1
|
Hong AE, Ryu MS, Lim IK. Proper regulation of β-adrenergic signal requires Btg2 gene for lipolysis and thermogenesis in response to starvation or cold acclimation in female mice. J Nutr Biochem 2023; 111:109160. [PMID: 36179768 DOI: 10.1016/j.jnutbio.2022.109160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/16/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Mammals maintain constant body temperature in cold environment by activating thermogenesis via adrenergic/protein kinase A (PKA) signaling. B-cell translocation gene 2 (BTG2/Tis21), induced by PKA signaling, regulates glucose and lipid metabolism in liver, yet its role in lipolysis and in thermogenesis is not explored. Here, Btg2-knockout (KO) mice failed to maintain body temperature under starvation, or in cold acclimation. And norepinephrine-induced thermogenic response was turned off earlier in the KO mice. Gender specifically, gonadal white adipose tissues (gWAT) of female-KO were very active in lipolysis in fed state, however, the fat degradation was diminished upon fasting or cold acclimation. Also, insulin sensitivity was increased in female-KO, but not in male-KO mice, along with the low bone mineral density and small brown adipose tissues (BAT). In the mechanistic aspect, expressions of UCP1 and lipases (LPL, ATGL, HSL) in gWAT of female-KO mice were significantly reduced in response to adrenergic signals. Here, we present some data that Btg2 gene is essential for properly respond to β-adrenergic signals, and plays as a negative regulator of insulin signaling in female mice.
Collapse
Affiliation(s)
- Allen Eugene Hong
- Department of Biochemistry and Molecular Biology, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Sook Ryu
- Department of Biochemistry and Molecular Biology, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Youssef MMM, Hamada HT, Lai ESK, Kiyama Y, El-Tabbal M, Kiyonari H, Nakano K, Kuhn B, Yamamoto T. TOB is an effector of the hippocampus-mediated acute stress response. Transl Psychiatry 2022; 12:302. [PMID: 35906220 PMCID: PMC9338090 DOI: 10.1038/s41398-022-02078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.
Collapse
Affiliation(s)
- Mohieldin M M Youssef
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Esther Suk King Lai
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuji Kiyama
- Laboratory of Biochemistry and Molecular Biology, Graduate school of medical and dental sciences, Kagoshima University, Kagoshima, Japan
| | - Mohamed El-Tabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
3
|
Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Cell Tissue Res 2015; 364:443-51. [DOI: 10.1007/s00441-015-2328-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022]
|
4
|
Chen Y, Wang C, Wu J, Li L. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation. Biochem Biophys Res Commun 2015; 462:208-14. [PMID: 25951976 DOI: 10.1016/j.bbrc.2015.04.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 02/06/2023]
Abstract
The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1(-/-), Tob2(-/-), and Tob1/2 double knockout (DKO, Tob1(-/-) & Tob2(-/-)) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs.
Collapse
Affiliation(s)
- Yuanfan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Chenchen Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Jenny Wu
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China
| | - Lingsong Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191, China; SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200120, China.
| |
Collapse
|
5
|
Abstract
Tob1 (transducer of ERBB2-1, TOB1 is humans) is a member of the antiproliferative (APRO) family of proteins that controls cell cycle progression in several cell types. In addition, Tob1 has been implicated in diverse cellular mechanisms such as embryonic dorsal development, and T helper 17 (Th17) cell function. More recently, evidence linking Tob1 function to experimental and human immune related disorders has mounted, thus underscoring the potential of this molecule as a biomarker and as a therapeutic target. This article reviews these functions with an emphasis on their implications for human autoimmune diseases such as multiple sclerosis.
