1
|
Sushida H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT. J Biosci Bioeng 2018; 126:23-29. [DOI: 10.1016/j.jbiosc.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
|
2
|
Rey J, Deschavanne P, Tuffery P. BactPepDB: a database of predicted peptides from a exhaustive survey of complete prokaryote genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau106. [PMID: 25377257 PMCID: PMC4221844 DOI: 10.1093/database/bau106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the recent progress in complete genome sequencing, mining the increasing amount of genomic information available should in theory provide the means to discover new classes of peptides. However, annotation pipelines often do not consider small reading frames likely to be expressed. BactPepDB, available online at http://bactpepdb.rpbs.univ-paris-diderot.fr, is a database that aims at providing an exhaustive re-annotation of all complete prokaryotic genomes—chromosomal and plasmid DNA—available in RefSeq for coding sequences ranging between 10 and 80 amino acids. The identified peptides are classified as (i) previously identified in RefSeq, (ii) entity-overlapping (intragenic) or intergenic, and (iii) potential pseudogenes—intergenic sequences corresponding to a portion of a previously annotated larger gene. Additional information is related to homologs within order, predicted signal sequence, transmembrane segments, disulfide bonds, secondary structure, and the existence of a related 3D structure in the Protein Databank. As a result, BactPepDB provides insights about candidate peptides, and provides information about their conservation, together with some of their expected biological/structural features. The BactPepDB interface allows to search for candidate peptides in the database, or to search for peptides similar to a query, according to the multiple properties predicted or related to genomic localization. Database URL:http://www.yeastgenome.org/
Collapse
Affiliation(s)
- Julien Rey
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| | - Patrick Deschavanne
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| | - Pierre Tuffery
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| |
Collapse
|
3
|
Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V. Probiotics and its functionally valuable products-a review. Crit Rev Food Sci Nutr 2013; 53:641-58. [PMID: 23627505 DOI: 10.1080/10408398.2011.553752] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past two decades probiotic bacteria have been increasingly proposed as health promoting bacteria in variety of food system, because of its safety, functional, and technological characteristics. Commonly, Lactobacillus spp., Bifidobacterium spp., Saccharomyces boulardii, and some other microorganisms have been considered as probiotic strains. Possibly these bacterial strains exerted several beneficial effects into gastrointestinal tract of host while administered with variety of food system. Lactic acid bacteria (LAB) usually produce antimicrobial substances like bacteriocin which have broad spectrum of antagonist effect against closely related Gram positive and Gram negative pathogens. LAB strains often produce polymeric substances such as exopolysaccharides (EPS) which increase the colonization of probiotic bacteria by cell-cell interactions in gastrointestinal tract. LAB also produces biosurfactant which showed that the wide range of antimicrobial activity against bacterial pathogen as well as its antiadhesive properties reduces the adhesion of pathogens into gastric wall membrane. Furthermore, LAB strains have also been reported for production of antioxidants which are ability to scavenge the free radicals such as superoxide anions and hydroxyl radicals. For this sense, this review article is mainly focused on the ecology, biosynthesis, genetics, target sites, and applications of bacteriocins and EPS from LAB strains. Moreover, this review discusses about the production and functions of nutritive essential element folate and iron chelating agent such as siderophores from LAB.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | | | | | | | | | | |
Collapse
|
4
|
Distribution of putative virulence genes in Streptococcus mutans strains does not correlate with caries experience. J Clin Microbiol 2011; 49:984-92. [PMID: 21209168 DOI: 10.1128/jcm.01993-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors.
