1
|
Shi T, Gao J, Xu W, Liu X, Yan B, Azra MN, Baloch WA, Wang P, Gao H. The mannose-binding lectin (MBL) gene cloned from Exopalaemon carinicauda plays a key role in resisting infection by Vibrio parahaemolyticus. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111001. [PMID: 38908544 DOI: 10.1016/j.cbpb.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.
Collapse
Affiliation(s)
- Tingting Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayi Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wanyuan Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology, University of Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wazir Ali Baloch
- Department of Freshwater Biology and Fisheries, University of Sindh, Jamshoro 76080, Pakistan
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
2
|
Jiang S, Xiong Y, Zhang W, Zhu J, Cheng D, Gong Y, Wu Y, Qiao H, Fu H. Molecular Characterization of a Novel Cathepsin L in Macrobrachium nipponense and Its Function in Ovary Maturation. Front Endocrinol (Lausanne) 2021; 12:816813. [PMID: 35082760 PMCID: PMC8784880 DOI: 10.3389/fendo.2021.816813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Cathepsin L genes, which belonged to cysteine proteases, were a series of multifunctional protease and played important roles in a lot of pathological and physiological processes. In this study, we analyzed the characteristics a cathepsin L (named Mn-CL2) in the female oriental river prawn, Macrobrachium nipponense which was involved in ovary maturation. The Mn-CL2 was1,582 bp in length, including a 978 bp open reading frame that encoded 326 amino acids. The Mn-CL2 was classified into the cathepsin L group by phylogenetic analysis. Real-time PCR (qPCR) analysis indicated that Mn-CL2 was highly expressed in the hepatopancreas and ovaries of female prawns. During the different ovarian stages, Mn-CL2 expression in the hepatopancreas and ovaries peaked before ovarian maturation. In situ hybridization studies revealed that Mn-CL2 was localized in the oocyte of the ovary. Injection of Mn-CL2 dsRNA significantly reduced the expression of vitellogenin. Changes in the gonad somatic index also confirmed the inhibitory effects of Mn-CL2 dsRNA on ovary maturation. These results suggest that Mn-CL2 has a key role in promoting ovary maturation.
Collapse
Affiliation(s)
- Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Junpeng Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| |
Collapse
|
3
|
Xu Z, Liu A, Li S, Wang G, Ye H. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain. Sci Rep 2020; 10:13102. [PMID: 32753724 PMCID: PMC7403367 DOI: 10.1038/s41598-020-70139-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Molt is a critical developmental process in crustaceans. Recent studies have shown that the hepatopancreas is an important source of innate immune molecules, yet hepatopancreatic patterns of gene expression during the molt cycle which may underlie changes in immune mechanism are unknown. In this study, we performed Illumina sequencing for the hepatopancreas of the mud crab, Scylla paramamosain during molt cycle (pre-molt stage, post-molt stage, and inter-molt stage). A total of 44.55 Gb high-quality reads were obtained from the normalized cDNA of hepatopancreas. A total of 70,591 transcripts were assembled; 55,167 unigenes were identified. Transcriptomic comparison revealed 948 differentially expressed genes (DEGs) in the hepatopancreas from the three molt stages. We found that genes associated with immune response patterns changed in expression during the molt cycle. Antimicrobial peptide genes, inflammatory response genes, Toll signaling pathway factors, the phenoloxidase system, antioxidant enzymes, metal-binding proteins and other immune related genes are significantly up-regulated at the post-molt stage and inter-molt stage compared with the pre-molt stage, respectively. These genes are either not expressed or are expressed at low levels at the pre-molt stage. To our knowledge, this is the first systematic transcriptome analysis of genes capable of mobilizing a hepatopancreas immune response during the molt cycle in crustaceans, and this study will contribute to a better understanding of the hepatopancreas immune system and mud crab prophylactic immune mechanisms at the post-molt stage.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Tummamunkong P, Jaree P, Tassanakajon A, Somboonwiwat K. WSSV-responsive gene expression under the influence of PmVRP15 suppression. FISH & SHELLFISH IMMUNOLOGY 2018; 72:86-94. [PMID: 29017938 DOI: 10.1016/j.fsi.