Collapse
|
6
|
Schulze-Topphoff U, Casazza S, Varrin-Doyer M, Pekarek K, Sobel RA, Hauser SL, Oksenberg JR, Zamvil SS, Baranzini SE. Tob1 plays a critical role in the activation of encephalitogenic T cells in CNS autoimmunity. ACTA ACUST UNITED AC 2013; 210:1301-9. [PMID: 23797093 PMCID: PMC3698524 DOI: 10.1084/jem.20121611] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of antiproliferative gene TOB1 results in more severe EAE driven by augmented pathogenic T cell responses. Reliable biomarkers corresponding to disease progression or therapeutic responsiveness in multiple sclerosis (MS) have not been yet identified. We previously reported that low expression of the antiproliferative gene TOB1 in CD4+ T cells of individuals presenting with an initial central nervous system (CNS) demyelinating event (a clinically isolated syndrome), correlated with high risk for progression to MS. We report that experimental autoimmune encephalomyelitis (EAE) in Tob1−/− mice was associated with augmented CNS inflammation, increased infiltrating CD4+ and CD8+ T cell counts, and increased myelin-reactive Th1 and Th17 cells, with reduced numbers of regulatory T cells. Reconstitution of Rag1−/− mice with Tob1−/− CD4+ T cells recapitulated the aggressive EAE phenotype observed in Tob1−/− mice. Furthermore, severe spontaneous EAE was observed when Tob1−/− mice were crossed to myelin oligodendrocyte glycoprotein–specific T cell receptor transgenic (2D2) mice. Collectively, our results reveal a critical role for Tob1 in adaptive T cell immune responses that drive development of EAE, thus providing support for the development of Tob1 as a biomarker for demyelinating disease activity.
Collapse
|
7
|
Yuan J, Cao JY, Tang ZL, Wang N, Li K. Molecular characterization of Tob1 in muscle development in pigs. Int J Mol Sci 2011; 12:4315-26. [PMID: 21845080 PMCID: PMC3155353 DOI: 10.3390/ijms12074315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 11/17/2022] Open
Abstract
Cell proliferation is an important biological process during myogenesis. Tob1 encoded a member of the Tob/BTG family of anti-proliferative proteins. Our previous LongSAGE (Long Serial Analysis of Gene Expression) analysis suggested that Tob1 was differentially expressed during prenatal skeletal muscle development. In this study, we isolated and characterized the swine Tob1 gene. Subsequently, we examined Tob1 chromosome assignment, subcellular localization and dynamic expression profile in prenatal skeletal muscle (33, 65 and 90 days post-conception, dpc) from Landrace (lean-type) and Tongcheng pigs (obese-type). The Tob1 gene was mapped to pig chromosome 12 (SSC12). The Tob1 protein was distributed throughout the nucleus and cytoplasm of PK15 cells. During prenatal skeletal muscle development, Tob1 was up-regulated and highly expressed in skeletal muscle at 90 dpc in Tongcheng pigs but peaked at 65 dpc in Landrace pigs. This result suggested that there were different proliferation patterns during myogenesis between Tongcheng and Landrace pigs. During postnatal skeletal muscle development, the expression of Tob1 increased with aging, indicating that the proliferation potential of myoblasts decreased in postnatal muscle development. In tissues of adult wuzhishan miniature pigs, the Tob1 gene was highly expressed in skeletal muscle. The expression of Tob1 was significantly increased at day 6 during C2C12 differentiation time, suggesting a possible role in skeletal muscle development. Therefore, this study indicated that Tob1 perhaps played an important role in skeletal muscle development.
Collapse
Affiliation(s)
- Jing Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; E-Mail:
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
| | - Ji-Yue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.C.); (Z.-L.T.); Tel.: +86-27-87281593 (J.-Y.C.); +86-10-62818180 (Z.-L.T.); Fax: +86-10-62818180 (Z.-L.T.)
| | - Zhong-Lin Tang
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Y.C.); (Z.-L.T.); Tel.: +86-27-87281593 (J.-Y.C.); +86-10-62818180 (Z.-L.T.); Fax: +86-10-62818180 (Z.-L.T.)
| | - Ning Wang
- College of Animal Science, Northeast Agricultural University, Haerbin, Helongjiang 150030, China; E-Mail:
| | - Kui Li
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; E-Mail:
| |
Collapse
|
8
|
Tzachanis D, Boussiotis VA. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle 2009; 8:1019-25. [PMID: 19270514 DOI: 10.4161/cc.8.7.8033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular quiescence is a state characterized by decreased cell size and metabolic activity. Quiescence acts to reduce the resources, energy and space. Quiescence might also protect cells from accumulating metabolic damage that could result in malignancy. Recent studies have shown that cell quiescence is an actively maintained rather than a default state in the absence of signals. Quiescence factors represent potential tumor suppressor genes because alterations in their expression or function contribute to progression of malignancies. There is growing evidence that quiescence is under active transcriptional control. The regulation of cell proliferation involves dozens of extracellular signals and intracellular factors of various types. In the present review we will focus on the role of Tob, a member of the APRO family members in regulating cellular quiescence and inhibition of cellular proliferation.