Collapse
|
5
|
Kabuki T, Kawai Y, Uenishi H, Seto Y, Kok J, Nakajima H, Saito T. Gene cluster for biosynthesis of thermophilin 1277 - a lantibiotic produced by Streptococcus thermophilus SBT1277, and heterologous expression of TepI, a novel immunity peptide. J Appl Microbiol 2010; 110:641-9. [DOI: 10.1111/j.1365-2672.2010.04914.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kabuki T, Uenishi H, Seto Y, Yoshioka T, Nakajima H. A unique lantibiotic, thermophilin 1277, containing a disulfide bridge and two thioether bridges. J Appl Microbiol 2009; 106:853-62. [PMID: 19191960 DOI: 10.1111/j.1365-2672.2008.04059.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify the chemical structure of a bacteriocin, thermophilin 1277, produced by Streptococcus thermophilus SBT1277. METHODS AND RESULTS Thermophilin 1277 was purified and partial N-terminal sequence analysis revealed 6 unidentified amino acids amongst 31 amino acids residues. A 2.7-kbp region containing the thermophilin 1277 structural gene (tepA) encoding 58 amino acids was cloned and sequenced. Mature thermophilin 1277 (33 amino acids) was preceded by a 25-amino acid putative leader peptide containing a double glycine cleavage motif. Peptide sequence analysis following chemical modification of thermophilin 1277 revealed that the Cys21 and Cys29 residues form a disulfide bridge and that Thr8 or Thr10 forms two 3-methyllanthionines with Cys13 or Cys32 via thioether bridges. Antimicrobial activity was disrupted by ethanethiol or reductive agent treatments, indicating that the internal amino acid modifications are crucial for the activity. CONCLUSIONS Thermophilin 1277 from Strep. thermophilus SBT1277 belongs to the class of AII-type lantibiotics that has a disulfide and two thioether bridges. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a lantibiotic produced by a GRAS species of Strep. thermophilus; thermophilin 1277 has a unique structure containing both a disulfide bridge and two thioether bridges that are crucial for its activity.
Collapse
Affiliation(s)
- T Kabuki
- Technology and Research Institute, Snow Brand Milk Products, Co. Ltd, Minamidai 1-1-2, Kawagoe, Japan.
| | | | | | | | | |
Collapse
|
7
|
Papadelli M, Karsioti A, Anastasiou R, Georgalaki M, Tsakalidou E. Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 2007; 272:75-82. [PMID: 17581139 DOI: 10.1111/j.1574-6968.2007.00740.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptococcus macedonicus ACA-DC 198, a food-grade isolate from naturally fermented Greek Kasseri cheese, produces a lantibiotic named macedocin that has been previously purified and characterized. In the present study, a 15,171 bp region in the S. macedonicus ACA-DC 198 chromosome, containing the biosynthetic gene cluster of macedocin, has been sequenced. This region consists of 10 ORFs, which correspond to the genes (mcd genes) involved in macedocin biosynthesis, regulation and immunity. The mcd genes are organized in two operons and their role is predicted on the basis of similarities to genes of known lantibiotics. Compared with its closest match, the streptococcin A-FF22 gene cluster, the macedocin one contains an additional structural gene and an insertion sequence between the regulatory and the biosynthetic operons.
Collapse
Affiliation(s)
- Marina Papadelli
- Laboratory of Dairy Research, Department of Food Science and Technology, Agricultural University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
8
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
9
|
Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 2006; 70:564-82. [PMID: 16760314 PMCID: PMC1489543 DOI: 10.1128/mmbr.00016-05] [Citation(s) in RCA: 441] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.
Collapse
Affiliation(s)
- Djamel Drider
- Laboratoire de Microbiologie Alimentaire et Industrielle, ENITIAA, Rue de la Géraudière, BP82225, 44322 Nantes Cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Nicolas G, Morency H, LaPointe G, Lavoie MC. Mutacin H-29B is identical to mutacin II (J-T8). BMC Microbiol 2006; 6:36. [PMID: 16626493 PMCID: PMC1462995 DOI: 10.1186/1471-2180-6-36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 04/20/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus mutans produces bacteriocins named mutacins. Studies of mutacins have always been hampered by the difficulties in obtaining active liquid preparations of these substances. Some of them were found to be lantibiotics, defined as bacterial ribosomally synthesised lanthionine-containing peptides with antimicrobial activity. The goal of this study was to produce and characterize a new mutacin from S. mutans strain 29B, as it shows a promising activity spectrum against current human pathogens. RESULTS Mutacin H-29B, produced by S. mutans strain 29B, was purified by successive hydrophobic chromatography from a liquid preparation consisting of cheese whey permeate (6% w/v) supplemented with yeast extract (2%) and CaCO3 (1%). Edman degradation revealed 24 amino acids identical to those of mutacin II (also known as J-T8). The molecular mass of the purified peptide was evaluated at 3246.08 +/- 0.1 Da by MALDI-TOF MS. CONCLUSION A simple procedure for production and purification of mutacins along with its characterization is presented. Our results show that the amino acid sequence of mutacin H-29B is identical to the already known mutacin II (J-T8) over the first 24 residues. S. mutans strains of widely different origins may thus produce very similar bacteriocins.
