1
|
Khalique H, López Marco J, Lim F. A haploid HSV-1 genome platform for vector development: testing of the tetracycline-responsive switch shows interference by infected cell protein 0. J Gene Med 2018; 18:302-311. [PMID: 27672733 DOI: 10.1002/jgm.2929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although herpes simplex virus type 1 (HSV-1) has outstanding properties for gene delivery vectors and its genome is available in bacterial artificial chromosomes (BACs) for mutagenesis studies, one impediment is the presence of approximately 15.4 kb of DNA sequences that are duplicated in the HSV-1 genome, complicating vector construction and stability. METHODS As a useful platform for building HSV-1 vectors, we have constructed a fully haploid HSV-1 genome BAC by deletion of one of these repeats, confirming that viral propagation in culture is not impaired. We used this ΔIR mutant to subsequently investigate whether the insertion of tetracycline-responsive tetO elements into the ICP34.5-ICP0 gene region can be used to control HSV-1 lytic replication. RESULTS The results of the present study show that ΔIR mutants deleted for ICP34.5 are viable for replication but not when the ICP0 promoter is also disrupted, thus indicating that regulation of infected cell protein 0 (ICP0) levels in the absence of ICP34.5 could be a viable means for controlling growth of HSV-1 vectors. Surprisingly, however, the tetO elements inserted into the ICP0 promoter did not confer ligand responsiveness to growth or ICP0 expression. Further analysis by transfection experiments revealed that ICP0 itself interferes with the tetracycline switch and reduces the the inducibility of this system. CONCLUSIONS Our new haploid HSV-1 BAC is a useful platform for building multiply deleted HSV-1 vectors. Deletion of the gene for ICP34.5 in this backbone renders viral growth dependent on ICP0, although ICP0 expression could not be regulated by tet-responsive transcriptional regulators.
Collapse
Affiliation(s)
- Hena Khalique
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Jorge López Marco
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Filip Lim
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
2
|
Lebar T, Jerala R. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits. ACS Synth Biol 2016; 5:1050-1058. [PMID: 27344932 DOI: 10.1021/acssynbio.5b00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence , 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry , 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence , 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Wang W, Peng H, Li J, Zhao X, Zhao F, Hu K. Controllable inhibition of hepatitis B virus replication by a DR1-targeting short hairpin RNA (shRNA) expressed from a DOX-inducible lentiviral vector. Virus Genes 2013; 46:393-403. [PMID: 23397077 PMCID: PMC7089079 DOI: 10.1007/s11262-013-0886-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/22/2013] [Indexed: 12/14/2022]
Abstract
As a highly efficient delivery system, lentiviral vectors (LVs) have become a powerful tool to assess the antiviral efficacy of RNA drugs such as short hairpin RNA (shRNA) and decoys. Furthermore, recent advanced systems allow controlled expression of the effector RNA via coexpression of a tetracycline/doxycycline (DOX) responsive repressor (tTR-KRAB). Herein, this system was utilized to assess the antiviral effects of LV-encoded shRNAs targeting three conserved regions on the pregenomic RNA of hepatitis B virus (HBV), namely the region coding for the reverse transcriptase (RT) domain of the viral polymerase (LV-HBV-shRNA1), the core promoter (CP; LV-HBV-shRNA2), and the direct repeat 1 (DR1; LV-HBV-shRNA3). Transduction of just the LV-HBV-shRNA vectors into the stably HBV expressing HepG2.2.15 cell line showed significant reductions in secreted HBsAg and HBeAg, intracellular HBcAg as well as HBV RNA and DNA replicative intermediates for all vectors, however, most pronouncedly for the DR1-targeting shRNA3. The corresponding vector was therefore applied in the DOX-controlled system. Notably, strong interference with HBV replication was found in the presence of the inducer DOX whereas the antiviral effect was essentially ablated in its absence; hence, the silencing effect of the shRNA and consequently HBV replication could be strictly regulated by DOX. This newly established system may therefore provide a valuable platform to study the antiviral efficacy of RNA drugs against HBV in a regulated manner, and even be applicable in vivo.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | |
