-related groups and an ancestral relationship between chlamydiae and cyanobacteria. Results We conducted phylogenomic analyses of the red alga Cyanidioschyzon merolae to identify genes specifically related to chlamydial homologs. We show that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, with the donor most similar to the environmental Protochlamydia. Such an unusually high number of transferred genes suggests an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. We hypothesize that three organisms were involved in establishing the primary photosynthetic lineage: the eukaryotic host cell, the cyanobacterial endosymbiont that provided photosynthetic capability, and a chlamydial endosymbiont or parasite that facilitated the establishment of the cyanobacterial endosymbiont. Conclusion Our findings provide a glimpse into the complex interactions that were necessary to establish the primary endosymbiotic relationship between plastid and host cytoplasms, and thereby explain the rarity with which long-term successful endosymbiotic relationships between heterotrophs and photoautotrophs were established. Our data also provide strong and independent support for a common origin of all primary photosynthetic eukaryotes and of the plastids they harbor.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
- NASA Astrobiology Institute at Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| |
Collapse
|
22
|
Brain RA, Hanson ML, Solomon KR, Brooks BW. Aquatic plants exposed to pharmaceuticals: effects and risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 192:67-115. [PMID: 18020304 DOI: 10.1007/978-0-387-71724-1_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are biologically active, ubiquitous, low-level contaminants that are continuously introduced into the environment from both human and veterinary applications at volumes comparable to total pesticide loadings. Recent analytical advances have made possible the detection of a number of these compounds in environmental samples, raising concerns over potential nontarget effects to aquatic organisms, especially given the highly specific biologically active nature of these compounds. These concerns become paramount when the evolutionary conservation of metabolic pathways and receptors is taken into consideration, particularly in the case of aquatic plants, where a great deal of homology is displayed between the chloroplast and bacteria, as well as between other metabolic pathways across multiple phyla of biological organization. Common receptors have been identified in plants for a number of antibiotics affecting chloroplast replication (fluoroquinolones) transcription and translation (tetracyclines macrolides, lincosamides, P-aminoglycosides, and pleuromutilins), metabolic pathways such as folate biosynthesis (sulfonamides) and fatty acid biosynthesis (triclosan), as well as other classes of pharmaceuticals that affect sterol biosynthesis (statin-type blood lipid regulators). Toxicological investigations into the potency of these compounds indicates susceptibility across multiple plant species, although sensitivity to these compounds varies widely between blue-green algae, green algae, and higher plants in a rather inconsistent manner, except that Cyanobacteria are largely the most sensitive to antibiotic compounds. This differential sensitivity is likely dependent on differences in metabolic potential as well as uptake kinetics, which has been demonstrated for a number of compounds from another class of biologically active compounds, pesticides. The demonstration of conserved receptors and pathways in plants is not surprising, although it has been largely overlooked in the risk assessment process to date, which typically relies heavily on physiological and/or morphological endpoints for deriving toxicity data. However, a small number of studies have indicated that measuring the response of a pathway- or receptor-specific target in conjunction with a physiological endpoint with direct relatedness can yield sublethal responses that are two to three times more sensitive that the traditional gross morphological endpoints typically employed in risk assessment. The risk assessment for this review was based almost entirely on evaluations of gross morphological endpoints, which generally indicated that the risk pharmaceuticals pose to aquatic plants is generally low, with a few exceptions, particularly blue-green algae exposed to antibiotics, and both green and blue-green algae exposed to triclosan. It is critical to note, however, that the application of sublethal pathway or receptor-specific responses in risk assessment has largely been unconsidered, and future research is needed to elucidate whether evaluating the toxicity of pharmaceuticals using these endpoints provides a more sensitive, subtle, yet meaningful indication of toxicity than the traditional endpoints used in prospective and retrospective risk assessments for aquatic plants.
Collapse
Affiliation(s)
- Richard A Brain
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Studies, Baylor University, One Bear Place, Waco, TX 76798-7388, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Gregarines are early diverging apicomplexans that appear to be closely related to Cryptosporidium. Most apicomplexans, including Plasmodium, Toxoplasma, and Eimeria, possess both plastids and corresponding plastid genomes. Cryptosporidium lacks both the organelle and the genome. To investigate the evolutionary history of plastids in the Apicomplexa, we tried to determine whether gregarines possess a plastid and/or its genome. We used PCR and dot-blot hybridization to determine whether the gregarine Gregarina niphandrodes possesses a plastid genome. We used an inhibitor of plastid function for any reduction in gregarine infection, and transmission electron microscopy to search for plastid ultrastructure. Despite an extensive search, an organelle of the appropriate ultrastructure in transmission electron microscopy, was not observed. Triclosan, an inhibitor of the plastid-specific enoyl-acyl carrier reductase enzyme, did not reduce host infection by G. niphandrodes. Plastid-specific primers produced amplicons with the DNA of Babesia equi, Plasmodium falciparum, and Toxoplasma gondii as templates, but not with G. niphandrodes DNA. Plastid-specific DNA probes, which hybridized to Babesia equi, failed to hybridize to G. niphandrodes DNA. This evidence indicates that G. niphandrodes is not likely to possess either a plastid organelle or its genome. This raises the possibility that the plastid was lost in the Apicomplexan following the divergence of gregarines and Cryptosporidium.
