1
|
Umatani C, Yoshida N, Yamamoto E, Akazome Y, Mori Y, Kanda S, Okubo K, Oka Y. Co-existing Neuropeptide FF and Gonadotropin-Releasing Hormone 3 Coordinately Modulate Male Sexual Behavior. Endocrinology 2022; 163:6486464. [PMID: 34962983 DOI: 10.1210/endocr/bqab261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Nagisa Yoshida
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Eri Yamamoto
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yasutaka Mori
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Nyuji M, Hongo Y, Yoneda M, Nakamura M. Transcriptome characterization of BPG axis and expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine. BMC Genomics 2020; 21:668. [PMID: 32993516 PMCID: PMC7526130 DOI: 10.1186/s12864-020-07080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain–pituitary–gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). Results RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17β-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17β, while 3β-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. Conclusions This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan.
| | - Yuki Hongo
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Michio Yoneda
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| | - Masahiro Nakamura
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| |
Collapse
|
3
|
Umatani C, Oka Y. Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates. ZOOLOGICAL LETTERS 2019; 5:23. [PMID: 31367467 PMCID: PMC6647275 DOI: 10.1186/s40851-019-0138-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a hypophysiotropic hormone that is generally thought to be important for reproduction. This hormone is produced by hypothalamic GnRH neurons and stimulates the secretion of gonadotropins. On the other hand, vertebrates also have non-hypophysiotropic GnRH peptides, which are produced by extrahypothalamic GnRH neurons. They are mainly located in the terminal nerve, midbrain tegmentum, trigeminal nerve, and spinal cord (sympathetic preganglionic nerves). In vertebrates, there are typically three gnrh paralogues (gnrh1, gnrh2, gnrh3). GnRH-expression in the non-hypophysiotropic neurons (gnrh1 or gnrh3 in the terminal nerve and the trigeminal nerve, gnrh2 in the midbrain tegmentum) occurs from the early developmental stages. Recent studies have suggested that non-hypophysiotropic GnRH neurons play various functional roles. Here, we summarize their anatomical/physiological properties and discuss their possible functions, focusing on studies in vertebrates. GnRH neurons in the terminal nerve show different spontaneous firing properties during the developmental stages. These neurons in adulthood show regular pacemaker firing, and it has been suggested that these neurons show neuromodulatory function related to the regulation of behavioral motivation, etc. In addition to their recognized role in neuromodulation in adult, in juvenile fish, these neurons, which show more frequent burst firing than in adults, are suggested to have novel functions. GnRH neurons in the midbrain tegmentum show regular pacemaker firing similar to that of the adult terminal nerve and are suggested to be involved in modulations of feeding (teleosts) or nutrition-related sexual behaviors (musk shrew). GnRH neurons in the trigeminal nerve are suggested to be involved in nociception and chemosensory avoidance, although the literature on their electrophysiological properties is limited. Sympathetic preganglionic cells in the spinal cord were first reported as peptidergic modulatory neurons releasing GnRH with a putative function in coordinating interaction between vasomotor and exocrine outflow in the sympathetic nervous system. The functional role of non-hypophysiotropic GnRH neurons may thus be in the global modulation of neural circuits in a manner dependent on internal conditions or the external environment.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
4
|
Daily rhythms of expression in reproductive genes along the brain-pituitary-gonad axis and liver of zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:158-169. [DOI: 10.1016/j.cbpa.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022]
|
5
|
