1
|
Wang J, Wang Q, Chen Y, Wang L, Zhao A, Sha Z. Cloning, expression profile of the complement component C9 gene and influence of the recombinant C9 protein on peripheral mononuclear leukocytes transcriptome in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2020; 104:101-110. [PMID: 32464273 DOI: 10.1016/j.fsi.2020.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The ninth complement component (C9) is a terminal complement component (TCC) that is involved in creating the membrane attack complex (MAC) on the target cell surface. In this study, the CsC9 (C9 of Cynoglossus semilaevis) cDNA sequence was cloned and characterized. The full-length CsC9 cDNA measured 2,150 bp, containing an open reading frame (ORF) of 1,803 bp, a 5'-untranslated region (UTR) of 24 bp and a 3'-UTR of 323 bp. A domain search revealed that the CsC9 protein contains five domains, including two TSP1s, an LDLRA, an EGF, and a MACPF. Quantitative real-time PCR analysis showed that CsC9 at the mRNA level was expressed in all the tested tissues, with the highest expression being observed in the liver. CsC9 expression is significantly upregulated in the tested tissues after challenge with Vibrio anguillarum. To further characterize the role of CsC9, peripheral blood mononuclear cells of C. semilaevis were used for transcriptome analysis after incubation with recombinant CsC9 (rCsC9) protein. A total of 3,775 significant differentially expressed genes (DEGs) were identified between the control and the rCsC9-treated group, including 2,063 upregulated genes and 1,712 downregulated genes. KEGG analyses revealed that the DEGs were enriched in cell adhesion molecules, cytokine-cytokine receptor interactions, T cell receptor signaling pathways, B cell receptor signaling pathways and Toll-like receptor signaling pathways. The results of this study indicate that in addition to participating in MAC formation, CsC9 might play multiple roles in the innate and adaptive immunity of C. semilaevis.
Collapse
Affiliation(s)
- Jingchao Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qian Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Linqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Aiyun Zhao
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- College of Life Science, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Shi M, Huang R, Du F, Pei Y, Liao L, Zhu Z, Wang Y. RNA-seq profiles from grass carp tissues after reovirus (GCRV) infection based on singular and modular enrichment analyses. Mol Immunol 2014; 61:44-53. [PMID: 24865419 DOI: 10.1016/j.molimm.2014.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
Hemorrhagic disease of the grass carp, Ctenopharyngodon idella, is a fatal disease in fingerlings and yearlings caused by a reovirus, GCRV. RNA-seq data from four diseased grass carp tissues (gill, intestine, liver and spleen) were obtained at 2h before and six times after (2h, 24h, 48h, 72h, 96h and 120h) GCRV challenge. A total of 7.25±0.18 million (M) clean reads and 3.53±0.37M unique reads were obtained per RNA-seq analysis. Compared with controls, there were 9060 unique differentially expressed genes (DEGs) in the four tissues at the six time points post-GCRV challenge. Hierarchical clustering analysis of the DEGs showed that the data from the six time points fell into three branches: 2h, 24h/48h, and 72h/96h/120h. Singular (SEA) and modular enrichment analyses of DEGs per RNA-seq dataset were performed based on gene ontology. The results showed that immune responses occurred in all four tissues, indicating that GCRV probably does not target any tissue specifically. Moreover, during the course of disease, disturbances were observed in lipid and carbohydrate metabolism in each of the organs. SEA of DEGs based on the Kyoto Encyclopedia of Genes and Genomes database was also performed, and this indicated that the complement system and cellular immunity played an important role during the course of hemorrhagic disease. The qPCR of pooled samples of duplicate challenge experiment were used to confirm our RNA-seq approach.
