1
|
Ahram M, Abdullah MS, Mustafa SA, Alsafadi DB, Battah AH. Androgen down-regulates desmocollin 2 in association with induction of mesenchymal transition of breast MDA-MB-453 cancer cells. Cytoskeleton (Hoboken) 2022; 78:391-399. [PMID: 35023302 DOI: 10.1002/cm.21691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Desmosomes are cellular structures that are critical in cell-cell adhesion and in maintaining tissue architecture. Changes in the expression of desmocollin-2 (DSC2) have been noted during tumor progression into an invasive phenotype and as cells undergo epithelial-mesenchymal transition. We have previously reported that breast MDA-MB-453 cancer cells, a luminal androgen receptor model of triple-negative breast cancer, acquire mesenchymal features when treated with the androgen receptor (AR) agonist, dihydrotestosterone (DHT). We have therefore investigated androgen regulation of the expression and cellular localization of DSC2 in MDA-MB-453 cells. Treatment of the cells with DHT resulted in a dose-dependent reduction in DSC2 protein levels and dispersion of its membrane localization concomitant with AR- and β-catenin-mediated mesenchymal transition of cells. A significant correlation was revealed between decreased expression of AR and increased expression of DSC2 in patient samples. In addition, whereas lower expression of AR was associated with a reduced overall and recurrence-free survival of breast cancer patients, higher expression of DSC2 was found in invasive breast tumors than in normal breast cells and was correlated with lower patient survival. Upon knocking down DSC2, the cells became elongated, mesenchymal-like, and slightly, but insignificantly, more migratory. The addition of DHT further stimulated cell elongation and migration. DSC2 siRNA-transfected cells reverted to a normal epithelial morphology upon inhibition of β-catenin. These results highlight the role of DSC2 in maintaining the epithelial morphology of MDA-MB-453 cells and the negative regulation of the desmosomal protein by DHT during stimulation of the androgen-induced, β-catenin-mediated mesenchymal transition of the cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Shahed A Mustafa
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Dana B Alsafadi
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdelkader H Battah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Sun C, Wang L, Yang XX, Jiang YH, Guo XL. The aberrant expression or disruption of desmocollin2 in human diseases. Int J Biol Macromol 2019; 131:378-386. [DOI: 10.1016/j.ijbiomac.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
|
3
|
Gurjar M, Raychaudhuri K, Mahadik S, Reddy D, Atak A, Shetty T, Rao K, Karkhanis MS, Gosavi P, Sehgal L, Gupta S, Dalal SN. Plakophilin3 increases desmosome assembly, size and stability by increasing expression of desmocollin2. Biochem Biophys Res Commun 2017; 495:768-774. [PMID: 29146182 DOI: 10.1016/j.bbrc.2017.11.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 11/15/2022]
Abstract
Previous reports show that the desmosomal plaque protein plakophilin3 (PKP3) is essential for desmosome formation. Here, we report that PKP3 over-expression decreases calcium dependency for de novo desmosome formation and makes existing cell-cell adhesion junctions more resilient in low calcium medium due to an increase in desmocollin2 expression. PKP3 overexpression increases the stability of other desmosomal proteins independently of the increase in DSC2 levels and regulates desmosome formation and stability by a multimodal mechanism affecting transcription, protein stability and cell border localization of desmosomal proteins.
Collapse
Affiliation(s)
- Mansa Gurjar
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Kumarkrishna Raychaudhuri
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Snehal Mahadik
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Divya Reddy
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Apurva Atak
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Trupti Shetty
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Kruthi Rao
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Mansi S Karkhanis
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Prajakta Gosavi
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Lalit Sehgal
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sorab N Dalal
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
4
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
5
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
6
|
Abstract
Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.