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The viral responsive protein 15 from black tiger shrimp Penaeus monodon (PmVRP15), is highly up-regulated and produced in the hemocytes of shrimp with white spot syndrome virus (WSSV) infection. To investigate the differential expression of genes from P. monodon hemocytes that are involved in WSSV infection under the influence of PmVRP15 expression, suppression subtractive hybridization (SSH) of PmVRP15-silenced shrimp infected with WSSV was performed. The 189 cDNA clones of the forward library were generated by subtracting the cDNAs from WSSV-infected and PmVRP15 knockdown shrimp with cDNAs from WSSV-infected and GFP knockdown shrimp. For the opposite subtraction, the 176 cDNA clones in the reverse library was an alternative set of genes in WSSV-infected shrimp hemocytes in the presence of PmVRP15 expression. The abundant genes in forward SSH library had a defense/homeostasis of 26%, energy/metabolism of 23% and in the reverse SSH library a hypothetical protein with unknown function was found (30%). The differential expressed immune-related genes from each library were selected for expression analysis using qRT-PCR. All selected genes from the forward library showed high up-regulation in the WSSV-challenged PmVRP15 knockdown group as expected. Interestingly, PmHHAP, a hemocyte homeostasis associated protein, and granulin-like protein, a conserved growth factor, are extremely up-regulated in the absence of PmVRP15 expression in WSSV-infected shrimp. Only transcript level of transglutaminase II, that functions in regulating hematopoietic tissue differentiation and inhibits mature hemocyte production in shrimp, was obviously down-regulated as observed from SSH results. Taken together, our results suggest that PmVRP15 might have a function relevant to hemocyte homeostasis during WSSV infection.
Collapse
Affiliation(s)
- Phawida Tummamunkong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. FISH & SHELLFISH IMMUNOLOGY 2015; 43:364-374. [PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, 631 501 Kanchipuram, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, 226031 Lucknow, Uttar Pradesh, India
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
6
|
Hu X, Hu X, Hu B, Wen C, Xie Y, Wu D, Tao Z, Li A, Gao Q. Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata. FISH & SHELLFISH IMMUNOLOGY 2014; 40:446-454. [PMID: 25038281 DOI: 10.1016/j.fsi.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/11/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Cathepsin L is one of the crucial enzyme superfamilies and involved in the immune responses. The Cathepsin L cDNA and genome of Cristaria plicata(CpCL) was cloned from the hemocytes using degenerate primers by the rapid amplification of cDNA ends (RACE) PCR. The genomic DNA was 9353 bp long and had a total of six introns and seven exons. The full-length cDNA of CpCL was 1144 bp, the cDNA contained a 5' untranslated region (UTR) of 34 nucleotides, the 3' UTR of 108 bp with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 1002 bp, encoding 333 amino acid residues with 37.65 kDa predicted molecular weight. The theoretical isoelectric point was 8.61. The prepro-cathepsin L was consisted of a typical signal peptide (Met1-Gly20), a pro-region peptide (Leu21-Glu116) and a mature peptide (Tyr117-Val333). Many members of the papain family possessed of a proline residue at position 2 in the mature enzymem, this was also observed in CpCL. The preproprotein included an oxyanion hole (Gln 135), the active center formed by Cys141, His280 and Asn 300, the potential N-glycosylation site (Asn38, Asn 113 and Asn 272) and the conserved GCXGG motifs, which was characteristic of cathepsin, the conserved ERWNIN and GNFD motifs, which were characteristic for cathepsin L. Homology analysis revealed that the CpCL shared 49-87% identity to other known cathepsin L sequences. The phylogenetic tree showed that the CpCL clustered with the invertebrate cathepsin L cysteine proteases, and was closely related to the cathepsin L of Hyriopsis cumingii. The expression of CpCL mRNA was detected in hepatopancreas, hemocytes, mantle, gills and adductor muscle, and the higher expression level was in hepatopancreas. After A. hydrophila stimulation, the expression of the CpCL mRNA was up-regulated in hemocytes and hepatopancreas, and the expression level was significantly lower in gill than one after PBS challenge group.