Chen D, Yang W, Han S, Yang H, Cen X, Liu J, Zhang L, Zhang W. A Type IIb, but Not Type IIa, GnRH Receptor Mediates GnRH-Induced Release of Growth Hormone in the Ricefield Eel. Front Endocrinol (Lausanne) 2018; 9:721. [PMID: 30555419 PMCID: PMC6283897 DOI: 10.3389/fendo.2018.00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple gonadotropin-releasing hormone receptors (GnRHRs) are present in vertebrates, but their differential physiological relevances remain to be clarified. In the present study, we identified three GnRH ligands GnRH1 (pjGnRH), GnRH2 (cGnRH-II), and GnRH3 (sGnRH) from the brain, and two GnRH receptors GnRHR1 (GnRHR IIa) and GnRHR2 (GnRHR IIb) from the pituitary of the ricefield eel Monopterus albus. GnRH1 and GnRH3 but not GnRH2 immunoreactive neurons were detected in the pre-optic area, hypothalamus, and pituitary, suggesting that GnRH1 and GnRH3 may exert hypophysiotropic roles in ricefield eels. gnrhr1 mRNA was mainly detected in the pituitary, whereas gnrhr2 mRNA broadly in tissues of both females and males. In the pituitary, GnRHR1 and GnRHR2 immunoreactive cells were differentially distributed, with GnRHR1 immunoreactive cells mainly in peripheral areas of the adenohypophysis whereas GnRHR2 immunoreactive cells in the multicellular layers of adenohypophysis adjacent to the neurohypophysis. Dual-label fluorescent immunostaining showed that GnRHR2 but not GnRHR1 was localized to somatotropes, and all somatotropes are GnRHR2-positive cells and vice versa at all stages examined. GnRH1 and GnRH3 were shown to stimulate growth hormone (Gh) release from primary culture of pituitary cells, and to decrease Gh contents in the pituitary of ricefield eels 12 h post injection. GnRH1 and GnRH3 stimulated Gh release probably via PLC/IP3/PKC and Ca2+ pathways. These results, as a whole, suggested that GnRHs may bind to GnRHR2 but not GnRHR1 to trigger Gh release in ricefield eels, and provided novel information on differential roles of multiple GnRH receptors in vertebrates.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiying Han
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huiyi Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Weimin Zhang
| |
Collapse
|
6
|
Strandabø RAU, Grønlien HK, Ager-Wick E, Nourizadeh-Lillabadi R, Hildahl JP, Weltzien FA, Haug TM. Identified lhb-expressing cells from medaka (Oryzias latipes) show similar Ca(2+)-response to all endogenous Gnrh forms, and reveal expression of a novel fourth Gnrh receptor. Gen Comp Endocrinol 2016; 229:19-31. [PMID: 26899720 DOI: 10.1016/j.ygcen.2016.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/12/2023]
Abstract
We have previously characterized the response to gonadotropin-releasing hormone (Gnrh) 2 in luteinizing hormone (lhb)-expressing cells from green fluorescent protein (Gfp)-transgenic medaka (Oryzias latipes), with regard to changes in the cytosolic Ca(2+) concentration. In the current study we present the corresponding responses to Gnrh1 and Gnrh3. Ca(2+) imaging revealed three response patterns to Gnrh1 and Gnrh3, one monophasic and two types of biphasic patterns. There were few significant differences in the shape of the response patterns between the three Gnrh forms, although the amplitude of the Ca(2+) signal was considerably lower for Gnrh1 and Gnrh3 than for Gnrh2, and the distribution between the two different biphasic patterns differed. The different putative Ca(2+) sources were examined by depleting intracellular Ca(2+) stores with thapsigargin, or preventing influx of extracellular Ca(2+) by either extracellular Ca(2+) depletion or the L-type Ca(2+)-channel blocker verapamil. Both Gnrh1 and 3 relied on Ca(2+) from both intracellular and extracellular sources, with some unexpected differences in the relative contribution. Furthermore, gene expression of Gnrh-receptors (gnrhr) in whole pituitaries was studied during development from juvenile to adult. Only two of the four identified medaka receptors were expressed in the pituitary, gnrhr1b and gnrhr2a, with the newly discovered gnrhr2a showing the highest expression level at all stages as analyzed by quantitative PCR. While both receptors differed in expression level according to developmental stage, only the expression of gnrhr2a showed a clear-cut increase with gonadal maturation. RNA sequencing analysis of FACS-sorted Gfp-positive lhb-cells revealed that both gnrhr1b and gnrhr2a were expressed in lhb-expressing cells, and confirmed the higher expression of gnrhr2a compared to gnrhr1b. These results show that although lhb-expressing gonadotropes in medaka show similar Ca(2+) response patterns to all three endogenous Gnrh forms through the activation of two different receptors, gnrhr1b and gnrhr2a, the differences observed between the Gnrh forms indicate activation of different Ca(2+) signaling pathways.
Collapse
Affiliation(s)
- Rønnaug A U Strandabø
- University of Oslo, Department of Biosciences, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Heidi K Grønlien
- Østfold University College, Faculty of Health and Social Studies, P.O. 700, N-1757 Halden, Norway
| | - Eirill Ager-Wick
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Jon P Hildahl
- University of Oslo, Department of Biosciences, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Finn-Arne Weltzien
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Trude M Haug
- University of Oslo, Department of Biosciences, P.O. Box 1066 Blindern, N-0316 Oslo, Norway; Atlantis Medical University College, P.O. Box 509, N-1411 Kolbotn, Norway.