Collapse
Affiliation(s)
- Mohamed Berika
- Department of Anatomy, Faculty of Medicine, Mansoura University , Mansoura City , Egypt
| | | |
Collapse
|
7
|
Burns KA, Zorrilla LM, Hamilton KJ, Reed CE, Birnbaum LS, Korach KS. A single gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts the adult uterine response to estradiol in mice. Toxicol Sci 2013; 136:514-26. [PMID: 24052564 DOI: 10.1093/toxsci/kft208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) given as a cotreatment with estrogen exhibits antiestrogenic properties on the rodent adult uterus, but less is understood regarding hormonal responsiveness of the adult uterus from animals having been exposed to TCDD during critical periods of development. We characterized the inhibitory effects of TCDD (T) exposure at gestational day 15 (GD15), 4 weeks, and 9 weeks of age (TTT) on the adult uterus following hormone treatment. TTT-exposed mice in response to hormone treatment exhibited a blunted weight increase, had fewer uterine glands, displayed morphological anomalies, and had marked decreases in the hormonal regulation of genes involved in fluid transport (Aqp3 and Aqp5), cytoarchitectural (Dsc2 and Sprr2A), and immune (Lcn2 and Ltf) regulation. To determine if the 9-week exposure was responsible for the blunted uterine response, due to the 7- to 11-day half-life of TCDD in mice, a second set of experiments was performed to examine exposure to TCDD given at GD15, GD15 only (cross-fostered at birth), only during lactation (cross-fostered at birth), or at GD15 and 4 weeks of age. Our studies demonstrate that a single developmental TCDD exposure at GD15 is sufficient to elicit a blunted adult uterine response to estradiol and is due in part to fewer gland numbers and the reduced expression of forkhead box A2 (FoxA2), a gene involved in gland development. Together, these results provide insight regarding the critical nature of in utero exposure and the potential impact on ensuing uterine biology and reproductive health later in life.
Collapse
Affiliation(s)
- Katherine A Burns
- * Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | |
Collapse
|
8
|
Funakoshi S, Ezaki T, Kong J, Guo RJ, Lynch JP. Repression of the desmocollin 2 gene expression in human colon cancer cells is relieved by the homeodomain transcription factors Cdx1 and Cdx2. Mol Cancer Res 2008; 6:1478-90. [PMID: 18819935 DOI: 10.1158/1541-7786.mcr-07-2161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Desmosomes are intracellular junctions that provide strong cell-cell adhesion in epithelia and cardiac muscle. Their disruption causes several human diseases and contributes to the epithelial-to-mesenchymal transition observed in cancer. Desmocollin 2 (DSC2) is a cadherin superfamily member and a critical component of desmosomes found in intestinal epithelium. However, the mechanism regulating DSC2 gene expression in intestinal cells is not known. Cdx1 and Cdx2 are homeodomain transcription factors that regulate intestine-specific gene expression. Cdx expression in the past has been associated with the induction of desmosomes. We now show that the DSC2 gene is a transcriptional target for Cdx1 and Cdx2. Colon cancer cell lines retaining Cdx2 expression typically express DSC2. Restoration of Cdx expression in Colo 205 cells induced DSC2 mRNA and protein and the formation of desmosomes. The 5'-flanking region of the DSC2 promoter contains two consensus Cdx-binding sites. Electrophoretic mobility shift assays show that Cdx1 and Cdx2 bind these sites in vitro, and chromatin immunoprecipitation confirmed Cdx2 binding in vivo. DSC2 promoter truncations established that these regions are Cdx responsive. The truncations also identify a region of the promoter in which potent transcriptional repressors act. This repressor activity is relieved by Cdx binding. We conclude that the homeodomain transcription factors Cdx1 and Cdx2 regulate DSC2 gene expression in intestinal epithelia by reversing the actions of a transcriptional repressor. The regulation of desmosomal junctions by Cdx contributes to normal intestinal epithelial columnar morphology and likely antagonizes the epithelial-to-mesenchymal transition necessary for the metastasis of colon cancer cells in humans.