Collapse
Affiliation(s)
- Xiaojuan Hu
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiangping Hu
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | - Yanhai Xie
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Dan Wu
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhiying Tao
- School of Life Sciences and Food Engineering, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Qian Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
7
|
Jebali J, Chicano-Gálvez E, Fernández-Cisnal R, Banni M, Chouba L, Boussetta H, López-Barea J, Alhama J. Proteomic analysis in caged Mediterranean crab (Carcinus maenas) and chemical contaminant exposure in Téboulba Harbour, Tunisia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:15-26. [PMID: 24433786 DOI: 10.1016/j.ecoenv.2013.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
This study uses proteomics approach to assess the toxic effects of contaminants in the Mediterranean crab (Carcinus maenas) after transplantation into Téboulba fishing harbour. High levels of aliphatic and aromatic hydrocarbons were detected in sediments. Although their effects on vertebrates are well described, little is known about their early biological effects in marine invertebrates under realistic conditions. Protein expression profiles of crabs caged for 15, 30 and 60 days were compared to unexposed animals. Nineteen proteins with significant expression differences were identified by capLC-µESI-IT MS/MS and homology search on databases. Differentially expressed proteins were assigned to five different categories of biological function including: (1) chitin catabolism, (2) proteolysis, (3) exoskeleton biosynthesis, (4) protein folding and stress response, and (5) transport. The proteins showing major expression changes in C. maenas after different caging times may be considered as novel molecular biomarkers for effectively biomonitoring aquatic environment contamination.
Collapse
Affiliation(s)
- Jamel Jebali
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia.
| | - Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain; Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofía University Hospital, University of Córdoba, 14071-Córdoba, Spain
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| | - Mohamed Banni
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia
| | - Lassaad Chouba
- Chemical Laboratory, Higher Institute of Marine Sciences and Technology, La Goulette Center, 2060 Tunis, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042-Sousse, Tunisia
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071-Córdoba, Spain
| |
Collapse
|
8
|
Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 2013; 168:569-79. [PMID: 23669240 DOI: 10.1016/j.micres.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143-154, 286-296 and 304-323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P<0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.
Collapse
|
9
|
Rojo L, García-Carreño F, de Los Angeles Navarrete del Toro M. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:87-96. [PMID: 22648335 DOI: 10.1007/s10126-012-9461-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Aspartic proteinases in the gastric fluid of clawed lobsters Homarus americanus and Homarus gammarus were isolated to homogeneity by single-step pepstatin-A affinity chromatography; such enzymes have been previously identified as cathepsin D-like enzymes based on their deduced amino acid sequence. Here, we describe their biochemical characteristics; the properties of the lobster enzymes were compared with those of its homolog, bovine cathepsin D, and found to be unique in a number of ways. The lobster enzymes demonstrated hydrolytic activity against synthetic and natural substrates at a wider range of pH; they were more temperature-sensitive, showed no changes in the K(M) value at 4°C, 10°C, and 25°C, and had 20-fold higher k(cat)/K(M) values than bovine enzyme. The bovine enzyme was temperature-dependent. We propose that both properties arose from an increase in molecular flexibility required to compensate for the reduction of reaction rates at low habitat temperatures. This is supported by the fast denaturation rates induced by temperature.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste-CIBNOR, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | | | | |
Collapse
|
10
|
蔡 伊. Development of Ecotoxicogenomic Biomarkers on the Freshwater Shrimp (Neocaridina denticulate) Following Short-Term Exposure to Dipropyl Phthalate. INTERNATIONAL JOURNAL OF ECOLOGY 2013. [DOI: 10.12677/ije.2013.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Molecular cloning and mRNA expression of the liver-specific cathepsin L1 gene of the olive flounder, Paralichthys olivaceus. Biosci Biotechnol Biochem 2011; 75:1214-8. [PMID: 21670505 DOI: 10.1271/bbb.110220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We isolated a homolog of cathepsin L from a cDNA library of the olive flounder liver. The flounder cathepsin L1 transcript consisted of 1,221 bp that encoded a polypeptide of 334 amino acids. The overall identity between flounder cathepsin L1 and other cathepsin Ls was 50-64%, and flounder cathepsin L1 contained the highly conserved ERFNIN-motif. A phylogenetic tree indicated that flounder cathepsin L1 is in the same monophyletic group as zebrafish cathepsin Lc. RT-PCR analysis revealed that cathepsin L1 transcripts were expressed only in the liver. They were detected from 28 d post-hatching. Under starvation conditions, cathepsin L1 expression was decreased at 30 d.
Collapse
|
12
|
Rojo L, Muhlia-Almazan A, Saborowski R, García-Carreño F. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:696-707. [PMID: 20169386 DOI: 10.1007/s10126-010-9257-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.