Collapse
Affiliation(s)
- Dimitrios Tzachanis
- Department of Medicine, Division of Hematology and Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
9
|
Tumor growth suppression by adenovirus-mediated introduction of a cell-growth-suppressing gene tob in a pancreatic cancer model. Biomed Pharmacother 2008; 63:275-86. [PMID: 18657378 DOI: 10.1016/j.biopha.2008.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/29/2008] [Indexed: 01/07/2023] Open
Abstract
TOB (transducer of ErbB-2) is a tumor suppressor that interacts with protein-tyrosine kinase receptors, including ErbB-2. Introduction of the tob gene into NIH3T3 cells results in cell growth suppression. In this study, we evaluated the effect of tob expression in pancreatic cell lines (AsPC-1, BxPC-3, SOJ) and discuss the tumor-suppressing effects of adenoviral vector expressing tob cDNA. We first measured the levels of endogenous tob mRNA being expressed in all pancreatic cancer cell lines. Then, we examined the effect of adenoviral vector containing tob cDNA (Ad-tob vector) on cancer cell lines. The viral vector was expanded with transfection in 293 cells. The titer of the vector was 350x10(6) pfu/ml. These cancer cells were able to be transfected with MOI 20 without adenoviral toxicity. The transfection of Ad-tob vector results in growth suppression of SOJ and AsPC-1 cell lines. The magnitude of the expression of the Ad-tob gene in cancer is correlated to tumor suppressive activity. We prepared pancreatic cancer peritonitis models using a peritoneal injection of AsPC-1 cells. In this model, bloody ascites and multiple tumor nodules were seen at the mesentery after 16 days. AdCAtob (50x10(6) pfu/day) was administered from day 5 to day 9 after 4 days of peritoneal injection of 2x10(6) AsPC-1 cells. Tumor growth suppression occurred 10 days after peritoneal injection of AdCAtob compared with the control group. There were no tumor nodules in the abdomen and no bloody ascites. These results suggest that the peritoneal injection of AdCAtob has potential to suppress the formation of pancreatic cancer peritonitis, and can be applied for chemotherapy-resistant cancer peritonitis.
Collapse
|
10
|
Abstract
Members of the Btg/Tob protein family share a conserved N-terminal region that confers the activity to inhibit cell proliferation. Tob1 and Tob2 proteins, which constitute a Tob subfamily, have a longer C-terminal region than BTG proteins. Apparently, genomes of invertebrates and teleost species contain only a single Tob locus, whereas genomes of mammalian, avian, and amphibian species contain two Tob loci (Tob1 and Tob2). Tob genes are expressed in oocytes, sperm, early embryos, and various adult tissues, depending on the species. Recent reports indicate that Tob proteins play important roles in spermatogenesis, embryonic dorsoventral patterning, osteogenesis, T-cell activation, and learning and memory. Accumulating evidence supports the hypothesis that Tob proteins act primarily as transcriptional repressors in several signaling pathways.
Collapse
Affiliation(s)
- Shunji Jia
- Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.
| | | |
Collapse
|
11
|
Xiong B, Rui Y, Zhang M, Shi K, Jia S, Tian T, Yin K, Huang H, Lin S, Zhao X, Chen Y, Chen YG, Lin SC, Meng A. Tob1 controls dorsal development of zebrafish embryos by antagonizing maternal beta-catenin transcriptional activity. Dev Cell 2006; 11:225-38. [PMID: 16890162 DOI: 10.1016/j.devcel.2006.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/15/2006] [Accepted: 06/26/2006] [Indexed: 01/22/2023]
Abstract
Maternal beta-catenin and Nodal signals are essential for the formation of the dorsal organizer, which, in turn, induces neural and other dorsal tissue development in vertebrate embryos. Tob (Transducer of ErbB2) proteins possess antiproliferative properties and are known to influence BMP signaling, but their relationship to other signaling pathways and to embryonic patterning in general was unclear. In this study, we demonstrate that zebrafish tob1a is required for correct dorsoventral patterning. Mechanistically, Tob1a inhibits beta-catenin transcriptional activity by physically associating with beta-catenin and preventing the formation of beta-catenin/LEF1 complexes. Although Tob1a can also inhibit the transcriptional activity of the Nodal effector Smad3, its role in limiting dorsal development is executed primarily by antagonizing the beta-catenin signal. We further demonstrate that Tob family members across species share similar biochemical properties and biological activities.