Collapse
|
4
|
Sun R, Zhao K, Shen R, Cai L, Yang X, Kuang Y, Mao J, Huang F, Wang Z, Fei J. Inducible and reversible regulation of endogenous gene in mouse. Nucleic Acids Res 2012; 40:e166. [PMID: 22879379 PMCID: PMC3505985 DOI: 10.1093/nar/gks738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methods for generating loss-of-function mutations, such as conventional or conditional gene knockout, are widely used in deciphering gene function in vivo. By contrast, inducible and reversible regulation of endogenous gene expression has not been well established. Using a mouse model, we demonstrate that a chimeric transcriptional repressor molecule (tTS) can reversibly inhibit the expression of an endogenous gene, Nmyc. In this system, a tetracycline response element (TRE) artificially inserted near the target gene’s promoter region turns the gene on and off in a tetracycline-inducible manner. NmycTRE mice were generated by inserting a TRE into the first intron of Nmyc by the knockin technique. NmycTRE mice were crossed to tTS transgenic mice to produce NmycTRE/TRE: tTS embryos. In these embryos, tTS blocked Nmyc expression, and embryonic lethality was observed at E11.5d. When the dam was exposed to drinking water containing doxycycline (dox), normal endogenous Nmyc expression was rescued, and the embryo survived to birth. This novel genetic modification strategy based on the tTS–dox system for inducible and reversible regulation of endogenous mouse genes will be a powerful tool to investigate target genes that cause embryonic lethality or other defects where reversible regulation or temporary shutdown of the target gene is needed.
Collapse
Affiliation(s)
- Ruilin Sun
- Shanghai Research Center for Model Organisms, Shanghai 201210, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
6
|
Fu JD, Jung Y, Chan CW, Li RA. An Inducible Transgene Expression System for Regulated Phenotypic Modification of Human Embryonic Stem Cells. Stem Cells Dev 2008; 17:315-24. [DOI: 10.1089/scd.2007.0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ji-Dong Fu
- Stem Cell Program, University of California, Davis, CA 95616
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
| | - Yunjoon Jung
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Camie W. Chan
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, CA 95817
| | - Ronald A. Li
- Stem Cell Program, University of California, Davis, CA 95616
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, CA 95817
| |
Collapse
|
7
|
Ikeda R, Kokubu C, Yusa K, Keng VW, Horie K, Takeda J. Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol Cell Biol 2006; 27:1665-76. [PMID: 17178833 PMCID: PMC1820450 DOI: 10.1128/mcb.01500-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sleeping Beauty (SB) transposase reconstructed from salmonid fish has high transposition activity in mammals and has been a useful tool for insertional mutagenesis and gene delivery. However, the transposition efficiency has varied significantly among studies. Our previous study demonstrated that the introduction of methylation into the SB transposon enhanced transposition, suggesting that transposition efficiency is influenced by the epigenetic status of the transposon region. Here, we examined the influence of the chromatin status on SB transposition in mouse embryonic stem cells. Heterochromatin conformation was introduced into the SB transposon by using a tetracycline-controlled transrepressor (tTR) protein, consisting of a tetracycline repressor (TetR) fused to the Kruppel-associated box (KRAB) domain of human KOX1 through tetracycline operator (tetO) sequences. The excision frequency of the SB transposon, which is the first step of the transposition event, was enhanced by approximately 100-fold. SB transposase was found to be colocalized with intense DAPI (4',6'-diamidino-2-phenylindole) staining and with the HP1 family by biochemical fractionation analyses. Furthermore, chromatin immunoprecipitation analysis revealed that SB transposase was recruited to tTR-induced heterochromatic regions. These data suggest that the high affinity of SB transposase for heterochromatin conformation leads to enhancement of SB transposition efficiency.