Collapse
Affiliation(s)
- Shinsuke Funakoshi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
10
|
Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR. Inhibition of estrogen-mediated uterine gene expression responses by dioxin. Mol Pharmacol 2007; 73:82-93. [PMID: 17942748 DOI: 10.1124/mol.107.040451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exhibits antiestrogenic properties, including the inhibition of estrogen-induced uterine growth and proliferation. The inhibition of estrogen-mediated gene expression through ER/AhR cross-talk has been proposed as a plausible mechanism; however, only a limited number of inhibited responses have been investigated that are unlikely to fully account for the antiuterotrophic effects of TCDD. Therefore, the effects of TCDD on ethynyl estradiol (EE)-mediated uterine gene expression were investigated using cDNA microarrays with complementary physiological and histological phenotypic anchoring. Mice were gavaged with vehicle, 3 daily doses of 10 mug/kg EE, a single dose of 30 mug/kg TCDD, or a combination of EE plus TCDD and sacrificed after 4, 12, 24, and 72 h. TCDD cotreatment inhibited EE-induced uterine wet weight by 37, 23, and 45% at 12, 24, and 72 h, respectively. TCDD cotreatment also reduced EE-mediated stromal edema, hypertrophy, and hyperplasia and induced marked luminal epithelial cell apoptosis. A 2 x 2 factorial microarray design was used to identify EE- and TCDD-specific differential gene expression responses as well as their interactive effects. Only 133 of the 2753 EE-mediated differentially expressed genes were significantly modulated by TCDD cotreatment, indicating a gene-specific inhibitory response. The EE-mediated induction of many genes, including trefoil factor 1 and keratin 14, were inhibited by greater than 90% by TCDD. Functional annotation of inhibited responses was associated with cell proliferation, water and ion transport, and maintenance of cellular structure and integrity. These inhibited responses correlate with the observed histological alterations and may contribute to the antiuterotrophic effects of TCDD.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Michigan State University, Department of Biochemistry and Molecular Biology, 224 Biochemistry Building, Wilson Road, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
11
|
Goerttler PS, Kreutz C, Donauer J, Faller D, Maiwald T, März E, Rumberger B, Sparna T, Schmitt-Gräff A, Wilpert J, Timmer J, Walz G, Pahl HL. Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 2005; 129:138-50. [PMID: 15801966 DOI: 10.1111/j.1365-2141.2005.05416.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Summary The molecular aetiology of polycythaemia vera (PV) remains unknown and the differential diagnosis between PV and secondary erythrocytosis (SE) can be challenging. Gene expression profiling can identify candidates involved in the pathophysiology of PV and generate a molecular signature to aid in diagnosis. We thus performed cDNA microarray analysis on 40 PV and 12 SE patients. Two independent data sets were obtained: using a two-step training/validation design, a set of 64 genes (class predictors) was determined, which correctly discriminated PV from SE patients. Separately 253 genes were identified to be upregulated and 391 downregulated more than 1.5-fold in PV compared with healthy controls (P < 0.01). Of the genes overexpressed in PV, 27 contained Sp1 sites: we therefore propose that altered activity of Sp1-like transcription factors may contribute to the molecular aetiology of PV. One Sp1 target, the transcription factor NF-E2 [nuclear factor (erythroid-derived 2)], is overexpressed 2- to 40-fold in PV patients. In PV bone marrow, NF-E2 is overexpressed in megakaryocytes, erythroid and granulocytic precursors. It has been shown that overexpression of NF-E2 leads to the development of erythropoietin-independent erythroid colonies and that ectopic NF-E2 expression can reprogram monocytic cells towards erythroid and megakaryocytic differentiation. Transcription factor concentration may thus control lineage commitment. We therefore propose that elevated concentrations of NF-E2 in PV patients lead to an overproduction of erythroid and, in some patients, megakaryocytic cells/platelets. In this model, the level of NF-E2 overexpression determines both the severity of erythrocytosis and the concurrent presence or absence of thrombocytosis.
Collapse
Affiliation(s)
- Philipp S Goerttler
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Smith C, Zhu K, Merritt A, Picton R, Youngs D, Garrod D, Chidgey M. Regulation of desmocollin gene expression in the epidermis: CCAAT/enhancer-binding proteins modulate early and late events in keratinocyte differentiation. Biochem J 2004; 380:757-65. [PMID: 15030314 PMCID: PMC1224228 DOI: 10.1042/bj20040077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/20/2004] [Accepted: 03/19/2004] [Indexed: 11/17/2022]
Abstract
Desmocollins (Dscs) are desmosomal cadherins that exhibit differentiation-specific patterns of expression in the epidermis. Dsc3 expression is strongest in basal cell layers, whereas Dsc1 is largely confined to upper, terminally differentiating strata. To understand better the processes by which Dsc expression is regulated in the epidermis, we have isolated Dsc3 and Dsc1 5'-flanking DNAs and analysed their activity in primary keratinocytes. In the present study, we found that transcription factors of the CCAAT/enhancer-binding protein family play a role in the regulation of expression of both Dscs and, in so doing, implicate this class of transcription factors in both early and late events in keratinocyte differentiation. We show that Dscs are differentially regulated by C/EBP (CCAAT/enhancer-binding protein) family members, with Dsc3 expression being activated by C/EBPbeta but not C/EBPalpha, and the reverse being the case for Dsc1. Expression of both Dscs is activated by another family member, C/EBPdelta. These results show for the first time how desmosomal cadherin gene expression is regulated and provide a mechanism for the control of other differentiation-specific genes in the epidermis.