Collapse
Affiliation(s)
- Mijuan Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fukuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Wang S, Wang R, Xu T. The evolutionary analysis on complement genes reveals that fishes C3 and C9 experience different evolutionary patterns. FISH & SHELLFISH IMMUNOLOGY 2013; 35:2040-2045. [PMID: 24184007 DOI: 10.1016/j.fsi.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
Complement is a humoral factor of innate immunity and plays an essential role in altering the host of the presence of potential pathogens and clearing of invading microorganisms. The third complement component (C3) not only is regarded as the crossing of the three pathways of complement activation, but also serves one of the bridges linking innate and acquired immunity. The nine complement component (C9) can combine with C5b, C6, C7 and C8 to form MAC which bounds to the surface of microorganisms to kill them. The evidence of evolution on C3 genes which have multiple functions and plays central role in innate immunity was documented in our previous study. Now we were interested in the evolution of C9 genes which were the terminal complement components. For these reasons, we want to explore the evolutionary patterns of C9 and whether C3 and C9 experience different evolutionary patterns. In our study, we used the sliding window method to separately calculate the values of ω among fishes and mammals of C3 and C9 codons. In order to detect the positive selection sites, we used the maximum likelihood (ML) method to study the evolutionary pattern on C3 and C9 genes. Positive selection sites were detected in mammalian C9 genes and no positive selection sites were detected in fishes C9 genes. However, no positive selection sites were detected in mammalian C3 genes and positive selection sites were detected in fishes C3 genes. The result indicated that C3 and C9 had different evolutionary patterns on mammals and fishes. In conclusion, different living environments lead to different evolutionary patterns on C3 and C9 in mammals and fishes. Besides, different complement components may have different evolutionary patterns on mammals and fishes.
Collapse
Affiliation(s)
- Shanchen Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | | | | |
Collapse
|
4
|
Wickramaarachchi WDN, Whang I, Kim E, Lim BS, Jeong HB, De Zoysa M, Oh MJ, Jung SJ, Yeo SY, Kim SY, Park HC, Lee J. Genomic characterization and transcriptional evidence for the involvement of complement component 7 in immune response of rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:44-49. [PMID: 23603298 DOI: 10.1016/j.dci.2013.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
The complement component 7 (C7) is the central mediator of pathogenic attack at the membrane surface and its binding to the C5b-7 complex triggers cytolytic signaling. In this study, C7 of rock bream (Oplegnathus fasciatus) was identified (Rb-C7) and characterized at the genomic level. The Rb-C7 gene contains 18 exons and 17 introns and is composed of a 2490 bp complete open reading frame (ORF). The encoded polypeptide (830 amino acids) contains a number of well-conserved C7 signature domains. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, are present in the 5'-flanking region of Rb-C7. Phylogenetic analysis revealed a close proximity of Rb-C7 with the orthologues in tilapia and Japanese flounder. Quantitative real-time PCR (qPCR) analysis confirmed constitutive Rb-C7 expression throughout all the examined tissue of healthy rock bream, with highest expression in liver. In immune challenge experiment, Rb-C7 expression was up-regulated in head kidney and liver in response to Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide and rock bream iridovirus (RBIV). Furthermore, significant increases of both intracellular expression level and the number of Rb-C7-expressing cells were detected by in situ hybridization assay in head kidney and liver tissues upon E. tarda infection. These results suggested that Rb-C7 is lytic pathway gene in complement system and its transcriptional regulation may be an important immune response in pathogenic defense mechanism of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wickramaarachchi WDN, Whang I, Wan Q, Bathige SDNK, De Zoysa M, Lim BS, Yeo SY, Park MA, Lee J. Genomic characterization and expression analysis of complement component 8α and 8β in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:279-292. [PMID: 23059376 DOI: 10.1016/j.dci.2012.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