Collapse
Affiliation(s)
- Guillaume Nicolas
- Département de Biochimie et Microbiologie, Faculté des Sciences et Génie, Université Laval, Quebec, Quebec, G1K 7P4, Canada
| | - Hélène Morency
- Département de Biochimie et Microbiologie, Faculté des Sciences et Génie, Université Laval, Quebec, Quebec, G1K 7P4, Canada
| | - Gisèle LaPointe
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Faculté des Sciences de 1' Agriculture et de 1' Alimentation, Université Laval, Québec, G1K 7P4, Canada
| | - Marc C Lavoie
- Department of Biological and Chemical Sciences, Faculty of Pure and Applied Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BB 11000, Barbados
| |
Collapse
|
11
|
Nagao JI, Harada Y, Shioya K, Aso Y, Zendo T, Nakayama J, Sonomoto K. Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli. Biochem Biophys Res Commun 2005; 336:507-13. [PMID: 16143300 DOI: 10.1016/j.bbrc.2005.08.125] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
We demonstrated lanthionine introduction into hexa-histidine-tagged (His-tagged) nukacin ISK-1 prepeptide NukA by modification enzyme NukM in Escherichia coli. Co-expression of nukA and nukM, purification of the resulting His-tagged prepeptide by affinity chromatography, and subsequent mass spectrometry analysis showed that the prepeptide was converted into a postulated peptide with decrease in mass of 72Da which resulted from dehydration of four amino acids. Characterization of the resultant prepeptide indicated the presence of unusual amino acids, such as dehydrated amino acid, lanthionine or 3-methyllanthionine, in its C-terminal propeptide moiety. The modified prepeptide encompassing the leader peptide attached to the post-translationally modified propeptide moiety was readily obtained by one-step purification. Our findings will thus be a powerful tool for introducing unusual amino acids aimed at peptide engineering and also helpful to provide new insight for further understanding of lanthionine-forming enzymes for lantibiotics.
Collapse
Affiliation(s)
- Jun-Ichi Nagao
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem Rev 2005; 105:633-84. [PMID: 15700960 DOI: 10.1021/cr030105v] [Citation(s) in RCA: 563] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
13
|
Xiao H, Chen X, Chen M, Tang S, Zhao X, Huan L. Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology (Reading) 2004; 150:103-108. [PMID: 14702402 DOI: 10.1099/mic.0.26437-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacteriocin-producing strain was isolated from raw milk and named Streptococcus bovis HJ50. Like most bacteriocins produced by lactic acid bacteria, bovicin HJ50 showed a narrow range of inhibiting activity. It was sensitive to trypsin, subtilisin and proteinase K. Bovicin HJ50 was extracted by n-propanol and purified by SP Sepharose Fast Flow, followed by Phenyl Superose and Sephadex G-50. Treatment of Micrococcus flavus NCIB8166 with bovicin HJ50 revealed potassium efflux from inside the cell in a concentration-dependent manner. The molecular mass of bovicin HJ50 was determined to be 3428.3 Da. MS analysis of DTT-treated bovicin HJ50 suggested that bovicin HJ50 contains a disulfide bridge. The structural gene of bovicin HJ50 was cloned by nested PCR based on its N-terminal amino acid sequence. Sequence analysis showed that it encodes a 58 aa prepeptide consisting of an N-terminal leader sequence of 25 aa and a C-terminal propeptide domain of 33 aa. Bovicin HJ50 shows similarity to type AII lantibiotics. Chemical modification using an ethanethiol-containing reaction mixture showed that two Thr residues are modified.