Collapse
Affiliation(s)
- Conrad Smith
- Division of Medical Sciences, University of Birmingham, Clinical Research Block, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Hernández-Quintero M, García-Villegas R, Castro-Muñozledo F. Differentiation-dependent increases in lactate dehydrogenase activity and isoenzyme expression in rabbit corneal epithelial cells. Exp Eye Res 2002; 74:71-82. [PMID: 11878820 DOI: 10.1006/exer.2001.1110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) activities were studied during corneal epithelial growth and differentiation in cell culture. LDH and G-6-PDH activities increased up to 60 and 150-fold, respectively, when corneal epithelial cells constituted a differentiated four to five layered epithelium; these increases showed a similar time-course to the expression of K3 keratin. Immunostaining experiments showed that in growing colonies, LDH staining is stronger in those cells that are K3 positive; in contrast, in confluent four to five layered epithelia LDH and K3 were located in all cell layers, similar to the pattern found in frozen sections from rabbit central cornea. During growth and differentiation, the LDH isoenzyme set from corneal epithelial cells did not change; and it was different from those observed in cultured conjunctival, esophageal and epidermal cells. The augment in LDH activity was due to a 25-fold increase in the LDH-H mRNA and a 12-fold augment in LDH-M mRNA. A computer-assisted search led to identify AP2 and Sp1 binding sites in the LDH and G-6-PDH promoters, suggesting that their expression might share common regulatory mechanisms with the regulation of the differentiation-linked keratins. It is proposed that LDH may be an early marker of corneal epithelial differentiation, and its isozyme pattern could be distinctive from other epithelial cell lineages.
Collapse
Affiliation(s)
- Miriam Hernández-Quintero
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Apdo, 07000, Mexico
| | | | | |
Collapse
|
14
|
Cserhalmi-Friedman PB, Frank JA, Ahmad W, Panteleyev AA, Aita VM, Christiano AM. Structural analysis reflects the evolutionary relationship between the human desmocollin gene family members. Exp Dermatol 2001; 10:95-9. [PMID: 11260247 DOI: 10.1034/j.1600-0625.2001.010002095.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Desmocollins, members of the desmosomal cadherin family, are known to play an important role in desmosomal intercellular adhesion. The human desmosomal cadherin cluster is located on chromosome 18q12, and consists of three desmoglein and three desmocollin genes. The cDNAs of all six of these genes have been cloned and sequenced, however, the exon-intron organization was reported for only one human desmocollin gene, DSC2. We elucidated the exon-intron structures of the DSC1 and DSC3 genes using PCR amplification of genomic DNA and direct sequencing of BAC clones. The results suggest a strong evolutionary conservation between the genomic organization of the desmocollin genes.