| |
Collapse
|
7
|
Umatani C, Misu R, Oishi S, Yamaguchi K, Abe H, Oka Y. GnRH suppresses excitability of visual processing neurons in the optic tectum. J Neurophysiol 2015; 114:2775-84. [PMID: 26354319 DOI: 10.1152/jn.00710.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Animals change their behavior in response to sensory cues in the environment as well as their physiological status. For example, it is generally accepted that their sexual behavior is modulated according to seasonal environmental changes or the individual's maturational/reproductive status, and neuropeptides have been suggested to play important roles in this process. Some behavioral modulation arises from neuropeptide modulation of sensory information processing in the central nervous system, but the neural mechanisms still remain unknown. Here we focused on the neural basis of neuropeptide modulation of visual processing in vertebrates. The terminal nerve neurons that contain gonadotropin-releasing hormone 3 (TN-GnRH3 neurons) are suggested to modulate reproductive behavior and have massive projections to the optic tectum (OT), which plays an important role in visual processing. In the present study, to examine whether GnRH3 modulates retino-tectal neurotransmission in the OT, we analyzed the effect of GnRH3 electrophysiologically and morphologically. We found that field potentials evoked by optic tract fiber stimulation, which represent retino-tectal neurotransmission, were modulated postsynaptically by GnRH3. Whole cell recording from postsynaptic neurons in the retino-tectal pathway suggested that GnRH3 activates large-conductance Ca(2+)-activated K(+) (BK) channels and thereby suppresses membrane excitability. Furthermore, our improved morphological analysis using fluorescently labeled GnRH peptides showed that GnRH receptors are localized mainly around the cell bodies of postsynaptic neurons. Our results indicate that TN-GnRH3 neurons modulate retino-tectal neurotransmission by suppressing the excitability of projection neurons in the OT, which underlies the neuromodulation of behaviorally relevant visual information processing by the neuropeptide GnRH3.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Misu
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute (BSI), Saitama, Japan; and
| | - Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan;
| |
Collapse
|
8
|
Roch GJ, Busby ER, Sherwood NM. GnRH receptors and peptides: skating backward. Gen Comp Endocrinol 2014; 209:118-34. [PMID: 25107740 DOI: 10.1016/j.ygcen.2014.07.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and its receptor are essential for reproduction in vertebrates. Although there are three major types of GnRH peptides and two major types of receptors in vertebrates, the pattern of distribution is unusual. Evidence is presented from genome mining that type I GnRHRs are not restricted to mammals, but can be found in the lobe-finned and cartilaginous fishes. This implies that this tail-less GnRH receptor emerged early in vertebrate evolution, followed by several independent losses in different lineages. Also, we have identified representatives from the three major GnRH peptide types (mammalian GnRH1, vertebrate GnRH2 and dogfish GnRH3) in a single cartilaginous fish, the little skate. Skate and coelacanth are the only examples of animals with both type I and II GnRH receptors and all three peptide types, suggesting this was the ancestral condition in vertebrates. Our analysis of receptor synteny in combination with phylogeny suggests that there were three GnRH receptor types present before the two rounds of whole genome duplication in early vertebrates. To further understand the origin of the GnRH peptide-receptor system, the relationship of vertebrate and invertebrate homologs was examined. Our evidence supports the hypothesis of a GnRH superfamily with a common ancestor for the vertebrate GnRHs, invertebrate (inv)GnRHs, corazonins and adipokinetic hormones. The invertebrate deuterostomes (echinoderms, hemichordates and amphioxus) have derived GnRH-like peptides, although one amphioxus GnRH with a syntenic relationship to human GnRHs has been shown to be functional. Phylogenetic analysis suggests that gene duplications in the ancestral bilaterian produced two receptor types, one of which became adipokinetic hormone receptor/GnRHR and the other corazonin receptor/invGnRHR. It appears that the ancestral deuterostome had both a GnRHR and invGnRHR, and this is still the case in amphioxus. During the transition to vertebrates both the invertebrate-type peptide and receptor were lost, leaving only the vertebrate-type system that presently exists.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Ellen R Busby
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
9
|
Karigo T, Aikawa M, Kondo C, Abe H, Kanda S, Oka Y. Whole brain-pituitary in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release. Endocrinology 2014; 155:536-47. [PMID: 24248459 DOI: 10.1210/en.2013-1642] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.
Collapse
Affiliation(s)
- Tomomi Karigo
- Department of Biological Sciences (T.K., M.A., C.K., H.A., S.K., Y.O.), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; and Laboratory of Fish Biology (H.A.), Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Gomes C, Costa F, Borella M. Distribution of GnRH in the brain of the freshwater teleost Astyanax altiparanae (). Micron 2013; 52-53:33-8. [DOI: 10.1016/j.micron.2013.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/29/2013] [Indexed: 01/24/2023]
|
11
|
Strandabø RAU, Hodne K, Ager-Wick E, Sand O, Weltzien FA, Haug TM. Signal transduction involved in GnRH2-stimulation of identified LH-producing gonadotropes from lhb-GFP transgenic medaka (Oryzias latipes). Mol Cell Endocrinol 2013; 372:128-39. [PMID: 23562421 DOI: 10.1016/j.mce.2013.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/26/2013] [Indexed: 12/28/2022]
Abstract
We have characterized the response to gonadotropin-releasing hormone 2 (GnRH2) in luteinizing hormone producing cells from gfp-transgenic medaka. Teleosts have separate cells producing the two types of gonadotropins, enabling us for the first time to study the intracellular signaling that controls secretion of each gonadotropin separately. Pituitary cell cultures were prepared, and lhb-producing cells were selected by their GFP expression. Cytosolic Ca(2+) imaging revealed three response patterns to GnRH2, one monophasic and two types of biphasic patterns. The Ca(2+) sources were examined by depleting intracellular Ca(2+) stores and preventing influx of extracellular Ca(2+). Both treatments reduced response amplitude, and affected latency and time to peak. Blocking L-type Ca(2+) channels reduced amplitude and time to peak, but did not remove extracellular Ca(2+) contribution. Patch-clamp recordings showed spontaneous action potentials in several cells, and GnRH2 increased the firing frequency. Presence of Ca(2+)-activated K(+) channels was revealed, BK channels being the most prominent.