Collapse
Affiliation(s)
- Liliana Rojo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | | | | | | |
Collapse
|
13
|
Wu P, Qi D, Chen L, Zhang H, Zhang X, Qin JG, Hu S. Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 4:111-20. [PMID: 20403747 DOI: 10.1016/j.cbd.2008.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 12/16/2022]
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important crustacean species in aquaculture. However, early gonad maturity is a ubiquitous problem which devalues the product quality. While husbandry and nutritional management have achieved little success in tackling this issue, a molecular approach may discover the genes involved in reproduction and development, which will provide the basic knowledge on reproductive control. In this study, a high-quality cDNA library of prawn was constructed from the ovary tissue. A total of 3294 successful sequencing reactions yielded 3256 expressed sequence tags (ESTs) longer than 100 bp. The cluster and assembly analyses yielded 1514 unique sequences including 414 contigs and 1168 singletons. About 719 (47.49%) unique sequences were identified as orthologs of genes from other organisms. By sequence comparability analysis, 28 important genes including cathepsin B, chromobox protein, Cdc2, cyclin B, DEAD box protein and ADF/cofilin protein were expressed. These genes may be involved in reproductive and developmental functions in prawn. Peritrophin consisting of cortical rods was also found in this species. The identification of these EST sequences in M. nipponense would improve our understanding on the genes that regulate reproduction and development in prawn species. This study also lays the groundwork for development of molecular markers related to ovary development in other prawn species.
Collapse
Affiliation(s)
- Ping Wu
- College of Life Science, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A. Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. FISH & SHELLFISH IMMUNOLOGY 2008; 25:485-493. [PMID: 18692576 DOI: 10.1016/j.fsi.2008.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/26/2023]
Abstract
The lymphoid organ of penaeid shrimps is proposed to play an important role in the innate immune system. To investigate the potential immune function of the lymphoid organ, we analyzed the expressed genes from the lymphoid organ of normal and Vibrio harveyi-infected Penaeus monodon using an expressed sequence tag (EST) approach. Sequence analysis of the EST clones derived from the two lymphoid organ cDNA libraries (408 clones from the normal and 625 clones from the infected libraries), revealed a high redundancy of specific transcripts. Transcripts of the lysosomal cysteine proteinases, cathepsins B and L, were abundantly expressed in the lymphoid organ of both libraries, whilst the transcripts of the related genes peritrophin and thrombospondin predominated and were found only in the V. harveyi-infected library, making them interesting candidate functional genes. Moreover, immune-related genes were found at a significant proportion (approximately 15%) in both normal and infected libraries, but different expressed genes were observed between the two libraries. The expression levels of P. monodon cathepsins B and L in the lymphoid organ following injection with either V. harveyi or white spot syndrome virus (WSSV) showed only a slight change in the transcript abundance compared to that seen in the mock-infection (control). Immunohistochemistry confirmed that cathepsin L protein was localized in the lymphoid organ with intense cathepsin L staining observed in the lymphoid organ spheroids of WSSV-infected shrimps. The results suggest that cathepsins L and B likely play a major role in the lymphoid organ function and are probably implicated in degradation of foreign material that is sequestrated in the lymphoid organ spheroids, although any additional role in control of viral or cellular mediated apoptosis remains to be evaluated.