Collapse
Affiliation(s)
- Ryuji Ikeda
- Department of Social and Environmental Medicine H3, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Zhou BY, Ye Z, Chen G, Gao ZP, Zhang YA, Cheng L. Inducible and Reversible Transgene Expression in Human Stem Cells After Efficient and Stable Gene Transfer. Stem Cells 2006; 25:779-89. [PMID: 17158240 DOI: 10.1634/stemcells.2006-0128] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report here a lentiviral vector system for regulated transgene expression. We used the tetracycline repressor fused with a transcriptional suppression domain (tTS) to specifically suppress transgene expression. Human cells were first transduced with a tTS-expressing vector and subsequently transduced with a second lentiviral vector-containing transgene controlled by a regular promoter adjacent to a high-affinity tTS-binding site (tetO). After optimizing the location of the tetO site in the latter vector, we achieved a better inducible transgene expression than the previous lentiviral vectors using the tetracycline repressor systems. In this new system, the transgene transcription from a cellular promoter such as EF1alpha or ubiquitin-C promoter is suppressed by the tTS bound to the nearby tetO site. In the presence of the tetracycline analog doxycycline (Dox), however, the tTS binding is released from the transgene vector and transcription from the promoter is restored. Thus, this system simply adds an extra level of regulation, suitable for any types of promoters (ubiquitous or cell-specific). We tested this tTS-suppressive, Dox-inducible system in 293T cells, human multipotent hematopoietic progenitor cells, and three human embryonic stem cell lines, using a dual-gene vector containing the green fluorescent protein reporter or a cellular gene. We observed a tight suppression in the uninduced state. However, the suppression is reversible, and transgene expression was restored at 5 ng/ml Dox. The lentiviral vectors containing the tTS-suppressive, Dox-inducible system offer a universal, inducible, and reversible transgene expression system in essentially any mammalian cell types, including human embryonic stem cells.
Collapse
Affiliation(s)
- Betty Ying Zhou
- Stem Cell Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Broadway Research Building, Room 747, 733 North Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
9
|
Huang X, Yuan W, Huang W, Bai Y, Deng Y, Zhu C, Liang P, Li Y, Du X, Liu M, Wang Y, Wu X. ZNF569, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway. Biochem Biophys Res Commun 2006; 346:621-8. [PMID: 16793018 DOI: 10.1016/j.bbrc.2006.05.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 05/09/2006] [Indexed: 11/17/2022]
Abstract
Transcription factors play an essential role in altering gene expression. A great progress about transcription factors has been made towards the understanding of normal physiological processes, embryonic development, and human diseases. Here we report the identification and characterization of a novel KRAB-containing zinc-finger protein, ZNF569, which is isolated from a human embryonic heart cDNA library. ZNF569 encodes a putative protein of 686 amino acids. The protein is conserved across different species during evolution. Expression of ZNF569 was found in most of the examined human adult and embryonic tissues with a higher level in heart and skeletal muscles. The KRAB and ZNF motifs of ZNF569 represent potent repression domains. When ZNF569 is fused to Gal-4 DNA-binding domain and co-transfected with VP-16, ZNF569 protein suppresses transcriptional activity. Overexpression of ZNF569 in COS-7 cells inhibited the transcriptional activities of SRE and AP-1, which may be silenced by siRNA. The results suggest that ZNF569 protein may act as a transcriptional repressor that suppresses MAPK signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Xinqiong Huang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Eberhardy SR, Goncalves J, Coelho S, Segal DJ, Berkhout B, Barbas CF. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol 2006; 80:2873-83. [PMID: 16501096 PMCID: PMC1395442 DOI: 10.1128/jvi.80.6.2873-2883.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) primer-binding site (PBS) is a highly conserved region in the HIV genome and represents an attractive target for the development of new anti-HIV therapies. In this study, we designed four artificial zinc finger transcription factors to bind at or adjacent to the PBS and repress transcription from the HIV-1 long terminal repeat (LTR). These proteins bound to the LTR in vivo, as demonstrated by the chromatin immunoprecipitation assay. In transient reporter assays, three of the four proteins repressed transcription of a reporter driven by the HIV-1 LTR. Only one of these proteins, however, designated KRAB-PBS2, was able to prevent virus production when transduced into primary lymphocytes. We observed >90% inhibition of viral replication over the course of several weeks compared to untransduced cells, and no significant cytotoxicity was observed. Long-term exposure of HIV-1 to KRAB-PBS2 induced mutations in the HIV-1 PBS that reduced the effectiveness of the repressor, but these mutations also resulted in decreased rates of viral replication. These results show that KRAB-PBS2 has the potential to be used in antiviral therapy for AIDS patients and might complement other gene-based strategies.