Collapse
|
12
|
Peñaranda DS, Mazzeo I, Hildahl J, Gallego V, Nourizadeh-Lillabadi R, Pérez L, Asturiano JF, Weltzien FA. Molecular characterization of three GnRH receptor paralogs in the European eel, Anguilla anguilla: tissue-distribution and changes in transcript abundance during artificially induced sexual development. Mol Cell Endocrinol 2013; 369:1-14. [PMID: 23416230 DOI: 10.1016/j.mce.2013.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing hormone receptor (GnRH-R) activation stimulates synthesis and release of gonadotropins in the vertebrate pituitary and also mediates other processes both in the brain and in peripheral tissues. To better understand the differential function of multiple GnRH-R paralogs, three GnRH-R genes (gnrhr1a, 1b, and 2) were isolated and characterized in the European eel. All three gnrhr genes were expressed in the brain and pituitary of pre-pubertal eels, and also in several peripheral tissues, notably gills and kidneys. During hormonally induced sexual maturation, pituitary expression of gnrhr1a (female) and gnrhr2 (male and female) was up-regulated in parallel with gonad development. In the brain, a clear regulation during maturation was seen only for gnrhr2 in the midbrain, with highest levels recorded during early vitellogenesis. These data suggest that GnRH-R2 is the likely hypophysiotropic GnRH-R in male eel, while both GnRH-R1a and GnRH-R2 seems to play this role in female eels.
Collapse
Affiliation(s)
- David S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gopurappilly R, Ogawa S, Parhar IS. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction. Front Endocrinol (Lausanne) 2013; 4:24. [PMID: 23482509 PMCID: PMC3591744 DOI: 10.3389/fendo.2013.00024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/22/2013] [Indexed: 12/18/2022] Open
Abstract
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway CampusSelangor, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, Petaling Jaya 46150, Selangor, Malaysia. e-mail:
| |
Collapse
|
14
|
Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 2012; 98:176-96. [DOI: 10.1016/j.pneurobio.2012.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
|
15
|
Kusakabe TG, Sakai T, Aoyama M, Kitajima Y, Miyamoto Y, Takigawa T, Daido Y, Fujiwara K, Terashima Y, Sugiuchi Y, Matassi G, Yagisawa H, Park MK, Satake H, Tsuda M. A conserved non-reproductive GnRH system in chordates. PLoS One 2012; 7:e41955. [PMID: 22848672 PMCID: PMC3407064 DOI: 10.1371/journal.pone.0041955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/27/2012] [Indexed: 01/28/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuroendocrine peptide that plays a central role in the vertebrate hypothalamo-pituitary axis. The roles of GnRH in the control of vertebrate reproductive functions have been established, while its non-reproductive function has been suggested but less well understood. Here we show that the tunicate Ciona intestinalis has in its non-reproductive larval stage a prominent GnRH system spanning the entire length of the nervous system. Tunicate GnRH receptors are phylogenetically closest to vertebrate GnRH receptors, yet functional analysis of the receptors revealed that these simple chordates have evolved a unique GnRH system with multiple ligands and receptor heterodimerization enabling complex regulation. One of the gnrh genes is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord of vertebrates. Correspondingly, GnRH receptor genes were found to be expressed in the tail muscle and notochord of embryos, both of which are phylotypic axial structures along the nerve cord. Our findings suggest a novel non-reproductive role of GnRH in tunicates. Furthermore, we present evidence that GnRH-producing cells are present in the hindbrain and spinal cord of the medaka, Oryzias latipes, thereby suggesting the deep evolutionary origin of a non-reproductive GnRH system in chordates.