Collapse
Affiliation(s)
- Haijie Xiao
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
| | - Xiuzhu Chen
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
| | - Meiling Chen
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
| | - Sha Tang
- Department of Microbiology, University of California, Riverside, CA 92521, USA
| | - Xin Zhao
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
| | - Liandong Huan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
- Molecular Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing, PR China
| |
Collapse
|
14
|
Balakrishnan M, Simmonds RS, Kilian M, Tagg JR. Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J Med Microbiol 2002; 51:941-948. [PMID: 12448678 DOI: 10.1099/0022-1317-51-11-941] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriocins produced by mutans streptococci are known as mutacins. In this study 16 broadly active mutacin-producing Streptococcus mutans strains from New Zealand, North America and Europe were classified into four groups (A-D) on the basis of differences in their activity in deferred antagonism tests against either the homologous producer strain (to test for presence of self-immunity) or indicator strains Staphylococcus aureus 46 and Enterococcus faecium TE1. Two of the strains included in the study (UA140 and UA96) were representatives of the group I and II mutacin producer strains previously described by Caufield and co-workers. One of the New Zealand isolates of group A (S. mutans strain N) appeared to produce inhibitory activity similar to that of the group I prototype strain UA140. Four other New Zealand isolates of group B (S. mutans strains M19, M34, B34 and D14) had mutacin II-like activity. The group B mutacin producers differed from the group A mutacin producers in their additional activity against Staph. aureus 46. Seven S. mutans strains (M46, B46, B57, M12, M28, B28 and 13M) were distinguished from the group A and group B mutacin producers in that they inhibited E. faecium TE1. These were called group C mutacin producers. Strains H7 and H23 resembled the group C strains in their action on both indicator strains TE1 and 46. However, these two strains failed to exhibit immunity to their own inhibitory products in the deferred antagonism test and were separately classified as group D mutacin producers. Phylogenetic analysis of the strains by several genotypic and phenotypic characteristics revealed that the mutacin groups were associated with distinct evolutionary lineages of S. mutans.
Collapse
Affiliation(s)
- M Balakrishnan
- *Department of Microbiology, University of Otago, Dunedin, New Zealand and †Department of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, Aarhus C, Denmark
| | - R S Simmonds
- *Department of Microbiology, University of Otago, Dunedin, New Zealand and †Department of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, Aarhus C, Denmark
| | - M Kilian
- *Department of Microbiology, University of Otago, Dunedin, New Zealand and †Department of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, Aarhus C, Denmark
| | - J R Tagg
- *Department of Microbiology, University of Otago, Dunedin, New Zealand and †Department of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, Aarhus C, Denmark
| |
Collapse
|
15
|
Morency H, Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC. Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can J Microbiol 2001. [DOI: 10.1139/w01-013] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase of drug resistance among bacterial pathogens is currently a major threat in hospital settings. New and more efficient antibiotic compounds have to be developed to fight infectious diseases. In the present work, a deferred antagonism test was used to determine the activity of different bacterial strains producing either a mutacin or a lantibiotic against bacterial pathogens. The mutacins A, B, C, D, I, K, L, M, and nisins A and Z were active against all enterococci tested. Mutacins A and B, and nisins A and Z inhibited all the staphylococci tested. Except for the strains producing mutacins P, Q, and X, all the other producing strains inhibited the streptococci tested. Mutacins A, B, I, J, T, nisins A and Z, and epidermin inhibited the two antibiotic-resistant strains of Neisseria gonorrhoeae tested. Mutacins A, B, C, D, and nisins A and Z inhibited Campylobacter jejuni and Helicobacter pylori. Thus, the wide activity spectra of nisin A and Z are confirmed. These results also indicate that many of the mutacins, especially those of groups A, B, C, D, I, J, K, L, M, and T, could be candidates for further development as useful antibiotics.Key words: mutacin, lantibiotic, bacteriocin, antibiotic.
Collapse
|
16
|
Chen P, Qi FX, Novak J, Krull RE, Caufield PW. Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol Lett 2001; 195:139-44. [PMID: 11179642 DOI: 10.1111/j.1574-6968.2001.tb10511.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The lantibiotic mutacin II, produced by Streptococcus mutans T8, is a ribosomally synthesized peptide antibiotic that contains thioether amino acids such as lanthionine and methyllanthionine as a result of post-translational modifications. The mutacin II leader peptide sequence shares a number of identical amino acid residues with class AII lantibiotic leader peptides. To study the role of these conservative residues in the production of active antimicrobial mutacin, 15 mutations were generated by site-directed mutagenesis. The effects of these substitutions vary from no effect to complete block-out. Mutations G-1A, G-2A, I-4D, and L-7K completely blocked the production of mature mutacin. Other mutations (I-4V, L-7M, E-8D, S-11T/A, V-12I/A, and E-13D) had no detectable effect on mutacin production. The changes of Glu-8 to Lys, Val-12 to Leu, Glu-13 to Lys reduced the mutacin production level to about 75%, 50%, and 10% of the wild-type, respectively. Thus, our data indicated that some of these conserved residues are essential for the mutacin biosynthesis, whereas others are important for optimal biosynthesis rates.