Collapse
Affiliation(s)
- Marc A Toso
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | | |
Collapse
|
24
|
Cai X, Lorraine Fuller A, McDougald LR, Tan X, Cai J, Wang F, Sacchettini JC, Zhu G. Biochemical characterization of enoyl reductase involved in Type II fatty acid synthesis in the intestinal coccidium Eimeria tenella (Phylum Apicomplexa). FEMS Microbiol Lett 2007; 272:238-44. [PMID: 17559403 DOI: 10.1111/j.1574-6968.2007.00767.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An enoyl reductase (EtENR) closely related to those of green algae and involved in Type II fatty acid synthesis was characterized and localized to the apicoplast in the coccidium Eimeria tenella. Biochemical analysis using native EtENR protein extracted from parasites confirmed its function as an enoyl reductase using NADH as a cofactor. However, the recombinant form (rEtENR) expressed in bacteria was only able to oxidize NADH, but unable to transfer the electron to enoyl-CoA, possibly due to the inappropriate folding of rEtENR expressed in bacteria. The functions of both native and recombinant EtENR could be inhibited by triclosan (IC(50)=1.45 microM), suggesting that this enzyme may be explored as a drug target against coccidiosis.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, Texas A&M University, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cavalier-Smith T, Chao EEY. Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista). J Mol Evol 2006; 62:388-420. [PMID: 16557340 DOI: 10.1007/s00239-004-0353-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Accepted: 09/21/2005] [Indexed: 10/24/2022]
Abstract
Heterokonts are evolutionarily important as the most nutritionally diverse eukaryote supergroup and the most species-rich branch of the eukaryotic kingdom Chromista. Ancestrally photosynthetic/phagotrophic algae (mixotrophs), they include several ecologically important purely heterotrophic lineages, all grossly understudied phylogenetically and of uncertain relationships. We sequenced 18S rRNA genes from 14 phagotrophic non-photosynthetic heterokonts and a probable Ochromonas, performed phylogenetic analysis of 210-430 Heterokonta, and revised higher classification of Heterokonta and its three phyla: the predominantly photosynthetic Ochrophyta; the non-photosynthetic Pseudofungi; and Bigyra (now comprising subphyla Opalozoa, Bicoecia, Sagenista). The deepest heterokont divergence is apparently between Bigyra, as revised here, and Ochrophyta/Pseudofungi. We found a third universal heterokont signature sequence, and deduce three independent losses of ciliary hairs, several of 1-2 cilia, 10 of photosynthesis, but perhaps only two plastid losses. In Ochrophyta, heterotrophic Oikomonas is sister to the photosynthetic Chrysamoeba, whilst the abundant freshwater predator Spumella is biphyletic; neither clade is specifically related to Paraphysomonas, indicating four losses of photosynthesis by chrysomonads. Sister to Chrysomonadea (Chrysophyceae) is Picophagea cl. nov. (Picophagus, Chlamydomyxa). The diatom-parasite Pirsonia belongs in Pseudofungi. Heliozoan-like actinophryids (e.g. Actinosphaerium) are Opalozoa, not related to pedinellids within Hypogyristea cl. nov. of Ochrophyta as once thought. The zooflagellate class Bicoecea (perhaps the ancestral phenotype of Bigyra) is unexpectedly diverse and a major focus of our study. We describe four new biciliate bicoecean genera and five new species: Nerada mexicana, Labromonas fenchelii (=Pseudobodo tremulans sensu Fenchel), Boroka karpovii (=P. tremulans sensu Karpov), Anoeca atlantica and Cafeteria mylnikovii; several cultures were previously misidentified as Pseudobodo tremulans. Nerada and the uniciliate Paramonas are related to Siluania and Adriamonas; this clade (Pseudodendromonadales emend.) is probably sister to Bicosoeca. Genetically diverse Caecitellus is probably related to Anoeca, Symbiomonas and Cafeteria (collectively Anoecales emend.). Boroka is sister to Pseudodendromonadales/Bicoecales/Anoecales. Placidiales are probably divergent bicoeceans (the GenBank Placidia sequence is a basidiomycete/heterokont chimaera). Two GenBank 'opalinid' sequences are fungal; Pseudopirsonia is cercozoan; two previous GenBank 'Caecitellus' sequences are Adriamonas.
Collapse
|
26
|
Andersen RA. Biology and systematics of heterokont and haptophyte algae. AMERICAN JOURNAL OF BOTANY 2004; 91:1508-1522. [PMID: 21652306 DOI: 10.3732/ajb.91.10.1508] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classified into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed significantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heterokont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas).
Collapse
Affiliation(s)
- Robert A Andersen
- Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA
| |
Collapse
|