Collapse
Affiliation(s)
- Takehiro G. Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tsubasa Sakai
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Masato Aoyama
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Yuka Kitajima
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yuki Miyamoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Toru Takigawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yutaka Daido
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kentaro Fujiwara
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yasuko Terashima
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yoko Sugiuchi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Giorgio Matassi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Department of Agriculture and Environmental Sciences, University of Udine, Udine, Italy
| | - Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Min Kyun Park
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Honoo Satake
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Motoyuki Tsuda
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
16
|
Karigo T, Kanda S, Takahashi A, Abe H, Okubo K, Oka Y. Time-of-day-dependent changes in GnRH1 neuronal activities and gonadotropin mRNA expression in a daily spawning fish, medaka. Endocrinology 2012; 153:3394-404. [PMID: 22544888 DOI: 10.1210/en.2011-2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons in the preoptic area and hypothalamus control the secretion of GnRH and form the final common pathway for hypothalamic-pituitary-gonadal axis regulation in vertebrates. Temporal regulation of reproduction by coordinating endogenous physiological conditions and behaviors is important for successful reproduction. Here, we examined the temporal regulation of reproduction by measuring time-of-day-dependent changes in the electrical activity of GnRH1 neurons and in levels of expression of pituitary gonadotropin mRNA using a daily spawning teleost, medaka (Oryzias latipes). First, we performed on-cell patch-clamp recordings from GnRH1 neurons that directly project to the pituitary, using gnrh1-green fluorescent protein transgenic medaka. The spontaneous firing activity of GnRH1 neurons showed time-of-day-dependent changes: overall, the firing activity in the afternoon was higher than in the morning. Next, we examined the daily changes in the pituitary gonadotropin transcription level. The expression levels of lhb and fshb mRNA also showed changes related to time of day, peaking during the lights-off period. Finally, we analyzed effects of GnRH on the pituitary. We demonstrated that incubation of isolated pituitary with GnRH increases lhb mRNA transcription several hours after GnRH stimulation, unlike the well-known immediate LH releasing effect of GnRH. From these results, we propose a working hypothesis concerning the temporal regulation of the ovulatory cycle in the brain and pituitary of female medaka.
Collapse
Affiliation(s)
- Tomomi Karigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 506] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
Guilgur LG, Strüssmann CA, Somoza GM. mRNA expression of GnRH variants and receptors in the brain, pituitary and ovaries of pejerrey (Odontesthes bonariensis) in relation to the reproductive status. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:157-166. [PMID: 19189242 DOI: 10.1007/s10695-008-9215-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/20/2008] [Indexed: 05/27/2023]
Abstract
The present study examined the differential mRNA expression levels of three forms of GnRH (sGnRH, pjGnRH and cGnRH-II) and two forms of GnRH receptor (pjGnRH-R I and pjGnRH-R II) in the brain, pituitary, and ovaries of pejerrey in relation to the reproductive status. The analysis revealed the presence of significant amounts of mRNA of the three GnRH forms while the ovaries showed only two (sGnRH and pjGnRH). The GnRH receptor II was found ubiquitously in the brain, pituitary, and ovaries while the form I was detected only in the brain. The levels of pjGnRH mRNA in the brain and pjGnRH-R II in the pituitary gland varied in correlation with the ovarian condition. However, brain sGnRH and pjGnRH-R I mRNA levels reached a maximum during early stages of ovarian development. In contrast, the brain levels of cGnRH-II mRNA showed no variation. The present study also shows a good correlation of ovarian sGnRH and pjGnRH-R II mRNA levels with the reproductive condition, suggesting that these molecules are may be involved in the regulation of pejerrey ovarian function.
Collapse
Affiliation(s)
- L G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol (Oxf) 2008; 193:3-15. [PMID: 18284378 DOI: 10.1111/j.1748-1716.2008.01832.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) has a central role in the neural control of vertebrate reproduction. This review describes an overview of what is currently known about GnRH in vertebrates in the context of its structural and functional evolution. A large body of evidence has demonstrated the existence of three paralogous genes for GnRH (GnRH1, GnRH2 and GnRH3) in the vertebrate lineage. They are most probably the products of whole-genome duplications that occurred early in vertebrate evolution. Although GnRH3 has been identified only in teleosts, comparative genomic analyses indicated that GnRH3 has not arisen from a teleost-specific genome duplication, but has been derived from an earlier genome duplication in an ancestral vertebrate, followed by its loss in the tetrapod lineage. A loss of other paralogous genes has also occurred independently in different vertebrate lineages, leading to species-specific differences in the organization of the GnRH system. In addition to the GnRH3 gene, the GnRH2 gene has been deleted or silenced in certain mammalian species, while some teleosts seem to have lost the GnRH1 or GnRH3 gene. The duplicated GnRH genes have undergone subfunctionalization during the evolution of vertebrates; GnRH1 has become the major stimulator of gonadotropins and probably other pituitary hormones as well, whereas GnRH2 and GnRH3 would have functioned as neuromodulators, affecting reproductive behaviour. Conversely, in cases where a paralogous gene for GnRH has been lost, one of the remaining paralogues appears to have adopted its role.