Collapse
Affiliation(s)
- P Chen
- LHRB 250, Department of Oral Biology, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
17
|
Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K, Ishizaki A. A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 2000; 64:2420-8. [PMID: 11193411 DOI: 10.1271/bbb.64.2420] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcus warneri ISK-1, which we had previously reported as Pediococcus sp. ISK-1, produces a novel bacteriocin, nukacin ISK-1. Edman degradation of the chemically reduced nukacin ISK-1 produced a sequence of 27 amino acids, 7 of which were unidentified. Using single-specific-primer-PCR product as a probe, a 3.6-kb HindIII fragment containing the nukacin ISK-1 structural gene (nukA) was cloned and sequenced. The deduced amino acid sequence of nukacin ISK-1 had 57 amino acids, including a 30-amino acid leader region. The propeptide sequence showed significant similarity to those of lacticin-481 type lantibiotics. In the region upstream of nukA, a part of a long open reading frame (ORF), designated as nukM, encoding a putative modification enzyme was oriented in the opposite direction. In the region downstream of nukA, ORF1 was found in which the sequence of the putative translational product was similar to various response regulatory proteins.
Collapse
Affiliation(s)
- T Sashihara
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Uguen P, Le Pennec JP, Dufour A. Lantibiotic biosynthesis: interactions between prelacticin 481 and its putative modification enzyme, LctM. J Bacteriol 2000; 182:5262-6. [PMID: 10960114 PMCID: PMC94678 DOI: 10.1128/jb.182.18.5262-5266.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2000] [Accepted: 06/21/2000] [Indexed: 11/20/2022] Open
Abstract
Class AII and AIII lantibiotics and mersacidin are antibacterial peptides containing unusual residues obtained by posttranslational modifications of prepeptides, presumably catalyzed by LanM. LctM, the LanM for lacticin 481, is essential for the production of this class AII lantibiotic. Using the yeast two-hybrid system, we showed direct contact between the prelacticin 481 and LctM, supporting the proposed LctM function. Sixteen domains are conserved between the 10 known LanM proteins, whereas three additional domains were found only in class AII LanM proteins and in MrsM, the LanM for mersacidin. All the truncated LctM proteins that we tested presented impaired LctA-binding activity.
Collapse
Affiliation(s)
- P Uguen
- Laboratoire de Biologie et Chimie Moléculaires, Université de Bretagne Sud, Vannes, France
| | | | | |
Collapse
|
19
|
Martínez-Cuesta MC, Buist G, Kok J, Hauge HH, Nissen-Meyer J, Peláez C, Requena T. Biological and molecular characterization of a two-peptide lantibiotic produced by Lactococcus lactis IFPL105. J Appl Microbiol 2000; 89:249-60. [PMID: 10971756 DOI: 10.1046/j.1365-2672.2000.01103.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lactic acid bacterium Lactococcus lactis IFPL105 secretes a broad spectrum bacteriocin produced from the 46 kb plasmid pBAC105. The bacteriocin was purified to homogeneity by ionic and hydrophobic exchange and reverse-phase chromatography. Bacteriocin activity required the complementary action of two distinct peptides (alpha and beta) with average molecular masses of 3322 and 2848 Da, respectively. The genes encoding the two peptides were cloned and sequenced and were found to be identical to the ltnAB genes from plasmid pMRC01 of L. lactis DPC3147. LtnA and LtnB contain putative leader peptide sequences similar to the known 'double glycine' type. The predicted amino acid sequence of mature LtnA and LtnB differed from the amino acid content determined for the purified alpha and beta peptides in the residues serine, threonine, cysteine and alanine. Post-translational modification, and the formation of lanthionine or methyllanthionine rings, could partly explain the difference. Hybridization experiments showed that the organization of the gene cluster in pBAC105 responsible for the production of the bacteriocin is similar to that in pMRC01, which involves genes encoding modifying enzymes for lantibiotic biosynthesis and dual-function transporters. In both cases, the gene clusters are flanked by IS946 elements, suggesting an en bloc transposition. The findings from the isolation and molecular characterization of the bacteriocin provide evidence for the lantibiotic nature of the two peptides.