The complement component 8α and 8β are glycoproteins that mediate formation of the membrane attack complex (MAC) on the surface of target cells. Full-length complement C8α (Rb-C8α) and C8β (Rb-C8β) sequences were identified from a cDNA library of rock bream (Oplegnathus fasciatus), and their genomic sequences were obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The Rb-C8α gene contains 64bp of 5'-UTR, open reading frame (ORF) of 1794bp, which encodes a polypeptide of 598 amino acids, 212bp of 3'-UTR. The Rb-C8β gene contains 5'-UTR of 27bp, open reading frame (ORF) of 1761bp, which encodes a polypeptide of 587 amino acids, 3'-UTR of 164bp. Rb-C8α consists of 11 exons interrupted by 10 introns and Rb-C8β consists of 12 exons interrupted by 11 introns. Sequence analysis revealed that both Rb-C8α and Rb-C8β contain thrombospondin type-1, a low-density lipoprotein receptor domain class A, membrane attack complex/perforin (MACPF) domain and epidermal growth factor like domain. The promoter regions of both genes contain important putative transcription factor binding sites including those for NF-κB, SP-1, C/EBP, AP-1, and OCT-1. Rb-C8α and Rb-C8β showed the highest amino acid identity of 62% and 83% to rainbow trout C8α and Japanese flounder C8β respectively. Quantitative real-time PCR analysis confirmed that Rb-C8α and Rb-C8β were constitutively expressed in all examined tissues, isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus led to up regulation of Rb-C8α and Rb-C8β in liver. Positive regulations upon bacterial and viral challenges, and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C8α and Rb-C8β important immune genes, likely involved in the complement system lytic pathway of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wickramaarachchi WDN, Wan Q, Lee Y, Lim BS, De Zoysa M, Oh MJ, Jung SJ, Kim HC, Whang I, Lee J. Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:707-717. [PMID: 22796422 DOI: 10.1016/j.fsi.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
The complement component 9 (C9) is a single-chain glycoprotein that mediates formation of the membrane attack complex (MAC) on the surface of target cells. Full-length C9 sequence was identified from a cDNA library of rock bream (Oplegnathus fasciatus), and its genomic sequence was obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The rock bream complement component 9 (Rb-C9) gene contains 11 exons and 10 introns and is composed of a 1782 bp complete open reading frame (ORF) that encodes a polypeptide of 593 amino acids. Sequence analysis revealed that the Rb-C9 protein contains two thrombospondin type-1domains, a low-density lipoprotein receptor domain class A, a membrane attack complex & perforin (MACPF) domain, and an epidermal growth factor (EGF)-like domain. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, were found in the 5' flanking region. Phylogenetic analysis revealed a close proximity of Rb-C9 with the orthologues in puffer fish, and Japanese flounder. Quantitative real-time RT-PCR analysis confirmed that Rb-C9 was constitutively expressed in all the examined tissues isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide endotoxin and rock bream iridovirus led to up-regulation of Rb-C9 in liver but no change in peripheral blood cells. The observed response to bacterial and viral challenges and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C9 is an important immune gene, likely involved in the complement system lytic pathway of rock bream.
Collapse
|
7
|
Meng F, Wang R, Xu T, Sun Y, Cheng Y, Shi G. An unexpected loss of domains in the conservative evolution ninth complement component in a higher teleost, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1171-1178. [PMID: 22361113 DOI: 10.1016/j.fsi.2012.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
The complement systems of fish are well developed and play an important role in the innate immune response. C9 is the ninth member of complement components, involved in creating the membrane attack complex (MAC). In the present study, a truncated C9 cDNA sequence encoding 461 amino acids was cloned and characterized in the miiuy croaker (Miichthys miiuy). Typical fish C9 molecules have five characteristic modular domains, i.e. TSP1, LDLRA, MACPF, EGF, and a second TSP domain which is absent in mammalian counterparts. While in miiuy croaker, this truncated C9 presents only TSP1, LDLRA and MACPF domains. It is the first time of finding a truncated C9 in teleost components. RT-PCR analysis detected these C9 transcripts among all tissues examined, demonstrating its constitutive expression pattern in healthy fish. The highest levels of transcripts were detected in liver of both healthy and pathogen-infected miiuy croaker. Its constitutive and inducible expression pattern of this truncated C9 in liver is similar to most complement components which belong to the type of acute-phase proteins and are in general of hepatic origin. We cannot exclude the possibility that miiuy croaker presents the typical C9 although it has not yet been found. The molecular evolutionary analysis showed that this truncated C9 of miiuy croaker had a significantly higher omega value comparing with other fish and the positive selection pressure had happened on it after its divergence with other fish.
Collapse
Affiliation(s)
- Fanxing Meng
- Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: progress of post-homolog-hunting researches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1296-1308. [PMID: 21414344 DOI: 10.1016/j.dci.2011.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
9
|
Li L, Chang MX, Nie P. Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 2007; 118:270-82. [PMID: 17604124 DOI: 10.1016/j.vetimm.2007.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/11/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI-1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response.