Collapse
Affiliation(s)
- Siriporn Pongsomboon
- Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
15
|
Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schlossmacher U, Schröder HC. Silicateins, the major biosilica forming enzymes present in demosponges: Protein analysis and phylogenetic relationship. Gene 2007; 395:62-71. [PMID: 17408887 DOI: 10.1016/j.gene.2007.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 11/21/2022]
Abstract
Silicateins are enzymes, which are restricted to sponges (phylum Porifera), that mediate the catalytic formation of biosilica from monomeric silicon compounds. The silicatein protein is compartmented in the sponges in the axial filaments which reside in the axial canals of the siliceous spicules. In the present study silicatein has been isolated from the freshwater sponge Lubomirskia baicalensis where it occurs in isoforms with sizes of 23 kDa, 24 kDa and 26 kDa. Since the larger protein is glycosylated we posit that it is a processed form of one of the smaller size forms. The silicatein isoforms are post-translationally modified by phosphorylation; at least four isoforms exist with pI's of 5.4, of 5.2, of 4.9 and of 4.7. Surprisingly silicatein not only mediates polymerization of silicate, but also displays proteolytic activity which is specific for cathepsin L enzymes, thus underscoring the high relationship of the silicateins to cathepsin L. The cDNAs from L. baicalensis for silicatein and cathepsin L, as well as the respective genes, were cloned. It was found that the five introns present in the sponge genes are highly conserved up to human cathepsin L. This analysis has been completed by sequencing of two silicatein genes (both for silicatein-alpha and -beta) and of cathepsin L from another demosponge, Suberites domuncula. A comprehensive phylogenetic analysis with these new sequences shed new light upon the evolution of cathepsin L and silicatein families which occurred at the base of the metazoan phyla. It is concluded, that in parallel with the emergence of these enzymes at first the number of introns increased, especially in the coding region of the mature enzyme. Later in evolution the number of introns decreased again. We postulate that modification of the catalytic triad, especially of its first amino acid, is a suitable target for a chemical modulation of enzyme function of the silicateins/cathepsin L.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahsan MN, Aoki H, Watabe S. Characterization of cDNA clones encoding two distinct cathepsins with restricted expression pattern in a marine pelagic fish. Mol Biol Rep 2006; 33:233-41. [PMID: 16850193 DOI: 10.1007/s11033-005-0415-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2005] [Indexed: 10/24/2022]
Abstract
Cathepsin L (EC 3.4.22.15) from aquatic animals are quite stable and active at neutral or alkaline pH values while their mammalian equivalents work at an acidic environment of the lysosomes. To understand the molecular properties at the gene level we employed a PCR-based strategy using degenerate oligonucleotide primers to isolate cathepsin L-like genes from anchovy Engraulis japonicus. As a result, we obtained two closely related genes encoding cathepsins (aCat1 and aCat2) similar to both cathepsins L and S from other organisms. The predicted precursor protein of 324 amino acid residues for genes differed in six residues and contained conserved residues characteristic of cathepsin L-like cysteine proteases. Phylogenetic analyses failed to produce any precise relationships of aCat1 and aCat2 with other cysteine proteases. However, with a bootstrap value less than 50, these two fish cathepsins formed a separate group to that bearing cathepsins L and S of various organisms. Interestingly, unlike mammalian cathepsin L transcripts of aCat1 and aCat2 were almost exclusively detected in the stomach suggesting that the fish homologues are non-lysosomal secretory enzymes present in the extracellular acidic environment of the stomach and that marine teleosts developed digestive cysteine proteases as a result of evolutionary pressure in response to varying dietary conditions.
Collapse
Affiliation(s)
- Md Nazmul Ahsan
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
17
|
Hu KJ, Leung PC. Complete, precise, and innocuous loss of multiple introns in the currently intronless, active cathepsin L-like genes, and inference from this event. Mol Phylogenet Evol 2006; 38:685-96. [PMID: 16290010 DOI: 10.1016/j.ympev.2005.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 09/03/2005] [Accepted: 09/06/2005] [Indexed: 11/23/2022]
Abstract
Retrotransposition typically generates pseudogenes. Here we demonstrate a different fate of the retro-processed genes through a novel mechanism in which the retro-processed genes still maintain their sequence intactness and the original functions. We show that the shrimp cathepsin L (CatL) gene MeCatL has lost all of its five introns. Also, ProEPB, the ancestor of the CatL-like barley EPBs and rice REP1, has lost all of its three introns. The multiple introns in a gene might have been eliminated simultaneously and precisely at the original locus for the CatL-like genes of shrimp, barley, rice, Drosophila, and Theileria. We reason that retrotransposition is not responsible for the generation of a processed active intronless (PAI) gene when the gene product retains its sequence intactness and its original function. We propose that double-strand-break repair (DSBR) machinery might play a role in cDNA-mediated homologous recombination (cDMHR) that causes the loss of introns. The cDMHR/DSBR pathway is probably a fundamental mechanism for intron loss in PAI genes and in some asymmetric-intron genes.