Collapse
Affiliation(s)
- M C Martínez-Cuesta
- Department of Dairy Science and Technology, Instituto del Frío, Ciudad Universitaria, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Altena K, Guder A, Cramer C, Bierbaum G. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 2000; 66:2565-71. [PMID: 10831439 PMCID: PMC110582 DOI: 10.1128/aem.66.6.2565-2571.2000] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic gene cluster (12.3 kb) of mersacidin, a lanthionine-containing antimicrobial peptide, is located on the chromosome of the producer, Bacillus sp. strain HIL Y-85,54728 in a region that corresponds to 348 degrees on the chromosome of Bacillus subtilis 168. It consists of 10 open reading frames and contains, in addition to the previously described mersacidin structural gene mrsA (G. Bierbaum, H. Brötz, K.-P. Koller, and H.-G. Sahl, FEMS Microbiol. Lett. 127:121-126, 1995), two genes, mrsM and mrsD, coding for enzymes involved in posttranslational modification of the prepeptide; one gene, mrsT, coding for a transporter with an associated protease domain; and three genes, mrsF, mrsG, and mrsE, encoding a group B ABC transporter that could be involved in producer self-protection. Additionally, three regulatory genes are part of the gene cluster, i.e., mrsR2 and mrsK2, which encode a two-component regulatory system which seems to be necessary for the transcription of the mrsFGE operon, and mrsR1, which encodes a protein with similarity to response regulators. Transcription of mrsA sets in at early stationary phase (between 8 and 16 h of culture).
Collapse
Affiliation(s)
- K Altena
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
21
|
Krull RE, Chen P, Novak J, Kirk M, Barnes S, Baker J, Krishna NR, Caufield PW. Biochemical structural analysis of the lantibiotic mutacin II. J Biol Chem 2000; 275:15845-50. [PMID: 10821848 DOI: 10.1074/jbc.275.21.15845] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutacin II is a post-translationally modified lantibiotic peptide secreted by Streptococcus mutans T8, which inhibits the energy metabolism of sensitive cells. The deduced amino acid sequence of promutacin II is NRWWQGVVPTVSYECRMNSWQHVFTCC, which is capable of forming three thioether bridges. It was not obvious, however, how the three thioether bridges are organized. To examine the bridging, the cyanogen bromide cleavage products of mutacin II and its variants generated by protein engineering, C15A, C26A, and C15A/C26A, were analyzed by mass spectrometry. Analysis of the wild type molecule and the C15A variant excluded several possibilities and also indicated a high fidelity of formation of the thioether bridges. This allowed us to further resolve the structure by analysis (mass spectrometry and tandem mass spectrometry) of the cyanogen bromide cleavage fragments of the C26A and C15A/C26A mutants. Nuclear magnetic resonance analysis established the presence of one and two dehydrobutyrine residues in mutacin II and the C15A variant, respectively, thus yielding the final structure. The results of this investigation showed that the C-terminal part contains three thioether bridges connecting Cys residues 15, 26, and 27 to Ser/Thr residues 10, 12 and 19, respectively, with Thr(25) being modified to dehydrobutyrine.