Collapse
Affiliation(s)
- L Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | | | | |
Collapse
|
10
|
Nakao M, Kato-Unoki Y, Nakahara M, Mutsuro J, Somamoto T. Diversified Components of the Bony Fish Complement System: More Genes for Robuster Innate Defense? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:121-38. [PMID: 16893069 DOI: 10.1007/0-387-34134-x_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
11
|
Chondrou MP, Londou AV, Zarkadis IK. Expression and phylogenetic analysis of the ninth complement component (C9) in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2006; 21:572-6. [PMID: 16690324 DOI: 10.1016/j.fsi.2006.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 05/09/2023]
Affiliation(s)
- Maria P Chondrou
- Department of Biology, School of Medicine, University of Patras, Rion Panepistimioupolis, Rion Patras 26500, Greece
| | | | | |
Collapse
|
12
|
Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics 2006; 58:701-13. [PMID: 16896831 PMCID: PMC2480602 DOI: 10.1007/s00251-006-0142-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 12/31/2022]
Abstract
The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA.
Collapse
Affiliation(s)
- Masaru Nonaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo, Japan.
| | | |
Collapse
|
13
|
Chondrou MP, Mastellos D, Zarkadis IK. cDNA cloning and phylogenetic analysis of the sixth complement component in rainbow trout. Mol Immunol 2006; 43:1080-7. [PMID: 16271768 DOI: 10.1016/j.molimm.2005.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Indexed: 12/19/2022]
Abstract
The sixth complement protein (C6) is an essential component of the membrane attack complex (MAC); the end product of the lytic pathway of complement activation. The MAC complex constitutes a supramolecular assembly containing the five precursor proteins C5b, C6, C7, C8, and C9. Once assembled on the target surface it forms transmembrane channels that cause membrane damage and cytolysis of complement-opsonized pathogens. Besides mediating direct pathogen elimination, exposure of cells to sublytic doses of MAC can trigger diverse cellular responses such as, cell activation, induction of apoptosis, cell cycle re-entry and proliferation in various biological settings. The terminal complement components (C6-C9) are structurally related proteins, differing in size and complexity. In order to study their evolution, we report here the cloning and molecular characterization of C6 component in rainbow trout. The deduced amino acid sequence of trout C6 exhibits 55 and 44% identity with zebra fish and human orthologs, respectively. The 'domain' architecture of trout C6 resembles that of mammalian counterparts, and the cysteine backbone is also conserved. Finally, trout C6 gene appears to exist as a single copy in the trout genome, and is expressed in a wide range of trout tissues.
Collapse
Affiliation(s)
- Maria P Chondrou
- Department of Biology, School of Medicine, University of Patras, Rion, 26500 Patras, Greece
| | | | | |
Collapse
|
14
|
Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:239-62. [PMID: 15950490 DOI: 10.1016/j.fsi.2005.04.004] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
The complement system plays an essential role in alerting the host of the presence of potential pathogens, as well as in their clearing. In addition, activation of the complement system contributes significantly in the orchestration and development of an acquired immune response. Although the complement system has been studied extensively in mammals, considerably less is known about complement in lower vertebrates, in particular teleost fish. Here we review our current understanding of the role of fish complement in phagocytosis, respiratory burst, chemotaxis and cell lysis. We also thoroughly review the specific complement components characterized thus far in various teleost fish species. In addition, we provide a comprehensive compilation on complement host-pathogen interactions, in which we analyze the role of fish complement in host defense against bacteria, viruses, fungi and parasites. From a more physiological perspective, we evaluate the knowledge accumulated on the influence of stress, nutrition and environmental factors on levels of complement activity and components, and how the use of this knowledge can benefit the aquaculture industry. Finally, we propose future directions that are likely to advance our understanding of the molecular evolution, structure and function of complement proteins in teleosts. Such studies will be pivotal in providing new insights into complement-related mechanisms of recognition and defense that are essential to maintaining fish homeostasis.
Collapse
Affiliation(s)
- H Boshra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 413 Rosenthal, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Manning CM, Mathews WR, Fico LP, Thackeray JR. Phospholipase C-gamma contains introns shared by src homology 2 domains in many unrelated proteins. Genetics 2003; 164:433-42. [PMID: 12807765 PMCID: PMC1462583 DOI: 10.1093/genetics/164.2.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.
Collapse
Affiliation(s)
- Charlene M Manning
- Biology Department, Clark University, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
16
|
Kazantzi A, Sfyroera G, Holland MCH, Lambris JD, Zarkadis IK. Molecular cloning of the beta subunit of complement component eight of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:167-174. [PMID: 12590968 DOI: 10.1016/s0145-305x(02)00092-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Complement-mediated killing of pathogens through the lytic pathway is an important effector mechanism of the innate immune response. C8 is one of the components of the lytic pathway and is composed of an alpha, beta, and gamma subunit. In the present study we report the cloning and characterization of the primary structure of the C8beta subunit in the rainbow trout (Oncorhynchus mykiss). The deduced amino acid sequence of trout C8beta shows 72 and 47% identity with that of Japanese flounder and human, respectively. It also contains many of the same structural motifs as those found in mammalian lytic components. The C8beta gene appears to exists as a single copy in the trout genome and is expressed primarily in the liver. The protein encoded by the gene was identified by Western blotting using an anti-peptide antibody and was approximately 65kDa.