Collapse
Affiliation(s)
- Ke-Jin Hu
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | |
Collapse
|
18
|
Hu KJ, Leung PC. Shrimp cathepsin L encoded by an intronless gene has predominant expression in hepatopancreas, and occurs in the nucleus of oocyte. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:21-33. [PMID: 14698907 DOI: 10.1016/j.cbpc.2003.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have cloned the cDNA and genomic DNA of an active intronless cathepsin L from Metapenaeus ensis. The encoded enzyme has the shortest prosequence among cathepsin L subgroup. It was predominantly expressed in hepatopancreas with an expression level of at least 10 times higher than in any other tissues. It also has expression in stomach, intestine, eye, testis, ovary and muscle. Western blots visualized the mature enzyme in hepatopancreas and a procathepsin L in ovary, intestine and stomach. Metapenaeus cathepsin L (MeCatL) is localized in the large digestive vacuole of the digestive B cell of hepatopancreas. MeCatL has a role in food digestion. An interesting finding is that it exists in the nucleus of oocyte. MeCatL might have a specified physiological role in the nucleus of oocyte. MeCatL might also have a house-keeping function as is suggested for mammalian cathepsin L.
Collapse
Affiliation(s)
- Ke-Jin Hu
- Department of Zoology, The University of Hong Kong, Pokfulam road, Hong Kong, PR China
| | | |
Collapse
|
19
|
Yamasaki H, Mineki R, Murayama K, Ito A, Aoki T. Characterisation and expression of the Fasciola gigantica cathepsin L gene. Int J Parasitol 2002; 32:1031-42. [PMID: 12076632 DOI: 10.1016/s0020-7519(02)00057-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene structure of a cathepsin L from Fasciola gigantica was characterised. The gene spans approximately 2.0 kb and comprises four exons and three introns and is a compact gene as in the cases of crustaceous and platyhelminth cathepsins L. Southern blot analysis suggested that a few copies of the genes are sparsely organised in the genome. Of the three intron insertion positions, two of which are in the same position as in the mammalian cathepsin L gene. Phylogenetic analysis revealed that F. gigantica cathepsin L forms a clade with those from Fasciola hepatica, but not with those from Spirometra erinacei and schistosomes. Putative TATA-boxes were found upstream of a transcription initiation site. The sequence analysis of the 5'-upstream of the transcript revealed that the cathepsin L gene is transcribed by cis-splicing fashion. Furthermore, the experiments using recombinant F. gigantica procathepsin L showed that it was processed to an enzymatically active cathepsin L by pH-dependent autocatalysis. However, the pro-peptide deleted cathepsin L showed no enzyme activity, indicating that the pro-region of F. gigantica procathepsin L is essential for the folding and/or refolding of functional cathepsin L. These results are consistent with the observations in mammalian cathepsin L and papain.
Collapse
Affiliation(s)
- Hiroshi Yamasaki
- Department of Parasitology, Central Laboratory of Medical Sciences, Juntendo University School of Medicine, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
20
|
Bierne N, Lehnert SA, Bédier E, Bonhomme F, Moore SS. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol 2000; 9:233-5. [PMID: 10672168 DOI: 10.1046/j.1365-294x.2000.00842.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- N Bierne
- Laboratoire Génome, Populations, Interactions CNRS UPR 9060, SMEL, 1 Quai Daurade 34200 Sète, France.
| | | | | | | | | |
Collapse
|
21
|
Sellos D, Van Wormhoudt A. Polymorphism and evolution of collagenolytic serine protease genes in crustaceans. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1432:419-24. [PMID: 10407165 DOI: 10.1016/s0167-4838(99)00121-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two genomic DNA fragments encoding crustacean collagenolytic serine protease genes show coding fragments that span 1522-1526 base pairs and contain seven exons encoding the complete amino acid sequence of two enzymes, CHYA and CHYB. As in serine protease genes from other organisms, the region coding for the residues around the active site is split by two introns. Although the introns differ from those of other organisms in size and nucleotide sequence, their number and location are more or less the same as found in mammalian chymotrypsin or elastase genes that evolved lately, but different for trypsin genes. Meanwhile, the junction that occurs between the propeptide and the maturation site is only found in the shrimp genes. This is also the case for the junction located 13 amino acids after the active site aspartic acid in these genes. Between 40 and 50 copies of the genes are reported by Southern analysis. Seven different genes within ChyA Pv family present 0-6% base changes, whereas five different genes belonging to ChyB Pv family show changes of up to 27% in the short studied portion of exon 4. This last family presents a mosaic organization of the coding parts, which are also expressed in the hepatopancreas of the shrimp as the variant PVC5 cDNA.
Collapse
Affiliation(s)
- D Sellos
- Station de Biologie Marine, Muséum National d'Histoire Naturelle et Collège de France, BP 225, 29900, Concarneau, France.
| | | |
Collapse
|