Collapse
Affiliation(s)
- Scott R Eberhardy
- The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
11
|
Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. A versatile tool for conditional gene expression and knockdown. Nat Methods 2006; 3:109-16. [PMID: 16432520 DOI: 10.1038/nmeth846] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 12/14/2005] [Indexed: 11/08/2022]
Abstract
Drug-inducible systems allowing the control of gene expression in mammalian cells are invaluable tools for genetic research, and could also fulfill essential roles in gene- and cell-based therapy. Currently available systems, however, often have limited in vivo functionality because of leakiness, insufficient levels of induction, lack of tissue specificity or prohibitively complicated designs. Here we describe a lentiviral vector-based, conditional gene expression system for drug-controllable expression of polymerase (Pol) II promoter-driven transgenes or Pol III promoter-controlled sequences encoding small inhibitory hairpin RNAs (shRNAs). This system has great robustness and versatility, governing tightly controlled gene expression in cell lines, in embryonic or hematopoietic stem cells, in human tumors xenotransplanted into nude mice, in the brain of rats injected intraparenchymally with the vector, and in transgenic mice generated by infection of fertilized oocytes. These results open up promising perspectives for basic or translational research and for the development of gene-based therapeutics.
Collapse
Affiliation(s)
- Jolanta Szulc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Mannini R, Rivieccio V, D'Auria S, Tanfani F, Ausili A, Facchiano A, Facchiano A, Pedone C, Grimaldi G. Structure/function of KRAB repression domains: Structural properties of KRAB modules inferred from hydrodynamic, circular dichroism, and FTIR spectroscopic analyses. Proteins 2005; 62:604-16. [PMID: 16385564 DOI: 10.1002/prot.20792] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The abundant zinc finger proteins (ZFPs) sharing the KRAB motif, a potent transcription repression domain, direct the assembly on templates of multiprotein repression complexes. A pivotal step in this pathway is the assembly of a KRAB domain-directed complex with a primary corepressor, KAP1/KRIP-1/TIF1beta. The structure/function dependence of KRAB/TIF1beta protein-protein interaction and properties of the complex, therefore, play pivotal roles in diverse cellular processes depending on KRAB-ZFPs regulation. KRAB domains are functionally bipartite. The 42 amino acid-long KRAB-A module, indeed, is necessary and sufficient for transcriptional repression and for the interaction with the tripartite RBCC region of TIF1beta, while the KRAB-B motif seems to potentiate the assembly of the complex. The structural properties of KRAB-A and KRAB-AB domains from the human ZNF2 protein have been investigated by characterizing highly purified lone (A) and composite (AB) modules. Hydrodynamic and spectroscopic features, investigated by means of gel filtration, circular dichroism, and infrared spectroscopy, provide evidence that both KRAB-A and KRAB-AB domains present low compactness, structural disorder, residual secondary structure content, flexibility, and tendency to molecular aggregation. Comparative analysis among KRAB-A and KRAB-AB modules suggests that the presence of the -B module may influence the properties of lone KRAB-A by affecting the structural flexibility and stability of the conformers. The combined experimental data and the intrinsic features of KRAB-A and KRAB-AB primary structures indicate a potential role of specific subregions within the modules in driving structural flexibility, which is proposed to be of importance for their function.