Collapse
Affiliation(s)
- Alexandra Kazantzi
- Department of Biology, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | |
Collapse
|
17
|
Terado T, Nonaka MI, Nonaka M, Kimura H. Conservation of the modular structure of complement factor I through vertebrate evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:403-413. [PMID: 11906721 DOI: 10.1016/s0145-305x(01)00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mammalian complement factor I plays pivotal roles in the regulation of complement activation and generation of important biological activities from C3. The evolutionary origin of factor I has been unclear except with regard to the molecular cloning of factor I from amphibian Xenopus. Here, we report the identification and characterization of factor I cDNA from the liver of the banded houndshark. The deduced amino acid sequence of shark factor I showed a modular organization that was completely identical to that of mammalian factor I, suggesting the functional conservation of factor I throughout vertebrate evolution. Functionally important amino acid residues such as the basic residues at the processing site and the residues at the active site of the serine protease domain are conserved. Repeated sequences composed of 16 amino acids were inserted at a site between the leader peptide and the factor I/membrane attacking complex module in the shark factor I. This repeat is missing from mammalian and amphibian factor I, and the biological significance of the sequence, if any, is not clear at the moment. There was only one copy of the shark factor I gene, and Northern blotting analysis showed that the shark factor I gene was expressed only in the liver among several organs tested. While the lack of functional data does not exclude the possibility that factor I could have a different function, all these facts, together with the earlier reported data suggest the existence of a well developed complement system in cartilaginous fish.
Collapse
Affiliation(s)
- Tokio Terado
- Department of Experimental Radiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management.
Collapse
Affiliation(s)
- M Claire H Holland
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance Laboratories, Philadelphia, PA 19014, USA
| | | |
Collapse
|
19
|
Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:745-762. [PMID: 11602194 DOI: 10.1016/s0145-305x(01)00034-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of deuterostomes, and regulatory complement components have been identified in all species beyond the protochordates, indicating that the mechanisms of complement activation and regulation have developed in parallel.
Collapse
Affiliation(s)
- I K Zarkadis
- Department of Biology, School of Medicine, University of Patras, 26500 Rion, Patra, Greece
| | | | | |
Collapse
|
20
|
Magor BG, Magor KE. Evolution of effectors and receptors of innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:651-682. [PMID: 11602189 DOI: 10.1016/s0145-305x(01)00029-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The bony fishes are derived from one of the earliest divergent vertebrate lineages to have both innate and acquired immune systems. They are considered by some to be an ideal model to study the underpinnings of immune systems precisely because of their phylogenetic position and the fact that their adaptive immune systems have not been elaborated to the extent seen in mammals. By the same token, examination of innate immune systems in invertebrates and early chordates can provide insight into how homologous systems operate in fish and higher vertebrates. Herein, we provide an overview of the molecular evidence that we hope helps clarify the evolutionary relationships of innate immune molecules identified in bony fishes. The innate immune systems being considered include select chemokines (CC and CXC chemokines and their receptors), cytokines (IL-1, IL-8, interferons, TGF-beta, TNF-alpha), acute phase proteins (SAA, SAP, CRP, alpha2M, and the complement components--C3-C9, MASP, MBL, Bf), NK cell receptors, and molecules upstream and downstream of the Toll signaling pathways.