Collapse
Affiliation(s)
- P B Cserhalmi-Friedman
- Department of Dermatology, Columbia University, 630 W. 168th Street VC-1526, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
15
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
16
|
Gadhavi PL, Greenwood MD, Strom M, King IA, Buxton RS. The regulatory region of the human desmocollin 3 promoter forms a DNA four-way junction. Biochem Biophys Res Commun 2001; 281:520-8. [PMID: 11181078 DOI: 10.1006/bbrc.2001.4375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion between desmosomal junctions is mediated by structural proteins of the cadherin family, viz. three desmocollins (DSC) and three desmogleins (DSG). Promoter and primer extension analysis of human DSC3 showed a TATA-less sequence initiating transcription via a cluster of sites upstream of the coding region. Deletion analysis of 1 kb of the promoter showed that expression is regulated between --303 and --203 bp upstream of the start-site of translation. Tertiary structure analysis of this cis-active region (cis 1) revealed a potential DNA 4-way junction which is notably G/C-rich in sequence. PAGE analysis of this region identified four differently migrating forms of the DNA. Structure-specific cleavage of the DNA with bacteriophage T7 endonuclease I showed the slowest migrating form to be either an extended/cruciform or stacked-X 4-way junction. DNA-binding, gel retardation assays of the cis 1 region showed distinct DNA-protein complexes and by competition experiments and using purified junction DNA we show that one of these complexes bound with both sequence and structure specificity to the 4-way junction DNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Deoxyribonuclease I/metabolism
- Desmocollins
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Membrane Glycoproteins/genetics
- Mice
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P L Gadhavi
- Division of Membrane Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Morifuji M, Taniguchi S, Sakai H, Nakabeppu Y, Ohishi M. Differential expression of cytokeratin after orthotopic implantation of newly established human tongue cancer cell lines of defined metastatic ability. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1317-26. [PMID: 10751357 PMCID: PMC1876874 DOI: 10.1016/s0002-9440(10)65002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two human tongue squamous cell carcinoma cell lines, SQUU-A and SQUU-B, were established from the same patient. Cervical lymph node metastasis was detected in the mice orthotopically implanted with SQUU-B (86.7%, 13/15), but not in those with SQUU-A (0/13). Histologically, SQUU-B showed invasive growth and intravasation in the tongue, whereas SQUU-A simply demonstrated expansive growth without intravasation. By Western blot analysis, nonmetastatic clone SQUU-A expressed cytokeratin (CK)13/4, 14, 16/6, 18/8, and 19, whereas a high metastatic clone SQUU-B expressed CK18/8 and 19. The reverse transcription-polymerase chain reaction technique showed that CK13/4 mRNA was expressed in both cell lines, but CK14 and 16 mRNA was expressed only in SQUU-A. CK13 was immunohistochemically expressed in both SQUU-A and SQUU-B transplanted into the tongues of nude mice; CK14 and 16 were detected in SQUU-A of the tongues, but not in SQUU-B. As seen in SQUU-B cell line, SQUU-B of the cervical lymph node metastasis did not exhibit CK13, 14, or 16. These results suggest that the loss or down-regulation of CK13, 14, or 16 is related to the invasive and metastatic ability of cancer. The cytoskeletal system is thus considered to be closely related to the malignant phenotype.
Collapse
Affiliation(s)
| | - Shun’ichiro Taniguchi
- Research Center on Aging and Adaptation, Shinsyu University School of Medicine, Matsumoto, Japan
| | - Hidetaka Sakai
- Faculty of Dentistry, Kyushu University, Fukuoka; the Department of Biochemistry,‡
| | - Yusaku Nakabeppu
- Medical Institute of Bioregulation, Kyushu University, Fukuoka; CREST,§
| | | |
Collapse
|
18
|
Hunt DM, Sahota VK, Taylor K, Simrak D, Hornigold N, Arnemann J, Wolfe J, Buxton RS. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18. Genomics 1999; 62:445-55. [PMID: 10644442 DOI: 10.1006/geno.1999.6036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the interlocus region. The order of the genes is correlated with the spatial order of gene expression in the developing mouse embryo, and this, and previous transgenic experiments, suggests that long-range genetic elements that coordinate expression of these genes may be present. The complete bacterial clone contig described in this paper is thus a resource not only for future sequencing but also for investigations into the control of expression of these clustered genes.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kowalczyk AP, Bornslaeger EA, Norvell SM, Palka HL, Green KJ. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:237-302. [PMID: 9750269 DOI: 10.1016/s0074-7696(08)60153-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-cell adhesion is thought to play important roles in development, in tissue morphogenesis, and in the regulation of cell migration and proliferation. Desmosomes are adhesive intercellular junctions that anchor the intermediate filament network to the plasma membrane. By functioning both as an adhesive complex and as a cell-surface attachment site for intermediate filaments, desmosomes integrate the intermediate filament cytoskeleton between cells and play an important role in maintaining tissue integrity. Recent observations indicate that tissue integrity is severely compromised in autoimmune and genetic diseases in which the function of desmosomal molecules is impaired. In addition, the structure and function of many of the desmosomal molecules have been determined, and a number of the molecular interactions between desmosomal proteins have now been elucidated. Finally, the molecular constituents of desmosomes and other adhesive complexes are now known to function not only in cell adhesion, but also in the transduction of intracellular signals that regulate cell behavior.