Collapse
Affiliation(s)
- R E Krull
- Department of Oral Biology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Qi F, Chen P, Caufield PW. Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 1999; 65:3880-7. [PMID: 10473390 PMCID: PMC99715 DOI: 10.1128/aem.65.9.3880-3887.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, members of our group reported the isolation and characterization of mutacin II from Streptococcus mutans T8 and the genetic analyses of the mutacin II biosynthesis genes (J. Novak, P. W. Caufield, and E. J. Miller, J. Bacteriol. 176:4316-4320, 1994; F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:652-658, 1999; P. Chen, F. Qi, J. Novak, and P. W. Caufield, Appl. Environ. Microbiol. 65:1356-1360, 1999). In this study, we cloned and sequenced the mutacin III biosynthesis gene locus from a group III strain of S. mutans, UA787. DNA sequence analysis revealed eight open reading frames, which we designated mutR, -A, -A', -B, -C, -D, -P, and -T. MutR bears strong homology with MutR of mutacin II, while MutA, -B, -C, -D, -P, and -T are counterparts of proteins in the lantibiotic epidermin group. MutA' has 60% amino acid identity with MutA and therefore appears to be a duplicate of MutA. Insertional inactivation demonstrated that mutA is an essential gene for mutacin III production, while mutA' is not required. Mutacin III was purified to homogeneity by using reverse-phase high-pressure liquid chromatography. N-terminal peptide sequencing of the purified mutacin III determined mutA to be the structural gene for prepromutacin III. The molecular mass of the purified peptide was measured by laser disorption mass spectrophotometry and found to be 2,266.43 Da, consistent with our supposition that mutacin III has posttranslational modifications similar to those of the lantibiotic epidermin.
Collapse
Affiliation(s)
- F Qi
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
23
|
McLaughlin RE, Ferretti JJ, Hynes WL. Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett 1999; 175:171-7. [PMID: 10386366 DOI: 10.1111/j.1574-6968.1999.tb13616.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Streptococcin A-FF22 (SA-FF22) is a type AII linear lantibiotic produced by Streptococcus pyogenes strain FF22. Sequence analysis of an approximate 10 kb region of DNA showed it to contain nine open reading frames arranged in three operons responsible for regulation, biosynthesis and immunity of SA-FF22. This region is organized similarly to the Lactococcus lactis lacticin 481 region, however, unlike lacticin 481, a two-component regulatory system is essential for SA-FF22 production. Located immediately downstream of the scn region is a putative transposase gene, the presence of which supports earlier data that indicated a mobile nature to this region.
Collapse
Affiliation(s)
- R E McLaughlin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, USA
| | | | | |
Collapse
|
24
|
Kalmokoff ML, Lu D, Whitford MF, Teather RM. Evidence for production of a new lantibiotic (butyrivibriocin OR79A) by the ruminal anaerobe Butyrivibrio fibrisolvens OR79: characterization of the structural gene encoding butyrivibriocin OR79A. Appl Environ Microbiol 1999; 65:2128-35. [PMID: 10224011 PMCID: PMC91308 DOI: 10.1128/aem.65.5.2128-2135.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ruminal anaerobe Butyrivibrio fibrisolvens OR79 produces a bacteriocin-like activity demonstrating a very broad spectrum of activity. An inhibitor was isolated from spent culture fluid by a combination of ammonium sulfate and acidic precipitations, reverse-phase chromatography, and high-resolution gel filtration. N-terminal analysis of the isolated inhibitor yielded a 15-amino-acid sequence (G-N/Q-G/P-V-I-L-X-I-X-H-E-X-S-M-N). Two different amino acid residues were detected in the second and third positions from the N terminus, indicating the presence of two distinct peptides. A gene with significant homology to one combination of the determined N-terminal sequence was cloned, and expression of the gene was confirmed by Northern blotting. The gene (bvi79A) encoded a prepeptide of 47 amino acids and a mature peptide, butyrivibriocin OR79A, of 25 amino acids. Significant sequence homology was found between this peptide and previously reported lantibiotics containing the double-glycine leader peptidase processing site. Immediately downstream of bvi79A was a second, partial open reading frame encoding a peptide with significant homology to proteins which are believed to be involved in the synthesis of lanthionine residues. These findings indicate that the isolated inhibitory peptides represent new lantibiotics. Results from both total and N-terminal amino acid sequencing indicated that the second peptide was identical to butyrivibriocin OR79A except for amino acid substitutions in positions 2 and 3 of the mature lantibiotic. Only a single coding region was detected when restriction enzyme digests of total DNA were probed either with an oligonucleotide based on the 5' region of bvi79A or with degenerate oligonucleotides based on the predicted sequence of the second peptide.