Collapse
Affiliation(s)
- K Okubo
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | | |
Collapse
|
20
|
Tello JA, Wu S, Rivier JE, Sherwood NM. Four functional GnRH receptors in zebrafish: analysis of structure, signaling, synteny and phylogeny. Integr Comp Biol 2008; 48:570-87. [DOI: 10.1093/icb/icn070] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
León A, Wu PS, Hall LC, Johnson ML, Teh SJ. Global gene expression profiling of androgen disruption in Qurt strain medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:962-969. [PMID: 18323129 DOI: 10.1021/es071785c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Androgen disrupting chemicals (ADCs) are endocrine disrupting chemicals (EDCs) that mimic or antagonize the effect of physiological androgens. Microarray-based detection of altered gene expression can be used as a biomarker of EDC exposure. Therefore, the purpose of this study was to identify and compare gene expression profiles of the androgen 11-ketotestosterone (11-KT), the antiandrogen flutamide (FLU), and the antiandrogenic fungicide vinclozolin (VIN), on Qurt medaka (Oryzias latipes). Biologically effective concentrations for 11-KT (100 microg/L), VIN (100 microg/L), and FLU (1000 microg/L) determined in range-finding studies were used for exposures. The oligonucleotide microarray included 9379 probes for EDC-affected genes, medaka cDNAs, sequences from the medaka genome project, and the UniGene database. We found that treatment with FLU, VIN, and 11-KT caused significant (false discovery rate = 0.01) differential expression of at least 87, 82, and 578 genes, respectively. Two sets of responsive genes are associated to vertebrate sex differentiation and growth, and 50 genes were useful in discriminating between ADC classes. The discriminating capacity was confirmed by a remarkable similarity of the antiandrogenic expression profiles of VIN and FLU, which were distinct from the androgenic profile of 11-KT. Gene expression profiles characterized in this study allow for reliable screening of ADC activity.
Collapse
Affiliation(s)
- Abimael León
- Aquatic Toxicology Program, School of Veterinary Medicine, and Center for Watershed Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
22
|
Flanagan CA, Chen CC, Coetsee M, Mamputha S, Whitlock KE, Bredenkamp N, Grosenick L, Fernald RD, Illing N. Expression, structure, function, and evolution of gonadotropin-releasing hormone (GnRH) receptors GnRH-R1SHS and GnRH-R2PEY in the teleost, Astatotilapia burtoni. Endocrinology 2007; 148:5060-71. [PMID: 17595228 DOI: 10.1210/en.2006-1400] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple GnRH receptors are known to exist in nonmammalian species, but it is uncertain which receptor type regulates reproduction via the hypothalamic-pituitary-gonadal axis. The teleost fish, Astatotilapia burtoni, is useful for identifying the GnRH receptor responsible for reproduction, because only territorial males reproduce. We have cloned a second GnRH receptor in A. burtoni, GnRH-R1(SHS) (SHS is a peptide motif in extracellular loop 3), which is up-regulated in pituitaries of territorial males. We have shown that GnRH-R1(SHS) is expressed in many tissues and specifically colocalizes with LH in the pituitary. In A. burtoni brain, mRNA levels of both GnRH-R1(SHS) and a previously identified receptor, GnRH-R2(PEY), are highly correlated with mRNA levels of all three GnRH ligands. Despite its likely role in reproduction, we found that GnRH-R1(SHS) has the highest affinity for GnRH2 in vitro and low responsivity to GnRH1. Our phylogenetic analysis shows that GnRH-R1(SHS) is less closely related to mammalian reproductive GnRH receptors than GnRH-R2(PEY). We correlated vertebrate GnRH receptor amino acid sequences with receptor function and tissue distribution in many species and found that GnRH receptor sequences predict ligand responsiveness but not colocalization with pituitary gonadotropes. Based on sequence analysis, tissue localization, and physiological response we propose that the GnRH-R1(SHS) receptor controls reproduction in teleosts, including A. burtoni. We propose a GnRH receptor classification based on gene sequence that correlates with ligand selectivity but not with reproductive control. Our results suggest that different duplicated GnRH receptor genes have been selected to regulate reproduction in different vertebrate lineages.