Collapse
Affiliation(s)
- A P Kowalczyk
- Department of Pathology, R.H. Lurie Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
20
|
Adams MJ, Reichel MB, King IA, Marsden MD, Greenwood MD, Thirlwell H, Arnemann J, Buxton RS, Ali RR. Characterization of the regulatory regions in the human desmoglein genes encoding the pemphigus foliaceous and pemphigus vulgaris antigens. Biochem J 1998; 329 ( Pt 1):165-74. [PMID: 9405290 PMCID: PMC1219028 DOI: 10.1042/bj3290165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adhesive proteins in the desmosome type of cell junction consist of two members of the cadherin superfamily, the desmogleins and desmocollins. Both desmogleins and desmocollins occur as at least three different isoforms with various patterns of expression. The molecular mechanisms controlling the differential expression of the desmosomal cadherin isoforms are not yet known. We have begun an investigation of desmoglein gene expression by cloning and analysing the promoters of the human genes coding for the type 1 and type 3 desmogleins (DSG1 and DSG3). The type 1 isoform is restricted to the suprabasal layers of the epidermis and is the autoantigen in the autoimmune blistering skin disease pemphigus foliaceous. The type 3 desmoglein isoform is also expressed in the epidermis, but in lower layers than the type 1 isoform, and is the autoantigen in pemphigus vulgaris. Phage lambda genomic clones were obtained containing 4.2 kb upstream of the translation start site of DSG1 and 517 bp upstream of the DSG3 start site. Sequencing of 660 bp upstream of DSG1 and 517 bp upstream of DSG3 revealed that there was no obvious TATA box, but a possible CAAT box was present at -238 in DSG1 and at -193 in DSG3 relative to the translation start site. Primer extension analysis and RNase protection experiments revealed four putative transcription initiation sites for DSG1 at positions -163, -151, -148 and -141, and seven closely linked sites for DSG3, the longest being at -140 relative to the translation start site. The sequences at these possible sites at -166 to -159 in DSG1 (TTCAGTCC) and at -124 to -117 in DSG3 (CTTAGACT) have some similarity to the initiator sequence (CTCANTCT) described for a TATA-less promoter often from -3 to +5, and the true transcription initiator site might therefore be the A residue in these sequences. There were two regions of similarity between the DSG1 and DSG3 promoters just upstream of the transcription initiation sites, of 20 and 13 bp, separated by 41 bp in DSG1 and 36 bp in DSG3. The significance of these regions of similarity remains to be elucidated, but the results suggest that they represent a point at which these two desmoglein genes are co-ordinately regulated. Analysis of the upstream sequences revealed GC-rich regions and consensus binding sites for transcription factors including AP-1 and AP-2. Exon boundaries were conserved compared with the classical cadherin E-cadherin, but the equivalent of the second cadherin intron was lacking. A 4.2 kb region of the human DSG1 promoter sequence was linked to the lacZ gene reporter gene in such a way that there was only one translation start site, and this construct was used to generate transgenic mice. We present the first transgenic analysis of a promoter region taken from a desmosomal cadherin gene. Our results suggest that the 4.2 kb upstream region of DSG1 does not contain all the regulatory elements necessary for correct expression of this gene but might have elements that regulate activity during hair growth.