Collapse
Affiliation(s)
- Riccardo Mannini
- Istituto di Genetica e Biofisica Adriano Buzzati-Traverso, CNR, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Barde I, Zanta-Boussif MA, Paisant S, Leboeuf M, Rameau P, Delenda C, Danos O. Efficient control of gene expression in the hematopoietic system using a single Tet-on inducible lentiviral vector. Mol Ther 2005; 13:382-90. [PMID: 16275162 DOI: 10.1016/j.ymthe.2005.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
This work addresses the problem of efficient control of gene expression in the context of viral vectors, which still represents a difficult challenge. A number of lentiviral vectors incorporating the different elements of regulatable transcriptional systems have been described, but they fail to perform satisfactorily either because of a poor dynamic range of transcription levels or because they display high background activities in the uninduced state and mediocre inducer response. We report here on the systematic comparison of vector designs containing the elements of the doxycycline-inducible Tet-on system in their most advanced versions (rtTA2S-M2 transactivator and tTS(Kid) repressor). We show that a simple "all-in-one" vector can be obtained and used for efficient control of transgene expression in long-term tissue culture and in the hematopoietic system of mice following bone marrow transplantation. Using this vector, the uninduced state can be kept at background levels and induction factors of 100-fold are repeatedly obtained over months both in tissue culture and in vivo. Interestingly, the low background activity of the all-in-one vector renders the use of the tTS repressor dispensable, avoiding the problem of progressive loss of inducibility over time associated with irreversible modifications of the chromatin surrounding proviral sequences.
Collapse
Affiliation(s)
- Isabelle Barde
- Généthon-Centre National de la Recherche Scientifique UMR 8115, Evry, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Gou D, Wang J, Gao L, Sun Y, Peng X, Huang J, Li W. Identification and functional analysis of a novel human KRAB/C2H2 zinc finger gene ZNF300. ACTA ACUST UNITED AC 2004; 1676:203-9. [PMID: 14746915 DOI: 10.1016/j.bbaexp.2003.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel human zinc finger gene, ZNF300, was isolated from human embryos on the base of the enrichment of C2H2-specific mRNAs. The ZNF300 cDNA is 3104 bp long and encodes a 604-amino acid protein with an amino-terminal KRAB domain, and 12 carboxyl-terminal C2H2 zinc finger motifs. According to the genome database, ZNF300 is assigned to chromosome 5q33.1. Northern blot analysis revealed that the ZNF300 transcripts are expressed mostly in heart, skeletal muscle and brain. ZNF300 is localized to the nucleus and the KRAB domain of ZNF300 protein exhibits transcription repressor activity. These results suggest that ZNF300 is a ubiquitous transcription repressor in the nucleus.
Collapse
Affiliation(s)
- Deming Gou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77:8957-61. [PMID: 12885912 PMCID: PMC167245 DOI: 10.1128/jvi.77.16.8957-8951.2003] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference has emerged as a powerful technique to downregulate the expression of specific genes in cells and in animals, thus opening new perspectives in fields ranging from developmental genetics to molecular therapeutics. Here, we describe a method that significantly expands the potential of RNA interference by permitting the conditional suppression of genes in mammalian cells. Within a lentivirus vector background, we subjected the polymerase III promoter-dependent production of small interfering RNAs to doxycycline-controllable transcriptional repression. The resulting system can achieve the highly efficient and completely drug-inducible knockdown of cellular genes. As lentivirus vectors can stably transduce a wide variety of targets both in vitro and in vivo and can be used to generate transgenic animals, the present system should have broad applications.
Collapse
Affiliation(s)
- Maciej Wiznerowicz
- Department of Genetics and Microbiology, CMU, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|