Collapse
Affiliation(s)
- Colleen A Flanagan
- Department of Biological Sciences and Program in Neuroscience, Stanford University, Stanford, CA 94305-2130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kah O, Lethimonier C, Somoza G, Guilgur LG, Vaillant C, Lareyre JJ. GnRH and GnRH receptors in metazoa: a historical, comparative, and evolutive perspective. Gen Comp Endocrinol 2007; 153:346-64. [PMID: 17350014 DOI: 10.1016/j.ygcen.2007.01.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022]
Abstract
About 50years after Harris's first demonstration of its existence, GnRH has strongly stimulated the interest and imagination of scientists, resulting in a high number of studies in an increasing number of species. For the endocrinologist, GnRH, via its actions on the synthesis and release of pituitary gonadotrophins, is first an essential hormone for the initiation and maintenance of the reproductive axis, but recent data suggest that GnRH emerged in animals lacking a pituitary. In this context, this review intends to explore the current status of knowledge on GnRH and GnRH receptors in metazoa in order to see if it is possible to draw an evolutive scenario according to which GnRH actions progressively evolved from the control of simple basic functions in early metazoa to an indirect mean of controlling gonadal activity in vertebrates through a sophisticated network of finely tuned neurons developing in a rather fascinating way. This review also intends to provide an evolutive scenario based on the recent advances of whole genome sequencing possibly explaining the number of GnRH and GnRH receptor variants according to the 2R and 3R theories accompanied by gene losses.
Collapse
Affiliation(s)
- O Kah
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
24
|
Whitlock KE, Illing N, Brideau NJ, Smith KM, Twomey S. Development of GnRH cells: Setting the stage for puberty. Mol Cell Endocrinol 2006; 254-255:39-50. [PMID: 16777316 DOI: 10.1016/j.mce.2006.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cells containing gonadotropin-releasing hormone (GnRH) are essential not only for reproduction but also for neuromodulatory functions in the adult animal. A variety of studies have hinted at multiple origins for GnRH-containing cells in the developing embryo. We have shown, using zebrafish as a model system, that GnRH cells originate from precursors lying outside the olfactory placode: the region of the anterior pituitary gives rise to hypothalamic GnRH cells and the cranial neural crest gives rise to the GnRH cells of the terminal nerve and midbrain. Cells of both the forming anterior pituitary and cranial neural crest are closely apposed to the precursors of the olfactory epithelium during early development. Disruption of kallmann gene function results in loss of the hypothalamic but not the terminal nerve GnRH cells during early development. The GnRH proteins are expressed early in development and this expression is mirrored by the onset of GnRH receptor (GnRH-R) expression during early development. Thus the signaling of the GnRH neuronal circuitry is set up early in development laying the foundation for the GnRH network that is activated at puberty leading to reproductive function in the mature animal.
Collapse
Affiliation(s)
- K E Whitlock
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | |
Collapse
|
25
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
26
|
Soga T, Ogawa S, Millar RP, Sakuma Y, Parhar IS. Localization of the three GnRH types and GnRH receptors in the brain of a cichlid fish: Insights into their neuroendocrine and neuromodulator functions. J Comp Neurol 2005; 487:28-41. [PMID: 15861460 DOI: 10.1002/cne.20519] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cognate receptor for any of the known gonadotropin-releasing hormones (GnRHs) has not been directly demonstrated. In order to establish this and shed light on the functions of GnRH types, we analyzed the neuroanatomical location and time of initial expression of three distinct GnRH receptors (GnRH-Rs) and the three endogenous GnRHs in the brain of developing and sexually mature tilapia Oreochromis niloticus using immunocytochemistry. In all age groups, including males and females, GnRH-RIA was seen specifically in gonadotropes (Parhar et al. [2002] J Neuroendocrinol 14:657-665) but was undetectable in the brain. On day 8 after fertilization, GnRH-RIB was first seen in the periventricular hypothalamus (lateral recess nucleus, posterior recess nucleus, posterior tuberal nucleus) and GnRH-RIII in the olfactory epithelium, olfactory bulb, telencephalon, preoptic region, mediobasal hypothalamus, thalamus, mesencephalon, and in the hindbrain. Double-label immunocytochemistry showed GnRH1 (Ser(8) GnRH)-immunoreactive neuronal processes projecting mainly to the proximal pars distalis of the pituitary, while GnRH2 (His(5), Trp(7), Tyr(8) GnRH) and GnRH3 (Trp(7), Leu(8) GnRH) fibers were observed in close association with cells containing GnRH-RIB and GnRH-RIII in the brain. These results suggest that GnRH-RIA might be hypophysiotropic in nature, whereas GnRH-RIB and GnRH-RIII could have additional neuromodulatory functions. Further, evidence of close proximity of GnRH-R-containing cells and neuronal processes of multiple GnRH types suggests complex cross-talk between several GnRH ligands and GnRH-Rs.