Collapse
Affiliation(s)
- B G Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E5, Canada.
| | | |
Collapse
|
21
|
Sheng Z, He J, Tuppen JA, Sun W, Fazili Z, Smith ER, Dong FB, Xu XX. Structure, sequence, and promoter analysis of human disabled-2 gene (DAB2). Genomics 2000; 70:381-6. [PMID: 11161789 DOI: 10.1006/geno.2000.6383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disabled-2 (DAB2 for human and Dab2 for other species) is one of two mammalian orthologues of Drosophila Disabled. DAB2 exhibits properties of a tumor suppressor gene: the expression of DAB2 is eliminated in 85-95% of breast and ovarian tumors; homozygous deletions of the gene have been found in some of these tumors; and reintroduction of DAB2 expression suppresses tumorigenicity of carcinoma cells. To study the mechanisms of loss of expression and to detect possible mutations in tumors, we have investigated the genomic structure of the DAB2 gene. The complete DAB2 gene was identified and sequenced from four overlapping BAC clones found to contain the gene. Complement factor 9 (C9) gene was localized next to the DAB2 gene at the 3'-end of the BAC DNA fragments. The human DAB2 gene is about 35 kb in size and consists of 15 exons and 14 introns, producing an approximately 4-kb message. A spliced variant corresponding to mouse Dab2 p93 and a 3'-end spliced variant were also identified. The translation initiation site resides in the second exon, and the noncoding first exon is separated from the second exon by a 14-kb intron. The 420-bp sequence 5' of exon 1 contains a CpG island (39 CpG sites). This 420-bp putative promoter was found to contain the site for transcription initiation, identified by RNase protection assay, and is sufficient for active transcription in epithelial cells. The information about the gene structure of DAB2 will enable us to analyze possible mutations and the mechanisms of loss of DAB2 expression in tumors.
Collapse
Affiliation(s)
- Z Sheng
- Department of Biochemistry and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Davidson H, Taylor MS, Doherty A, Boyd AC, Porteous DJ. Genomic sequence analysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7. Genome Res 2000; 10:1194-203. [PMID: 10958637 PMCID: PMC310914 DOI: 10.1101/gr.10.8.1194] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2000] [Accepted: 06/02/2000] [Indexed: 12/13/2022]
Abstract
To define control elements that regulate tissue-specific expression of the cystic fibrosis transmembrane regulator (CFTR), we have sequenced 60 kb of genomic DNA from the puffer fish Fugu rubripes (Fugu) that includes the CFTR gene. This region of the Fugu genome shows conservation of synteny with 800-kb sequence of the human genome encompassing the WNT2, CFTR, Z43555, and CBP90 genes. Additionally, the genomic structure of each gene is conserved. In a multiple sequence alignment of human, mouse, and Fugu, the putative WNT2 promoter sequence is shown to contain highly conserved elements that may be transcription factor or other regulatory binding sites. We have found two putative ankyrin repeat-containing genes that flank the CFTR gene. Overall sequence analysis suggests conservation of intron/exon boundaries between Fugu and human CFTR and revealed extensive homology between functional protein domains. However, the immediate 5' regions of human and Fugu CFTR are highly divergent with few conserved sequences apart from those resembling diminished cAMP response elements (CRE) and CAAT box elements. Interestingly, the polymorphic polyT tract located upstream of exon 9 is present in human and Fugu but absent in mouse. Similarly, an intron 1 and intron 9 element common to human and Fugu is absent in mouse. The euryhaline killifish CFTR coding sequence is highly homologous to the Fugu sequence, suggesting that upregulation of CFTR in that species in response to salinity may be regulated transcriptionally.
Collapse
Affiliation(s)
- H Davidson
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | |
Collapse
|
23
|
Abstract
At 400 Mb, the Japanese pufferfish, Fugu rubripes, has the smallest vertebrate genome but has a similar gene repertoire to other vertebrates. Its genes are densely packed with short intergenic and intronic sequences devoid of repetitive elements. It likely has a mutational bias towards DNA elimination and is probably close to a 'minimal' vertebrate genome. As such it is a useful reference genome for gene discovery and gene validation in other vertebrates. Its usefulness in the discovery of conserved regulatory elements has already been demonstrated. The Fugu genome sequence is a good complement to genetic studies in other vertebrates.