Collapse
Affiliation(s)
- Bo Xiong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Protein Sciences Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tob-deficiency Prevents Ovariectomy-induced Bone Loss through the Super-enhancement of Osteoblastic Activities. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Usui M, Yoshida Y, Tsuji K, Oikawa K, Miyazono K, Ishikawa I, Yamamoto T, Nifuji A, Noda M. Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis. Proc Natl Acad Sci U S A 2004; 101:6653-8. [PMID: 15100414 PMCID: PMC404100 DOI: 10.1073/pnas.0303093101] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tob (transducer of erbB2) is a member of antiproliferative family proteins and acts as a bone morphogenic protein inhibitor as well as a suppressor of proliferation in T cells, which have been implicated in postmenopausal bone loss. To determine the effect of Tob deficiency on estrogen deficiency-induced bone loss, we analyzed bone metabolism after ovariectomy or sham operation in Tob-deficient mice. Ovariectomy in WT mice decreased trabecular bone volume and bone mineral density (BMD) as expected. In Tob-deficient mice, ovariectomy reduced bone volume and BMD. However, even after ovariectomy, both trabecular bone volume and BMD levels in Tob-deficient bone were comparable to those in sham-operated WT bones. Bone formation parameters (mineral apposition rate and bone formation rate) in the ovariectomized Tob-deficient mice were significantly higher than those in the ovariectomized WT mice. In contrast, the ovariectomy-induced increase in the bone resorption parameters, osteoclast surface, and osteoclast number was similar between Tob-deficient mice and WT mice. Furthermore, in ex vivo nodule formation assay, ovariectomy-induced enhancement of nodule formation was significantly higher in the bone marrow cells from Tob-deficient mice than in the bone marrow cells from ovariectomized WT mice. Both Tob and estrogen signalings converge at bone morphogenic protein activation of alkaline phosphatase and GCCG-reporter gene expression in osteoblasts, revealing interaction between the two signals. These data indicate that Tob deficiency prevents ovariectomy-induced bone loss through the superenhancement of osteoblastic activities in bone and that this results in further augmentation in the bone formation rate and the mineral apposition rate after ovariectomy in vivo.
Collapse
Affiliation(s)
- Michihiko Usui
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 3-10 Kanda-Surugadai 2-Chome, Chiyoda-Ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
15
|
Dragon S, Offenhäuser N, Baumann R. cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1219-26. [PMID: 11893628 DOI: 10.1152/ajpregu.00507.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that cAMP might promote general differentiating processes in erythroid cells, thereby allowing adaptive modulation of the latest steps of erythroid differentiation during developmental hypoxia.
Collapse
Affiliation(s)
- Stefanie Dragon
- Physiologisches Institut, Universität Regensburg, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
16
|
Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol 2001; 187:155-65. [PMID: 11267995 DOI: 10.1002/jcp.1062] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PC3(TIS21/BTG2) is the founding member of a family of genes endowed with antiproliferative properties, namely BTG1, ANA/BTG3, PC3B, TOB, and TOB2. PC3 was originally isolated as a gene induced by nerve growth factor during neuronal differentiation of rat PC12 cells, or by TPA in NIH3T3 cells (named TIS21), and is a marker for neuronal birth in vivo. This and other findings suggested its implication in the process of neurogenesis as mediator of the growth arrest before differentiation. Remarkably, its human homolog, named BTG2, was shown to be p53-inducible, in conditions of genotoxic damage. PC3(TIS21/BTG2) impairs G(1)-S progression, either by a Rb-dependent pathway through inhibition of cyclin D1 transcription, or in a Rb-independent fashion by cyclin E downregulation. PC3(TIS21/BTG2) might also control the G(2) checkpoint. Furthermore, PC3(TIS21/BTG2) interacts with carbon catabolite repressor protein-associated factor 1 (CAF-1), a molecule that associates to the yeast transcriptional complex CCR4 and might influence cell cycle, with the transcription factor Hoxb9, and with the protein-arginine methyltransferase 1, that might control transcription through histone methylation. Current evidence suggests a physiological role of PC3(TIS21/BTG2) in the control of cell cycle arrest following DNA damage and other types of cellular stress, or before differentiation of the neuron and other cell types. The molecular function of PC3(TIS21/BTG2) is still unknown, but its ability to modulate cyclin D1 transcription, or to synergize with the transcription factor Hoxb9, suggests that it behaves as a transcriptional co-regulator.