Collapse
Affiliation(s)
- Tomoko Soga
- Department of Physiology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
27
|
Morgan K, Millar RP. Evolution of GnRH ligand precursors and GnRH receptors in protochordate and vertebrate species. Gen Comp Endocrinol 2004; 139:191-7. [PMID: 15560865 DOI: 10.1016/j.ygcen.2004.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 08/19/2004] [Accepted: 09/15/2004] [Indexed: 11/25/2022]
Abstract
Primary structure relationships between GnRH precursors or GnRH receptors have received significant attention recently due to rapid DNA sequence determination of gene fragments and cDNAs from diverse species. Concepts concerning the evolutionary history of the GnRH system and its function in mammals, including humans, are likely to be modified as more complete sequence information becomes available. Current evidence suggests occurrence of fewer GnRH ligand and GnRH receptor genes in mammals compared to protochordates, fish and amphibians. Whilst several sequence-related GnRH decapeptide precursors and 2 or 3 separate GnRH receptors are encoded within the genomes of protochordates, fish and amphibians, only two types of GnRH (GnRH-I and GnRH-II) and two GnRH receptors occur in mammals. In addition, fish and mammalian genomes both retain inactive remnants of GnRH ligand or GnRH receptor genes. The number of distinct GnRH receptor genes in teleosts (at least five complete genes in pufferfish and three in zebrafish) partly reflects whole genome duplication during the evolution of this order of animals. Three GnRH receptor genes occur in certain frog species, consistent with the occurrence of up to three types of prepro-GnRH in amphibians. In contrast, only one functional GnRH receptor gene (the type I GnRH receptor) has been identified in humans and chimpanzees and a gene encoding a second receptor, homologous to a functional monkey receptor (the type II GnRH receptor), is either partially or completely silenced in a range of mammalian species (human, chimpanzee, sheep, cow, rat, and mouse). Further work is required to determine the significance of species-specific differences in the GnRH system to reproductive biology. For instance, recent data show that even species as closely related as humans and chimpanzees exhibit important organisational changes in the genes comprising the GnRH system.
Collapse
Affiliation(s)
- Kevin Morgan
- MRC Human Reproductive Sciences Unit, Old Dalkeith Road, Edinburgh EH16 4SB, UK.
| | | |
Collapse
|
28
|
Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004; 20:481-90. [PMID: 15363902 DOI: 10.1016/j.tig.2004.08.001] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Half of all vertebrate species are teleost fish. What accounts for this explosion of biodiversity? Recent evidence and advances in evolutionary theory suggest that genomic features could have played a significant role in the teleost radiation. This review examines evidence for an ancient whole-genome duplication (tetraploidization) event that probably occurred just before the teleost radiation. The partitioning of ancestral subfunctions between gene copies arising from this duplication could have contributed to the genetic isolation of populations, to lineage-specific diversification of developmental programs, and ultimately to phenotypic variation among teleost fish. Beyond its importance for understanding mechanisms that generate biodiversity, the partitioning of subfunctions between teleost co-orthologs of human genes can facilitate the identification of tissue-specific conserved noncoding regions and can simplify the analysis of ancestral gene functions obscured by pleiotropy or haploinsufficiency. Applying these principles on a genomic scale can accelerate the functional annotation of the human genome and understanding of the roles of human genes in health and disease.
Collapse
Affiliation(s)
- John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
29
|
Fujii Y, Enomoto M, Ikemoto T, Endo D, Okubo K, Aida K, Park MK. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor in the guinea pig, Cavia porcellus. Gen Comp Endocrinol 2004; 136:208-16. [PMID: 15028524 DOI: 10.1016/j.ygcen.2003.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 11/19/2022]
Abstract
Guinea pig gonadotropin-releasing hormone (gpGnRH) is predicted to have a unique structure among all known forms of GnRH molecule [Endocrinology 138 (1997) 4123] and it is of great interest to determine whether the unique structure of gpGnRH is manifested in the characteristics of the guinea pig GnRH receptor. In the present study, we isolated a full-length cDNA for a GnRH receptor from the pituitary gland of the guinea pig. The putative guinea pig GnRH receptor protein has an amino acid identity of 79-87% with mammalian type I GnRH receptors. The amino acid residues which have been demonstrated to be important for ligand binding and signal transduction were conserved in the guinea pig GnRH receptor. However, there are several specific amino acid substitutions among mammalian type I GnRH receptors. Moreover, though the guinea pig has generally been classified as a rodent, the putative GnRH receptor protein did not have some rodent-specific characteristics. Total IP assays demonstrated that the cloned guinea pig GnRH receptor is a functional GnRH receptor and that it shows different preference of ligand sensitivities from the rat GnRH receptor.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Schartl M, Nanda I, Kondo M, Schmid M, Asakawa S, Sasaki T, Shimizu N, Henrich T, Wittbrodt J, Furutani-Seiki M, Kondoh H, Himmelbauer H, Hong Y, Koga A, Nonaka M, Mitani H, Shima A. Current status of medaka genetics and genomics. The Medaka Genome Initiative (MGI). Methods Cell Biol 2004; 77:173-99. [PMID: 15602912 DOI: 10.1016/s0091-679x(04)77010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Manfred Schartl
- Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|