Collapse
Affiliation(s)
- M J Adams
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
King IA, Angst BD, Hunt DM, Kruger M, Arnemann J, Buxton RS. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation 1997; 62:83-96. [PMID: 9404003 DOI: 10.1046/j.1432-0436.1997.6220083.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Desmosomes contain two heterogeneous families of specialized cadherins (desmogleins or Dsgs and desmocollins or Dscs), subtypes of which are known to be expressed in tissue-specific and differentiation-dependent patterns in adult epithelial tissues. To examine the temporal and spatial order in which the individual desmosomal cadherins are expressed during stratified epithelial development we have obtained partial cDNA clones of all six murine desmosomal cadherins and have carried out in situ hybridization analysis on E12.5 to E16.5 mouse embryos. The results indicate that the type 2, type 3 and type 1 desmosomal cadherin messages are not obligatorily expressed as pairs during stratified epithelial morphogenesis. Instead the individual genes appear to be transcribed in hierarchical, overlapping temporal and spatial patterns extending from DSG2 to DSC1. DSG2 was the most uniformly expressed message in all E12.5 epithelia, gradually becoming confined to the basal cell layers during epithelial stratification indicating that its transcription was restricted to undifferentiated cells. In contrast, DSC2 message was expressed variably in early epithelia and was strongly upregulated in the suprabasal cell layers during the stratification of wet-surfaced epithelia. DSC3 message was expressed before that of DSG3 in the dental and lingual epithelium where its spatial distribution matched that of DSG2, but after DSG3 in the non-glandular gastric epithelium. DSC3 transcripts became confined to the lower layers of stratifying epithelia but were usually less basally restricted than those of DSG2. Like DSC2, DSG3 mRNA was strongly upregulated in the suprabasal layers of wet-surfaced epithelia as they stratified. Upregulation of DSG1 message was temporally linked to that of DSG3 in all tissues apart from the non-glandular gastric epithelium.
Collapse
Affiliation(s)
- I A King
- Division of Membrane Biology, National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Greenwood MD, Marsden MD, Cowley CM, Sahota VK, Buxton RS. Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to "classical" cadherins than to desmogleins. Genomics 1997; 44:330-5. [PMID: 9325054 DOI: 10.1006/geno.1997.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cadherins are a superfamily of calcium-dependent glycoproteins that are cell adhesion molecules. Two families of cadherins, the desmocollins (Dsc) and desmogleins (Dsg), are found only in the desmosome type of cell-cell junction. They are each present in at least three different isoforms with differing spatial and temporal distributions and are specified by two clusters of closely linked genes on human chromosome 18q12.1. The human DSC2 gene, coding for the most widely distributed form of the desmocollins, has been found to consist of more than 32 kb of DNA. By using PCR we have determined the exon-intron organization. The gene is arranged into 17 exons ranging in size from 46 to 258 bp; exon 16 is alternatively spliced, giving rise to the a and b forms of the protein. This has revealed a remarkable degree of conservation of intron position with other cadherins. The desmocollin exon-intron organization is more similar to the so-called classical cadherins than to the desmogleins, especially in the cytoplasmic domain. Intron 1 is the largest in DSC2, as it is in the desmogleins, in contrast to the classical cadherins, where intron 2 is extremely large; this latter intron is missing from the desmogleins.
Collapse
Affiliation(s)
- M D Greenwood
- Division of Membrane Biology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Cowley CM, Simrak D, Marsden MD, King IA, Arnemann J, Buxton RS. A YAC contig joining the desmocollin and desmoglein loci on human chromosome 18 and ordering of the desmocollin genes. Genomics 1997; 42:208-16. [PMID: 9192840 DOI: 10.1006/geno.1997.4718] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The desmocollins and desmogleins are members of the cadherin family of adhesive proteins present in the desmosome type of cell-cell junction. All of the known desmoglein and desmocollin isoforms, which have differing tissue and developmental distributions, are coded by very closely linked genes at 18q12.1. We have previously described YAC clones carrying all three known desmoglein (DSG) genes. We have now isolated YAC clones that carry all three known desmocollin genes (DSC1, 2, and 3) from two libraries and also isolated clones that join the DSC locus to the DSG locus, forming a complete contig for the region. Absence of chimeric ends for some of the YACs was confirmed by isolating Vectorette PCR products for the YAC ends and mapping the derived DNA sequences back to other YACs from CEPH. The whole DSC/DSG gene complex occupies no more than about 700 kb, and the genes are arranged in the order cen-3'-DSC3-DSC2-DSC1-5'-5'-DSG1-DSG3-D SG2-3'-tel, so that the two gene clusters are transcribed outward from the interlocus region. A P1 clone carrying part of DSC2 and DSC3 confirmed the relative orientation of transcription of these two genes. The conservation of close genetic linkage may be of trivial importance related to the recent duplication of these genes or may be because there is a region within the locus that is involved in coordinating the expression of the desmoglein and desmocollin genes.
Collapse
Affiliation(s)
- C M Cowley
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | | | | | |
Collapse
|