Collapse
Affiliation(s)
- B Venkatesh
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, 117609, Singapore
| | | | | |
Collapse
|
24
|
Grützner F, Lütjens G, Rovira C, Barnes DW, Ropers HH, Haaf T. Classical and molecular cytogenetics of the pufferfish Tetraodon nigroviridis. Chromosome Res 2000; 7:655-62. [PMID: 10628667 DOI: 10.1023/a:1009292220760] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of its highly compact genome, the pufferfish has become an important animal model in genome research. Although the small chromosome size renders chromosome analysis difficult, we have established both classical and molecular cytogenetics in the freshwater pufferfish Tetraodon nigroviridis (TNI). The karyotype of T. nigroviridis consists of 2n = 42 biarmed chromosomes, in contrast to the known 2n = 44 chromosomes of the Japanese pufferfish Fugu rubripes (FRU). RBA banding can identify homologous chromosomes in both species. TNI 1 corresponds to two smaller FRU chromosomes, explaining the difference in chromosome number. TNI 2 is homologous to FRU 1. Fluorescence in-situ hybridization (FISH) allows one to map single-copy sequences, i.e. the Huntingtin gene, on chromosomes of the species of origin and also on chromosomes of the heterologous pufferfish species. Hybridization of total genomic DNA shows large blocks of (species-specific) repetitive sequences in the pericentromeric region of all TNI and FRU chromosomes. Hybridization with cloned human rDNA and classical silver staining reveal two large and actively transcribed rRNA gene clusters. Similar to the situation in mammals, the highly compact pufferfish genome is endowed with considerable amounts of localized repeat DNAs.
Collapse
Affiliation(s)
- F Grützner
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Recent studies on the genomes of protists, plants, fungi and animals confirm that the increase in genome size and gene number in different eukaryotic lineages is paralleled by a general decrease in genome compactness and an increase in the number and size of introns. It may thus be predicted that exon-shuffling has become increasingly significant with the evolution of larger, less compact genomes. To test the validity of this prediction, we have analyzed the evolutionary distribution of modular proteins that have clearly evolved by intronic recombination. The results of this analysis indicate that modular multidomain proteins produced by exon-shuffling are restricted in their evolutionary distribution. Although such proteins are present in all major groups of metazoa from sponges to chordates, there is practically no evidence for the presence of related modular proteins in other groups of eukaryotes. The biological significance of this difference in the composition of the proteomes of animals, fungi, plants and protists is best appreciated when these modular proteins are classified with respect to their biological function. The majority of these proteins can be assigned to functional categories that are inextricably linked to multicellularity of animals, and are of absolute importance in permitting animals to function in an integrated fashion: constituents of the extracellular matrix, proteases involved in tissue remodelling processes, various proteins of body fluids, membrane-associated proteins mediating cell-cell and cell-matrix interactions, membrane associated receptor proteins regulating cell cell communications, etc. Although some basic types of modular proteins seem to be shared by all major groups of metazoa, there are also groups of modular proteins that appear to be restricted to certain evolutionary lineages. In summary, the results suggest that exon-shuffling acquired major significance at the time of metazoan radiation. It is interesting to note that the rise of exon-shuffling coincides with a spectacular burst of evolutionary creativity: the Big Bang of metazoan radiation. It seems probable that modular protein evolution by exon-shuffling has contributed significantly to this accelerated evolution of metazoa, since it facilitated the rapid construction of multidomain extracellular and cell surface proteins that are indispensable for multicellularity.
Collapse
Affiliation(s)
- L Patthy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest.
| |
Collapse
|
26
|
Wentworth JM, Schoenfeld V, Meek S, Elgar G, Brenner S, Chatterjee VK. Isolation and characterisation of the retinoic acid receptor-alpha gene in the Japanese pufferfish, F. rubripes. Gene 1999; 236:315-23. [PMID: 10452951 DOI: 10.1016/s0378-1119(99)00265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nuclear hormone receptors (NRs) are ligand-inducible transcription factors that mediate critical functions in many species. The majority of novel NRs have hitherto been cloned from cDNA libraries by virtue of their homology to previously identified receptors. In this study, we validate a genomic DNA-based approach to isolating NRs by cloning the retinoic acid receptor-alpha (RARalpha) gene from the genome of the Japanese pufferfish, Fugu rubripes. The fRARalpha gene is more compact than its human and murine counterparts and demonstrates a highly conserved genomic organisation and amino acid sequence, generating two isoforms (fRARalpha1 and fRARalpha2) with divergent aminoterminal domains. In addition, a conserved regulatory element containing a retinoic acid response element was identified upstream of the fRARalpha2-specific exon, implying that retinoid induction of this isoform is evolutionarily conserved and critical to its function in vivo. We propose two uses for the Fugu genome in the study of NRs: the isolation of novel NRs that exhibit restricted spatio-temporal expression from genomic DNA and the identification of evolutionarily conserved promoter or intragenic regulatory DNA elements.