Collapse
Affiliation(s)
- M L Kalmokoff
- Centre for Food and Animal Research, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | | | | | | |
Collapse
|
25
|
Chen P, Qi F, Novak J, Caufield PW. The specific genes for lantibiotic mutacin II biosynthesis in Streptococcus mutans T8 are clustered and can be transferred en bloc. Appl Environ Microbiol 1999; 65:1356-60. [PMID: 10049909 PMCID: PMC91190 DOI: 10.1128/aem.65.3.1356-1360.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutacin II is a ribosomally synthesized peptide lantibiotic produced by group II Streptococcus mutans. DNA sequencing has revealed that the mutacin II biosynthetic gene cluster consists of seven specific open reading frames: a regulator (mutR), the prepromutacin structural gene (mutA), a modifying protein (mutM), an ABC transporter (mutT), and an immunity cluster (mutFEG). Transformations of a non-mutacin-producing strain, S. mutans UA159, and a mutacin I-producing strain, S. mutans UA140, with chromosomal DNA from S. mutans T8 with an aphIII marker inserted upstream of the mutacin II structural gene yielded transformants producing mutacin II and mutacins I and II, respectively.
Collapse
Affiliation(s)
- P Chen
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
26
|
Qi F, Chen P, Caufield PW. Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 1999; 65:652-8. [PMID: 9925596 PMCID: PMC91075 DOI: 10.1128/aem.65.2.652-658.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 11/17/1998] [Indexed: 02/02/2023] Open
Abstract
The lantibiotic bacteriocin mutacin II is produced by the group II Streptococcus mutans. The mutacin II biosynthetic locus consists of seven genes, mutR, -A, -M, -T, -F, -E, and -G, organized as two operons. The mutAMTFEG operon is transcribed from the mutA promoter 55 bp upstream of the translation start codon for MutA, while the mutR promoter is 76 bp upstream of the mutR structural gene. Expression of the mutA promoter is regulated by the components of the growth medium, while the mutR promoter activity does not seem to be affected by these conditions. Inactivation of mutR abolishes transcription of the mutA operon but does not affect its own promoter activity. The expressions of both mutA and mutR promoters are independent of the growth stage, while the production of mutacin II is only elevated at the early stationary phase. Taken together, these results suggest that expression of the mutacin operon is regulated by a complex system involving transcriptional and posttranscriptional or posttranslational controls.
Collapse
Affiliation(s)
- F Qi
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
27
|
Chen P, Novak J, Kirk M, Barnes S, Qi F, Caufield PW. Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene replacement strategy. Appl Environ Microbiol 1998; 64:2335-40. [PMID: 9647795 PMCID: PMC106391 DOI: 10.1128/aem.64.7.2335-2340.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutacin II, elaborated by group II Streptococcus mutans, is a ribosomally synthesized and posttranslationally modified polypeptide antibiotic containing unusual thioether and didehydro amino acids. To ascertain the role of specific amino acid residues in mutacin II antimicrobial activity, we developed a streptococcal expression system that facilitates the replacement of the mutA gene with a single copy of a mutated variant gene. As a result, variants of mutacin II can be designed and expressed. The system was tested by constructing the following mutant peptides: delta N1, V7A, P9A, T10A, T10S, C15A, C26A, and C27A. All of these mutacin II variants except delta N1 and T10A, which were not secreted, were isolated, and their identities were verified by mass spectrometry. Variants P9A, C15A, C26A, and C27A failed to exert antimicrobial activity. Because the P9A and T10A variants comprise the "hinge" region of mutacin II, these observations suggest that in addition to the thioether and didehydro amino acids, the hinge region is essential for biological activity and biosynthesis or export of the peptide. Tandem mass spectrometry of the N-terminal part of the wild-type molecule and its C15A variant confirmed that the threonine at position 10 is dehydrated and present as a didehydrobutyrine residue. This analysis of the active T10S variant further suggested that a didehydro amino acid at this position is specific for antimicrobial activity and that the biosynthetic machinery does not discriminate between threonine and serine. In contrast, the lack of production of mutacin variants with alanine substituted for threonine at position 10, as well as the deletion of asparagine at the N terminus (delta N1), indicates that specific residues in the propeptide may be crucial for certain steps in the biosynthetic pathway of this lantibiotic.
Collapse
Affiliation(s)
- P Chen
- Department of Oral Biology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | |
Collapse
|