Collapse
Affiliation(s)
- F Tirone
- Consiglio Nazionale delle Ricerche, Istituto di Neurobiologia, Rome, Italy.
| |
Collapse
|
17
|
Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 2000; 103:1085-97. [PMID: 11163184 DOI: 10.1016/s0092-8674(00)00211-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic protein (BMP) controls osteoblast proliferation and differentiation through Smad proteins. Here we show that Tob, a member of the emerging family of antiproliferative proteins, is a negative regulator of BMP/Smad signaling in osteoblasts. Mice carrying a targeted deletion of the tob gene have a greater bone mass resulting from increased numbers of osteoblasts. Orthotopic bone formation in response to BMP2 is elevated in tob-deficient mice. Overproduction of Tob represses BMP2-induced, Smad-mediated transcriptional activation. Finally, Tob associates with receptor-regulated Smads (Smad1, 5, and 8) and colocalizes with these Smads in the nuclear bodies upon BMP2 stimulation. The results indicate that Tob negatively regulates osteoblast proliferation and differentiation by suppressing the activity of the receptor-regulated Smad proteins.
Collapse
Affiliation(s)
- Y Yoshida
- Department of Oncology, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen PJ, Singal A, Kimble J, Ellis RE. A novel member of the tob family of proteins controls sexual fate in Caenorhabditis elegans germ cells. Dev Biol 2000; 217:77-90. [PMID: 10625537 DOI: 10.1006/dbio.1999.9521] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many cell fates differ between males and females, probably the most ancient type of sexual dimorphism is the decision of germ cells to develop as sperm or as oocytes. Genetic analyses of Caenorhabditis elegans suggest that fog-3 might directly control this decision. We used transformation rescue to clone the fog-3 gene and show that it produces a single major transcript of approximately 1150 nucleotides. This transcript is predicted to encode a protein of 263 amino acids. One mutation causes a frame shift at the sixth codon and is thus likely to define the null phenotype of fog-3. Although the carboxyl-terminus of FOG-3 is novel, the amino-terminal domain is similar to that of the Tob, BTG1, and BTG2 proteins from vertebrates, which might suppress proliferation or promote differentiation. This domain is essential for FOG-3 activity, since six of eight missense mutations map to this region. Furthermore, this domain of BTG1 and BTG2 interacts with a transcriptional regulatory complex that has been conserved in all eukaryotes. Thus, one possibility is that FOG-3 controls transcription of genes required for germ cells to initiate spermatogenesis rather than oogenesis. This model implies that FOG-3 is required throughout an animal's life for germ cells to initiate spermatogenesis. We used RNA-mediated interference to demonstrate that fog-3 is indeed required continuously, which is consistent with this model.
Collapse
Affiliation(s)
- P J Chen
- Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The Rbtg3 gene was isolated by PCR (polymerase chain reaction) cloning from the cDNA library of Rat1 fibroblasts that were stimulated with TPA (12-O-tetradecanoylphorbol-13-acetate) or various growth factors for 3h and was found to be a rat homologue of mouse BTG3 and human ANA genes. The Rbtg3 gene had unique DNA sequences in the 5'-UTR and 3'-UTR that contained four ATTTA and one TTATTTA(T/A)(T/A) nonamer motif, and also a polyA addition site. Nucleotide homology of Rbtg3 with BTG3 and ANA was 88.5 and 76.6%, respectively. Expression of Rbtg3 was investigated in SD rats as well as cell lines derived from mouse--SW3T3, NIH3T3 fibroblasts--and rat--Rat1, 3Y1 fibroblasts and PC12--cells. Rbtg3 was highly expressed in brain but barely in lung, kidney, thymus and spleen. The constitutive expression level was high in SW3T3, Rat1 and 3Y1 fibroblasts, but very low in NIH3T3 fibroblast and PC12 cells. However, in all cells tested, Rbtg3 was proved to be one of the primary response genes superinduced by TPA (50ng/ml)+cycloheximide (CHX, 10 microgram/ml). Expression of Rbtg3 was induced by H(2)O(2) (500mM) up to fourfold in PC12 cells and was blocked by pretreatment of NAC (N-acetyl-L-cysteine, 10mM). The induction was ninefold in 3Y1 fibroblasts by menadione (25mM) treatment for 1h, whereas it was reduced to a third of the control level in SW3T3 fibroblast by the same treatment. Rbtg3 was not expressed in NIH3T3 cells but minimally regulated by redox changes as compared with rapid and strong induction of TIS21/BTG2 mRNAs after TPA or H(2)O(2) stimulation. The above results indicate that Rbtg3 is one of many redox-regulated genes as well as a primary response gene.
Collapse
Affiliation(s)
- M S Seo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | | | | |
Collapse
|