Collapse
Affiliation(s)
- J M Wentworth
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | | | | | | | | | |
Collapse
|
27
|
Brunner B, Todt T, Lenzner S, Stout K, Schulz U, Ropers HH, Kalscheuer VM. Genomic Structure and Comparative Analysis of Nine Fugu Genes: Conservation of Synteny with Human Chromosome Xp22.2–p22.1. Genome Res 1999. [DOI: 10.1101/gr.9.5.437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pufferfish Fugu rubripes has a compact 400-Mb genome that is ∼7.5 times smaller than the human genome but contains a similar number of genes. Focusing on the distal short arm of the human X chromosome, we have studied the evolutionary conservation of gene orders in Fugu and man. Sequencing of 68 kb of Fugugenomic DNA identified nine genes in the following order: (SCML2)-STK9, XLRS1, PPEF-1, KELCH2, KELCH1, PHKA2, AP19, and U2AF1-RS2. Apart from an evolutionary inversion separatingAP19 and U2AF1-RS2 from PHKA2, gene orders are identical in Fugu and man, and all nine human homologs map to the Xp22 band. All Fugu genes were found to be smaller than their human counterparts, but gene structures were mostly identical. These data suggest that genomic sequencing in Fugu is a powerful and economical strategy to predict gene orders in the human genome and to elucidate the structure of human genes.[Sequence data for this article were deposited with the EMBL/GenBank data libraries under accession nos. AJ011381 and AF094327.]
Collapse
|
28
|
Tassone F, Villard L, Clancy K, Gardiner K. Structures, sequence characteristics, and synteny relationships of the transcription factor E4TF1, the splicing factor U2AF35 and the cystathionine beta synthetase genes from Fugu rubripes. Gene X 1999; 226:211-23. [PMID: 9931491 DOI: 10.1016/s0378-1119(98)00559-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A cosmid containing the beta-amyloid precursor protein (APP) from Fugu rubripes has been completely sequenced. In addition to APP, the cosmid contains the E4TF1-60 transcription factor, the U2AF35 pre-mRNA splicing factor, and the cystathionine beta synthetase (CBS) gene. The human homologues of all four genes map to human chromosome 21 but are not clustered; APP and E4TF1-60 map within 21q21, whereas U2AF35 and CBS map approximately 20Mb distal in 21q22. 3. The protein sequences of the Fugu genes vary in their overall level of similarity to their mammalian homologues, but several regions of functional importance are almost identical. As expected, the intron/exon structures of the homologous pairs of genes are highly conserved, but there are significant differences in the compaction ratios. The introns of APP and E4TF1-60 are 49- and 24-fold smaller in Fugu than in human, and the intergenic distance is compressed at least 100-fold. For U2AF35 and CBS, the introns are compressed only five- to eightfold. These size differences were compared with those for a number of previously reported Fugu genes; in general, levels of compaction of Fugu genes are consistent with the isochore locations of the human homologues.
Collapse
Affiliation(s)
- F Tassone
- Eleanor Roosevelt Institute, 1899 Gaylord Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
29
|
Grewal PK, Todd LC, van der Maarel S, Frants RR, Hewitt JE. FRG1, a gene in the FSH muscular dystrophy region on human chromosome 4q35, is highly conserved in vertebrates and invertebrates. Gene X 1998; 216:13-9. [PMID: 9714712 DOI: 10.1016/s0378-1119(98)00334-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human FRG1 gene maps to human chromosome 4q35 and was identified as a candidate for facioscapulohumeral muscular dystrophy. However, FRG1 is apparently not causally associated with the disease and as yet, its function remains unclear. We have cloned homologues of FRG1 from two additional vertebrates, the mouse and the Japanese puffer fish Fugu rubripes, and investigated the genomic organization of the genes in the two species. The intron/exon structure of the genes is identical throughout the protein coding region, although the Fugu gene is five times smaller than the mouse gene. We have also identified FRG1 homologues in two nematodes; Caenorhabditis elegans and Brugia malayi. The FRG1 protein is highly conserved and contains a lipocalin sequence motif, suggesting it may function as a transport protein.
Collapse
Affiliation(s)
- P K Grewal
- School of Biological Sciences, The University of Manchester, 3.239 Stopford Building, Oxford Rd, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- M Angrist
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955 USA.
| |
Collapse
|